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a b s t r a c t

The primary objective of this article is to develop an analytic procedure for calculating the permeation
fluxes of mixtures of penetrant molecules across polymeric membranes. The developed approach
combines (1) the Flory-Huggins (F-H) description of phase equilibrium thermodynamics, and (2) the
Maxwell-Stefan (M-S) diffusion formulation. For compatibility reasons, the M-S equations are re-
formulated in terms of volume fractions, rather than the more commonly used mole fractions. Using
matrix algebra, explicit expressions are derived for calculation of the trans-membrane fluxes and
component permeabilities. The accuracy of the developed procedure is demonstrated by comparison
with published experimental data on CO2/C2H6 and water/ethanol mixture permeation.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Accurate, and robustmodels to describe themixture permeation
fluxes across polymeric membranes are essential in the design and
development of gas separations, pervaporation, dialysis, reverse
osmosis processes, and direct methanol fuel cells. It is generally
recognized that chemical potential gradients are the proper driving
forces for diffusion in polymers [1e7]. The component chemical
potentials in the polymer phase aremost conveniently described by
the Flory-Huggins (F-H)model that relates the component activities
to the volume fractions of the penetrants [8e11]. For binarymixtures
of penetrants, with interaction parameters c12,c1m,c2m that are
composition independent, the F-H model relates the activity, ai, of
penetrant i, to its volume fraction, 4i, as follows
V1

m
þ ðc1242 þ c1m4mÞð42 þ

V2

m
þ
 
c1241

V2

V1
þ c2m4m

!

where Vi is the partial molar volume of species i. We also note that
themembrane volume fraction is 4m¼1�41�42. In general, all three
interaction parameters c12,c1m,c2m will be functions of the volume
fractions of the penetrants and Equation (1) needs to be extended
[8,9]; detailed discussions on this aspect are included in the Sup-
plementary material accompanying this communication.

The Maxwell-Stefan (M-S) approach, that is firmly rooted in the
theory of irreversible thermodynamics, provides a convenient and
practical framework for setting up the flux relations for multi-
component diffusion; most commonly, the M-S diffusion formu-
lation is set up using mole fractions as composition measures
[12e15]. The calculation of trans-membrane fluxes of the pene-
trants requires the combination ofM-S and F-Hmodel descriptions;
this combination requires re-casting the M-S equations in terms of
4mÞ � c2m
V1

V2
424m

ð41 þ 4mÞ � c1m
V2

V1
414m

(1)
volume fractions [3,4]. Such a combined model has been set up by
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Ribeiro et al. [4] for quantitative description of CO2/C2H6 mixture
permeation across a cross-linked polyethylene oxide (XLPEO)
membrane; the resulting set of coupled ordinary differential
equations (ODEs) were solved using numerical methods.

The primary objective of the present communication is to
develop explicit analytic expressions for the trans-membrane
fluxes as functions of the volume fraction gradients; this develop-
ment requires re-casting the M-S equations in two-dimensional
matrix notation. The proportionality between fluxes and volume
fraction gradients is described by a matrix of effective Fick diffu-
sivities, [D]¼[B]�1[G] where [G] is a matrix of thermodynamic
correction factors, determinable by analytic differentiation of the F-
H equations. The elements of [B] can be calculated from informa-
tion on M-S diffusivities for penetrant i -membrane (m), and
penetrant (1) e penetrant (2) frictional interactions. For the sce-
nario in which the Fick matrix [D] can be assumed constant, say by
evaluation at the average composition in the membrane, the fluxes,
can be determined explicitly, obviating the need for numerical
solutions of ODEs; this simplification will be of value to both re-
searchers and practitioners.

The accuracy of the linearized M-S approach is established by
comparison with the experimental data of Ribeiro et al. [16] on
permeabilities for CO2/C2H6/XLPEO. The linearized M-S approach is
also applied to the modelling water/alcohol pervaporation pro-
cesses, and the immersion precipitation process for membrane
preparation.

The Supplementary material accompanying this publication
provides: (1) the F-H model parameters used in the phase equi-
librium calculations, (2) detailed derivation of the M-S equations
using volume fractions, and (3) input data on the M-S diffusivities
in the illustrative examples.
2. Matrix formulation of the Maxwell-Stefan equations

The M-S equations represent a balance between the force
exerted per mole of species iwith the drag, or friction, experienced
with each of the partner species in themixture.Wemay expect that
the frictional drag to be proportional to differences in the velocities
of the diffusing species (ui�uj). For binary mixture diffusion, the M-
S equations written in terms of volume fractions take the form (see
detailed derivations in the Supplementary material)

� 1
RT

dm1
dz

¼ 42ðu1 � u2Þ
ÐV
12

þ 4mðu1 � umÞ
ÐV
1m

� 1
RT

dm2
dz

¼ 41ðu1 � u2Þ
ÐV
21

þ 4mðu2 � umÞ
ÐV
2m

(2)

The polymer membrane can be considered to be stagnant, i.e.
um ¼ 0. The superscript V serves as a reminder that the M-S pair
diffusivities are not ones that arise in the commonly used M-S
formulation in terms of mole fractions [17]. The modified M-S dif-
fusivities are related to the ones commonly used:
ctÐ12V2 ¼ Ð12V2

V
¼ ÐV

12, and ctÐ1mVm ¼ Ð1mVm

V
¼ ÐV

1m where ct ¼ 1=V
is the mixture molar density. We have the symmetry constraint
ÐV

21

V1
¼ ÐV

12

V2
that is imposed by the Onsager reciprocal relations. The

diffusivities ÐV
1m, and ÐV

2m may be interpreted as inverse drag co-
efficients for 1-m, and 2-m friction. An important, persuasive,
advantage of theM-S formulation is that ÐV

1m, and ÐV
2m are relatable

to the corresponding M-S diffusivities for unary permeation of 1
and 2 across the membrane [4]. For interpretation of binary
permeation experimental data, it is common to use the exponential
model [4,18].

ÐV
1m ¼ ÐV

1m;0 exp½A1ð41 þ C1242Þ�; ÐV
2m

¼ ÐV
2m;0 exp½A2ð42 þ C2141Þ� (3)

to describe the composition dependence of the M-S diffusivities for
penetrant-membrane frictional interactions. The values of the pa-
rameters ÐV

im;0 and Ai can be determined by fitting data on unary
permeation. The parameter Cij portrays the influence of the influ-
ence of the sorption loading of species j on the M-S diffusivity of
species i; this parameter must be determined from binary perme-
ation experimental data. The quantity ÐV

12 reflects the frictional drag
between the two penetrants as they traverse the membrane. There
are no reliable estimationprocedures for 1e2 friction and, therefore,
ÐV
12 needs to be fitted to experimental data on binary mixture

permeation; we return to this point later in the discussions.
In proceeding further it is convenient to define the volumetric

flux of component i, NV
i ¼ 4iui, that has the units m3 m�2 s�1. In

terms of the volumetric fluxes of components, Equation (2) is

�4i
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i � 4iNV
j

�
ÐV
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þ
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i

�
ÐV
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; i ¼ 1;2 (4)

which is equivalent to Equation (12) of Ribeiro et al. [4], but
expressed in terms of volumetric fluxes. In order to explicitly relate
the volumetric fluxes to the gradients of the volume fractions, we
define a set of twomatrices, as follows. Firstly, we define amatrix of
thermodynamic factors [G]:

4i

RT
dmi
dz

¼ 4i
d ln ai
dz

¼
Xj¼2

j¼1

Gij
d4j

dz
; Gij ¼

4i

4j

vln ai
vln 4j

; i; j ¼ 1;2

(5)

The four elements G11,G12,G21,G22 can be determined by analytic
differentiation of the Flory-Huggins relations relating the compo-
nent activities to the volume fractions; explicit analytic expressions
are provided by Mulder and Smolders [6] and Ribeiro et al. [4].

Secondly, we define a matrix of inverse diffusivities [B] whose
elements are given by

B11 ¼ 42

ÐV
12

þ 4m

ÐV
1m

; B12 ¼ � 41

ÐV
12

B21 ¼ � 42

ÐV
21

; B22 ¼ 41

ÐV
21

þ 4m
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2m

(6)

Using the definitions in Equation (5) and (6), we may re-cast
Equation (2) to obtain the following explicit expression for the
trans-membrane volumetric fluxes
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where the matrix of Fick diffusivities is the product [D]¼[B]�1[G],
demarcating the contributions of “diffusion” and “thermody-
namics”, respectively. In general, each of the matrices, [B]�1 and [G]



Fig. 1. Permeabilities, expressed in Barrers, for unary permeation of (a, c) CO2 and (b, d) C2H6 across XLPEO membrane at (a, b) 298.15 K, and (c, d) 263.15 K. The simulations details
and input data are provided in the Supplementary material.
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has significant off-diagonal elements, causing the permeation
fluxes NV

i to be strongly coupled, i.e. the flux of each penetrant is
influenced by the volume fraction gradients of both penetrants, not
just its own. The molar flux of component i, expressed as mol m�2

s�1, is calculated using

Ni ¼ ciui ¼
4i

Vi
ui ¼

NV
i

Vi
(8)

For the special case of unary permeation of component 1 in
membrane (m), Equations (7) and (8) degenerate to yield

N1 ¼ � 1
V1

1
1� 41

ÐV
1m

vln a1
vln 41

d41
dz

(9)

Equation (9) is equivalent to that used by Fornasiero et al. [19]
for diffusion of water through soft-contact-lens materials and
Ribeiro et al. [4] for modelling unary permeation of CO2 and C2H6
across XLPEO membrane. The effective Fick diffusivity for unary
permeation is
D1;eff ¼
1

1� 41
ÐV
1m

vln a1
vln 41

(10)

3. Steady-state unary permeation across polymer membrane

At steady-state, the unary permeation flux can be determined by
integrating Equation (9) over the membrane thickness, d,

N1d ¼ � 1
V1

Z41d

410

D1;eff d41 ¼ � 1
V1

Z41d

410

1
1� 41

ÐV
1m

vln a1
vln 41

d41 (11)

In Equation (11), 410 and 41d are the volume fractions of the
penetrant 1 at the upstream and downstream faces, respectively;
these volume fractions are determined by equating the activities at
the two membrane faces with the activities in the bulk fluid mix-
tures in the upstream and downstream compartments respec-
tively; the determination of the volume fractions at either
membrane face requires the use of an equation solver such as the
one available in Microsoft Excel.

In the membrane permeation literature, experimental data for



Fig. 2. Permeabilities, expressed in Barrers, of (a, c, e) CO2, and (b, d, f) C2H6 for binary CO2/C2H6 mixture permeation across XLPEO membrane at (a, b) 298.15 K, and (c, d, e, f)
263.15 K. For the simulations presented in (e) and (f), the 1e2 friction is ignored. The simulations details and input data are provided in the Supplementary material.
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gas separations are often presented in terms of component per-
meabilities, defined as
 Pi ¼

Ni

Dfi=d
(12)



Fig. 3. (a) Thermodynamic correction factors for the ternary mixture consisting of water (1), ethanol (2) and cellulose acetate (m). (b) Ratio of the elements of thermodynamic
correction factors. (c) Molar fluxes of water, and ethanol across CA membrane calculated using the linearized M-S equations, using two different scenarios for [G] calculations. (d)
Water/ethanol permeation selectivity across CA membrane calculated using two different scenarios for [G]. The simulations details and input data are provided in the
Supplementary material.
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In Equation (12), Dfi is the difference in the fugacities in the
upstream and downstream compartments.

If the volume fraction of the component 1 at the downstream
face of the polymer membrane are taken to be vanishingly small,
i.e. 41dz0;f1dz0;, and D1,eff is evaluated at the arithmetic average
volume fraction ð410 þ 41dÞ=2, we get

P1 ¼ N1

Df1
¼ 1

Df1

1
V1

D1;eff ð410 � 0Þz 1
f10

1
V1

D1;eff ð410Þ (13)

Equation (13) represents the simplified, i.e. linearized, solution
to the Maxwell-Stefan description of unary permeation.

Fig. 1a,b present the experimental data on the permeabilities for
unary permeation of CO2 and C2H6 across XLPEO at 298.15 K, as
reported by Ribeiro et al. [16] The continuous solid lines are the
calculations using the simplified Equation (13), along with the
exponential model in Equation (3). The results obtained with the
linearized solution are indistinguishable from those obtained from
the exact solution given in Equation (11). Both models are in good
agreement with the experimental data.

Fig. 1c,d present the corresponding data for permeabilities for
unary permeation of CO2 and C2H6 across XLPEO at 263.15 K. At the
lower temperature, the volume fractions of the penetrants in the
membrane are higher, and interactions between the penetrants and
membrane is stronger. Consequently, the linearized solution de-
viates slightly from the exact analytical solution at high upstream
fugacities. Both linearized model, and exact solutions, are in good
agreement with the experimental data of Ribeiro et al. [16].

4. Permeation of CO2/C2H6 mixtures across XLPEO membrane

The computational benefits of the linearized model are signifi-
cant in binary mixture permeation. Fig. 2a,b present experimental
data of Ribeiro et al. [16] (indicated by symbols) for the permeabil-
ities of CO2 and C2H6 for CO2/C2H6/XLPEO permeation at 298.15 K.
The x-axis represents the partial fugacity of the permeants in the
bulk gas phase in the upstream compartment. We note that the
permeability of CO2 is practically unaffected by the mixture
composition of the bulk gas phase in the upstream compartment. In
sharp contrast, we note that the permeability of C2H6 is strongly
influenced (increased) by increasing proportion of CO2 in the bulk
gas phase mixture in the upstream compartment. The continuous



Fig. 4. Volumetric fluxes of (a) water, and (b) ethanol across polyimide membrane. The
symbols represent the experimental data of [20]. The continuous solid lines are the
flux calculations using the linearized M-S equations, along with the logarithmic
interpolation formula. The dashed lines are simulations in which the 1e2 friction is
considered to be negligible. The simulations details and input data are provided in the
Supplementary material.
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solid lines in Fig. 2 are obtained fromthefluxEquation (7), combined
with (8) and (12), wherein [B]�1[G] is evaluated at the arithmetic
average volume fractions ð4i0 þ 4idÞ=2zð4i0Þ=2. In these calcula-
tions, ÐV

12 is estimated from thefits provided byRibeiro et al. [4]. The
linearized set of M-S equations captures, quantitatively, all the
essential features of the composition dependence of the perme-
abilities of the two penetrants.

Fig. 2c,d compare the experimental data for CO2/C2H6/XLPEO
permeation at a lower temperature of 263.15 K at which molecule-
molecule and molecule-membrane interactions are significantly
stronger, and more strongly composition dependent. At this lower
temperature, the permeabilities of both components are influenced
by the mixture composition. The linearized M-S model, in combi-
nation with F-H, affords a quantitative reproduction of the exper-
imental data.

If the friction between the two penetrants is ignored, i.e.
ÐV
12 > >ÐV

1m; ÐV
12 > >ÐV

2m, then the matrix [B] simplifies to a di-
agonal matrix

Bii ¼ 4m

.
ÐV
im; Bij;isj ¼ 0 (14)

The calculations in Fig. 2e,f are obtained using Equation (14) for
binary permeation at 263.15 K. We note that this simplified sce-
nario captures the composition dependence only qualitatively, but
the quantitative agreement is not as good as in Fig. 2c,d. For a
quantitative modelling of mixture permeation, 1e2 friction cannot
be ignored.

5. Water/ethanol pervaporation across polymer membranes

The contribution of the off-diagonal elements of [G] are partic-
ularly significant for separation of water/alcohol mixtures by per-
vaporation. In order to demonstrate this, Fig. 3a presents
calculations for the thermodynamic correction factors for the
ternary mixture consisting of water (1), ethanol (2) and cellulose
acetate (m) using the Flory-Huggins parameters from Refs. [6,7].
Cellulose acetate membranes are hydrophilic, and preferentially
adsorb water fromwater/ethanol bulk liquid mixtures. Fig. 3b plots
the ratios G12=G11, and G21=G22 as a function of the volume fraction
of water in the bulk liquid mixture. The large magnitude of G21=G22
implies that the flux of ethanol is strongly influenced by the driving
force for water transport. The influence of thermodynamic coupling
is to suppress the flux of ethanol and enhance the water flux, a
desirable result for pervaporation separations. In order to illustrate
the influence of thermodynamic coupling on the pervaporation
fluxes, we perform calculations using the input diffusivity data from
Ref. [6]. The fluxes are determined fromEquations (7) and (14), with
evaluation of [B]�1[G] at the arithmetic average volume fractions
ð4i0 þ 4idÞ=2zð4i0Þ=2; the results are shownby the continuous solid
lines in Fig. 3c. The dashed lines in Fig. 3c represent calculations of
the permeation fluxes assuming a scenario in which the thermo-
dynamic coupling effects are ignored, i.e. we assume [G]¼[I], the
identity matrix; both fluxes are strongly influenced by this simpli-
fying assumption. Fig. 3d presents calculations of the permeation
selectivities; inclusion of thermodynamic coupling effects improves
the separation selectivity in favor of water.

We now investigate the importance of 1e2 friction in perva-
poration processes by considering the experimental data of Ni et al.
[20] for water/ethanol pervaporation across polyimide membrane;
their data on volumetric fluxes of water, and ethanol are plotted in
Fig. 4a,b. Based on unary permeation experiments, we take
ÐV
1m ¼ 25:5� 10�13, and ÐV

2m ¼ 2:1� 10�13 m2 s�1; both these
diffusivities are assumed to be composition independent. We es-
timate ÐV

12 using the Vignes interpolation formula [21] for diffusion
in binary liquid mixtures, adapted as follows
�
ÐV
12

.
V2

�
¼
�
ÐV
21

.
V1

�
¼
�
ÐV
1m

.
V2

�41=ð41þ42Þ�
ÐV
2m

.
V1

�41=ð41þ42Þ
(15)

with the limiting scenarios

42/0; ÐV
12 ¼ ÐV

1m; 41/0; ÐV
21 ¼ ÐV

2m (16)

Equation (15) is also commonly used in the description of binary
mixture diffusion in microporous crystalline materials such as ze-
olites andmetal-organic frameworks [22e24]. The flux calculations
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using Equations (7) and (15) are shown by the continuous solid
lines in Fig. 4. The dependences of the volumetric fluxes on the feed
composition, including the maximum in the ethanol flux, are
essentially captured by the linearized M-S model that includes 1e2
friction.

The dashed lines in Fig. 4 are the flux calculations assuming that
1e2 friction is negligible, and Equation (14) is invoked; the agree-
ment with experimental data is significantly worsened. Comparing
the two sets of simulations in Fig. 4 it can be concluded that the
inclusion of 1e2 friction has the effect of reducing the permeation
selectivity. In the modeling of direct methanol fuel cells, the in-
fluence of 1e2 friction is non-negligible [25,26].

Heintz and Stephan [14] have also underscored the importance
of diffusional coupling effects for pervaporation of water/ethanol
mixtures across a poly (vinyl alcohol)/poly (acrylonitrile) composite
membrane. Their experimental data also show a maximum in the
ethanol fluxes, analogous to the observations in Figs. 3c and 4b.
Simulation of their experiments using the linearized M-S model is
able to capture the maximum in the ethanol flux; see Fig. S25.

6. Conclusions

Mixture permeation across polymer membranes is modelled by
combining the Maxwell-Stefan (M-S) diffusion formulation with
the Flory-Huggins (F-H) description of phase equilibrium thermo-
dynamics. For compatibility with the F-H model, the M-S equations
is re-formulated in terms of volume fractions. The key result of this
work is Equation (7), that allows the explicit determination of the
fluxes. If the matrix of Fick diffusivities [D]¼[B]�1[G] is assumed
constant, and evaluated say at the average composition in the
membrane, the flux calculations are further simplified and there is
no need for solution of coupled ODEs. Equation (7) can be gener-
alized easily to n-component mixture permeation; see derivations
in Supplementary material. The developed matrix approach clearly
demarcates the contributions of diffusion and thermodynamics,
reflected in the matrices, [B]�1 and [G], respectively.

For CO2/C2H6/XLPEO mixture permeation, the calculated per-
meabilities using the linearized M-S model are in excellent agree-
ment with published experimental data.

Thermodynamic coupling effects, arising from off-diagonal
contributions of [G], have a strong influence in pervaporation pro-
cesses. Also important in the modelling of pervaporation processes
is the contribution of 1e2 friction; neglect of 1e2 friction is not
recommended for modelling of pervaporation separations. In this
context, the interpolation formula suggested in Equation (15) de-
serves further scrutiny with regard to its applicability to polymer
membranes.

The linearized solution to the M-S equations can also be gain-
fully employed to model diffusion close to demixing regions, that is
encountered in the immersion precipitation process for membrane
preparation [27,28]; details are provided in the Supplementary
material. In this case, the curvilinear diffusion equilibration tra-
jectories often experience forays into meta-stable regions, lying
between the spinodal and binodal curves; see Figs. S29eS40. Such
forays signal the phenomenon of uphill diffusion [17,29-33], and
have a significant impact on the membrane structure created.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.polymer.2016.09.051.

Notation

ai activity of species i, dimensionless
Ai constant describing the composition dependence of M-S
diffusivity, dimensionless

[B] matrix defined by Equation (6), m�2 s
ct total molar concentration of mixture, mol m�3

Cij constant describing the composition dependence of M-S
diffusivity, dimensionless

Ðij M-S diffusivity for binary pair i-j, m2 s�1

ÐV
ij modified M-S diffusivity for binary penetrant pair i-j, m2

s�1

ÐV
im modified M-S diffusivity for penetrant i in polymer m, m2

s�1

Di,eff Effective Fick diffusivity of species i, m2 s�1

[D] Fick diffusivity matrix, m2 s�1

fi fugacity of species i, Pa
[I] Identity matrix with elements d ij, dimensionless
Ni molar flux of species i, mol m�2 s�1

NV
i volumetric flux of species i, m3 m�2 s�1

R gas constant, 8.314 J mol�1 K�1

T absolute temperature, K
ui velocity of diffusion of species i, m s�1

Vi partial molar volume of species i, m3 mol�1

V molar volume of mixture, m3 mol�1

z direction coordinate, m

Greek letters
d membrane thickness, m
d ij Kronecker delta, dimensionless
Gij thermodynamic factors, dimensionless
[G] matrix of thermodynamic factors, dimensionless
mi molar chemical potential, J mol�1

Fi volume fraction of penetrant i in polymer, dimensionless
4L
i volume fraction in bulk liquid mixture, dimensionless

c interaction parameter in Flory-Huggins model,
dimensionless

ui mass fraction of component i, dimensionless

Subscripts
i referring to penetrant i
m referring to membrane
t referring to total mixture

Superscripts
V referring to use of volume fractions
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1. Preamble 

This Supplementary material accompanying the article Describing Mixture Permeation across 

Polymeric Membranes by a Combination of Maxwell-Stefan and Flory-Huggins Models provides: (1) 

the F-H model parameters used in the phase equilibrium calculations, (2) detailed development of the 

M-S equations using volume fractions, and (3) input data on the M-S diffusivities. 

All the calculations and simulations reported in this article were performed using MathCad 15.1  

For ease of reading, this Supplementary material is written as a stand-alone document; as a 

consequence, there is some overlap of material with the main manuscript.  

2. The Flory-Huggins description of phase equilibrium thermodynamics 

The thermodynamics of sorption equilibrium of penetrants and polymer is most commonly described 

by the Flory-Huggins relations.2-4 The Flory-Huggins equation in its simplest form deals with molecules 

that are similar chemically, but differ greatly in length. An example might be cross-linked polyethylene 

with the penetrant propane (C3H8). The Flory-Huggins model is based on the idea that the chain 

elements of the polymer arrange themselves randomly (but with the molecules remaining connected) on 

a three- dimensional lattice; see Figure 1. 

The Flory-Huggins model does not take effects of crystallization or other inhomogeneities into 

account. The resulting equation for the activity of the penetrant is a simple function of the volume 

fraction of the penetrant in the membrane. We use i  to denote the volume fraction of the peneterant 

species i; the volume fraction of species i is iii Vc . The volume fractions are related to the mass 

fractions, i  

 


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In equation (1), the 0i  are the pure component mass densities. The use of mole fractions is not 

convenient for description of the mixture equilibrium in polymers, because the molar mass of the 

polymer chains are ill defined.2 

The Flory-Huggins model for binary mixture of penetrant (1) and polymer (indicated by subscript m) 

is 

 

1

2
1

1
111

1

)1()ln(ln









m

mm

m

m
V

V
a

 (2) 

Equation (2) contains a non-ideality, or interaction parameter χ1m that is assumed to be independent of 

the volume fraction. Figure 2 illustrates the influence of the interaction parameter on the activity (a1) 

and thermodynamic correction factor, 
1

1

ln

ln





a

, that plays a pivotal role in diffusion (discussions on 

this are in the following sections). In these calculations, the ratio 01 
mV

V
, i.e. the molar volume of the 

penetrant is negligible in comparison to the molar volume of the polymer. If χ is positive, the solution 

can split into two phases for a range of volume fractions, one rich in polymer and one rich in solvent; 

the demixing zone is indicated in cyan in Figure 2.  

If the interaction parameter χ1m in equation (2) is composition dependent, the F-H model for the 

activity needs to be extended as follows 

      
1

12
11

2
11

1
1111 111)1()ln(ln



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
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m

mV

V
a  (3) 

Readers are warned that Equation (16) of Verros and Malamataris5 contains a typo,  and Equation (3) 

above is the correct equation that should be used. 

The Flory-Huggins model for binary mixture of penetrants (Components 1, and 2) in a polymer 

membrane (indicated by subscript m) is6, 7 
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 (4) 

In the Flory-Huggins formulations presented in Equation (2) and Equation (4), the interaction 

parameters mm 2112 ,,   are assumed to be constant, i.e. independent of the volume fractions.  

In general, all interaction parameters mm 2112 ,,   will be functions of the volume fractions of the 

penetrants;  see discussions in Yang and Lue,8 and Mulder et al.9 In this case, the Flory-Huggins model 

needs to be extended and the more general model equations for the activities are provided by Yang and 

Lue,8 Mulder et al.9 and Varady et al.10 

3. Equilibrium between bulk fluids and membranes 

Polymer membranes are widely used for mixture separations; for an introduction to this topic see 

Wesselingh and Krishna.2 The upstream compartment contains fluid mixtures that are in the gaseous 

state at elevated pressures, or in the liquid state; see schematic in Figure 3. The pressure in the 

downstream compartment corresponds to ambient pressures or vacuum. Thermodynamic equilibrium is 

assumed to prevail between the bulk fluid mixture in the upstream compartment and the sorbed mixture 

in the upstream face of the membrane. An analogous situation prevails in the downstream compartment; 

there is equilibrium between the bulk fluid mixture in the downstream compartment and the 

downstream face of the membrane.  

Let us first consider the scenario in which the upstream compartment contains a binary gas mixture. 

The equilibrium relation, for either upstream or downstream sides of the membrane, may be written as 

  i
sati

i
ii aRT

f

f
RT lnln

,
0 










   (5) 

where fi is the partial fugacity of gaseous component i in the bulk fluid mixture, and fi,sat is the fugacity 

of pure component i at saturation, and ai is the activity of component i in the sorbed phase in the 
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polymeric membrane; the activities within the membrane are described by Equation (4).  For further 

discussions on fluid-polymer equilibrium and the interpretation of equation (5), see Ribeiro and 

Freeman.3, 4   

For specified set of partial fugacities in the upstream compartment, the volume fractions of the 

penetrants in the polymer membrane may be calculated by solving equations (4) and (5) simultaneously, 

using an equation solver. All the calculations presented in this article were implemented in MathCad 

15.1 As illustration, Figure 4 presents calculations of the volume fractions of penetrants CO2 

(component 1) and C2H6 (Component 2) in a cross-linked polyethylene oxide (XLPEO) membrane 

(indicated by subscript m) at 298.15 K; at this temperature all interaction parameters mm 2112 ,,   are 

independent of the volume fractions in the membrane; the values are specified in Table 1.  The upstream 

face of the membrane is in equilibrium with CO2/C2H6 mixtures of five different compositions. The 

experimental data (indicated by symbols) on mixed-gas sorption are those presented in Figures 5 and 6 

of Ribeiro and Freeman.11 The simultaneous solution to equations (4) and (5), indicated by the 

continuous solid lines, are in excellent agreement with the experimental data of Ribeiro and Freeman.11 

This is to be expected because the three interaction parameters mm 2112 ,,   were determined by fitting 

the experimental data to Equation (4).  

Figure 5 presents the experimental data (indicated by symbols) for the volume fractions of penetrants 

CO2 (component 1) and C2H6 (Component 2) in a cross-linked polyethylene oxide (XLPEO) membrane 

(indicated by subscript m) at 263.15 K with the F-H model calculations. At this lower temperature, all 

three interaction parameters mm 2112 ,,   parameters were determined to be dependent on the volume 

fractions of the penetrants and empirical fits are  provided by Ribeiro et al.7 For convenience to readers, 

the data fits at 263.15 K are provided in Table 2.  It is to be noted that the fitted expressions obtained by 

Ribeiro et al.7  are based on the use of Equations (4), and not on the extended equations provided by 

Yang and Lue,8 Mulder et al.9 and Varady et al.10  

The simultaneous solution to equations (4) and (5), indicated by the continuous solid lines, are in 

excellent agreement with the experimental data of Ribeiro and Freeman.11  
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In a subsequent section, we will compare model calculations of mixture permeation fluxes with 

experimental data at 298.15 K and at 263.15 K. 

Let us now turn our attention to a scenario in which the upstream compartment contains a binary 

liquid mixture; this scenario is relevant to membrane pervaporation processes. A detailed analysis of the 

equilibrium between the binary liquid mixture (Components 1, and 2) and the polymer membrane 

(Penetrants 1, 2, and polymer membrane (m)) is available in the works of Yang and Lue,8 and Mulder et 

al.9 

Let LL
21 ,  represent the volume fractions of components 1 and 2 in the bulk liquid mixture.  These 

volume fractions are related to the mass fractions in the bulk liquid mixture 





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 . We also have 

the constraint 121  LL  . The component activities in the liquid mixture are described by the F-H 

model 
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 (6) 

Equation (6) corresponds precisely with equations (9), and (10) of Mulder et al.9 The 12  is related to 

the excess Gibbs free energy 
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In equation (7), 21, xx  are liquid phase mole fractions M
M
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. The interaction 

parameter 12  for mixtures such as water/ethanol are strongly dependent on the liquid mixture 

composition. The excess Gibbs free energy )ln()ln( 2211  xx
RT

Gexcess

  can be calculated from activity 

coefficient models such as that of Wilson, NRTL, and UNIQUAC.8, 9 Mulder et al.9 have also shown 

that the dependence of 12  on the volume fractions of components in the bulk liquid mixture can be 

expressed as a fourth-order polynomial in L
LL
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 (8) 

Since the proper description of the composition dependence of the interaction factor 12  is of vital 

importance in the description of phase equilibrium, we need to establish the accuracy of the 4th order 

polynomial fit suggested by Mulder et al.9 Figure 6a presents alculations of the interaction factor 12  

for ethanol(1)/water(2) mixtures at 298.15 K using equation (7) and the Wilson parameters provided by 

Yang and Lue.8  Also shown are the 4-th polynomial fits with coefficients specified in Table 5. There is 

perfect agreement between the two sets.  

Figure 6b presents calculations of the interaction factor 12  for water(1)/ethanol(2) mixtures at 333 K 

using equation (7) and NRTL parameters from the literature.  Also shown are the 4-th polynomial fits 

with coefficients specified in Table 7. There is perfect agreement between the two sets. 

Figure 6c presents calculations of the interaction factor 12  for water(1)/methanol(2) mixtures at 333 

K using equation (7) and NRTL parameters.  Also shown are the 3rd polynomial fits with coefficients 

specified in Table 8. There is perfect agreement between the two sets. 



 

SM 9

In all the Flory-Huggins calculations presented in this article, the 4th order polynomial expressions are 

used to describe the volume fraction dependence of 12 .  

A significant contribution of Mulder et al.9 is to demonstrate that the interaction parameter 12  for the 

same two penetrants in the polymer membrane phase shows the same composition dependence on the 

normalized volume fraction of component 2 within the membrane 
21

2
2 




u , i.e.  
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It is important to note there that, for convenience, we use the same nomenclature as Mulder et al.9 

However, in the Maxwell-Stefan formulation for diffusion, the quantities u1 and u2 refer to the diffusion 

velocities of the penetrants as they diffuse across the membrane. 

In the scenario in which the interaction parameter 12  follows composition dependence following 

equation (9) in the membrane phase, the Flory-Huggins equation (4) needs to be extended as follows 

(these equations correspond to equations (6) and (7) of Mulder et al.9) 
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 (10) 

By equating the activities of the components in the bulk liquid mixture ( L
ia  from equation (6)) to the 

corresponding component activities in the membrane mixture ( ia  from equation (10)), we can calculate 

the volume fractions in the polymer phase, i , that is in equilibrium with any specified liquid mixture 

composition in the upstream face, with volume fractions L
i . The determination of the volume fractions 

in the polymer requires the use of an equation solver, such as MathCad 151  that was employed in this 

work. 
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As illustration, Figure 7 presents calculations of the volume fractions of penetrants water (component 

1), ethanol (component 2) in a cellulose acetate (polymer, component m) at 293.15 K. The upstream 

face of the membrane is in equilibrium with water/ethanol liquid mixture of varying mass fractions. 

Water is adsorbed preferentially in hydrophilic cellulose acetate. Another point to note is that the 

volume fractions of the penetrants in the membrane phase are significantly higher than those for 

CO2/C2H6/XLPEO system. The calculations of the trans-membrane permeation fluxes will be analyzed 

and discussed in a subsequent section.  

Figure 8 presents calculations of the volume fractions of penetrants water (component 1), ethanol 

(component 2) in polyimide membrane (polymer, component m) at 293.15 K. The upstream face of the 

membrane is in equilibrium with water/ethanol liquid mixture of varying mass fractions. In the 

calculations, mm 21 ,   are composition dependent, and 12  follows the composition dependence 

described by equations (8) and (9). The Flory-Huggins model calculations are in reasonable agreement 

with the experimental sorption data of Ni et al.12.   

Yang and Lue8 have presented a detailed analysis of the dependence of the interaction parameters 

mm 2112 ,,   on the volume fractions of the penetrants ethanol (component 1), water (component 2) in 

polydimethylsiloxane (PDMS) (polymer, component m) membrane film at 298.15 K. Ethanol adsorbs 

preferentially in PDMS films. As illustration, we consider the scenario in which mm 21 ,   are 

composition independent, and 12  follows the composition dependence described by equations (8) and 

(9). Figure 9a presents calculations of the volume fractions of the penetrants in the polymer film in 

equilibrium with ethanol/water liquid mixture of varying volume fractions. The uptakes in terms of kg 

penetrant per kg dry membrane are related to the volume fractions by  
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where mLL  ,, 21  are the densities of the liquid penetrants and membrane. The calculated component 

uptakes are shown in Figure 9b; these calculations are in perfect agreement to those presented in Figure 

7 of Yang and Lue,8 as is to be expected. 

When all three interaction parameters mm 2112 ,,   are dependent on the volume fractions of the 

penetrants, equation (10) needs to be further extended; these equations are provided in equations (6) and 

(7) of Mulder et al.9 The same set of extended equations are given by Yang and Lue.8 For readers’ 

convenience, the extended F-H model equations are given below: 
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 (12) 

In order to illustrate the influence of the influence of composition dependent mm 21 ,  , we have 

recalculated the volume fractions of the penetrants ethanol (component 1), water (component 2) in 

polydimethylsiloxane (PDMS) (polymer, component m) membrane film using a scenario in which all 

three parameters mm 2112 ,,   are dependent on the volume fractions of the penetrants; the results are 

shown in Figure 10a. The uptakes are presented in Figure 10b; these results are in excellent agreement 

to those presented in Figure 10 of Yang and Lue,8 as is to be expected. The additional inclusion of the 

composition dependence of mm 21 ,   induces a maximum in the volume fraction of water, in accordance 

with the experimental data of Yang and Lue.8 

Figure 11 shows the experimental data (symbols) of Heintz and Stephan13  for binary sorption of 

water/ethanol mixtures across a poly (vinyl alcohol) /poly (acrylonitrile) (PVA/PAN) composite 

membrane. The continuous solid lines are the F-H model calculations using the input data in Table 7. 

The modelling of pervaporation will be presented in a subsequent section. 
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Figure 12 shows F-H model calculations for binary sorption of water/methanol mixtures in Nafion 

membrane. A proper description of sorption equilibrium is of vital importance in the modeling of direct 

methanol fuel cells.14, 15 

4. Diffusivities in polymers, some introductory remarks 

For an elementary introduction to the diffusivity in polymers, see Chapter 16 of Wesselingh and 

Krishna.2  Some essential remarks from Wesselingh and Krishna2 are reproduced below (as indicated in 

italics).  

Figure 13 shows diffusivities of a trace of benzene. These are in a series of polymers with different 

glass transition temperatures. The diffusivities vary by a factor of 1010, so over ten decades! You cannot 

expect any general correlation to predict such variation with much accuracy. What we plot along the 

bottom axis is the difference between the temperature at the measurement, (= 300 K) and the glass 

transition temperature of the polymer. To the left of the zero point we have glassy polymers, to the right 

rubbery polymers. We see that diffusivities tend to increase very rapidly above the glass transition 

point. The highest diffusivity shown (that in silicone rubber) is similar to that of benzene in normal 

liquids. Except in extremely thin layers, glassy polymers are impermeable for all but the smallest 

molecules. A good look at the figure shows that some diffusivities lie substantially outside the band 

drawn. The diffusivities also appear to depend not only on the glass transition temperature, but also on 

other details of the structure of the polymer.  

The effect of the size of the permeant is also extreme (Figure 14) at least near and below the glass 

transition temperature. The diffusivities of the smallest penetrants are much larger than those of the 

bulkier penetrants. (Almost) glassy polymers have a low permeability, but an attractive size selectivity. 

The size selectivity is much less pronounced in the rubbery polymer (although it is still important). 

Swelling usually increases diffusivities in a polymer. Figure 15 shows two examples. Again the effect 

is much larger in the more glassy polymer. This is largely because poly(vinyl acetate) becomes more 

rubbery as it swells in the solvent. The change in the diffusivity is often exponential in the volume 
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fraction of the permeant, at least over not-too-large variations. This means that we can use logarithmic 

interpolation. 

5. The Maxwell-Stefan description of n-component mixture permeation 

The Maxwell-Stefan (M-S) equations represent a balance between the force exerted per mol of 

species i with the drag, or friction, experienced with each of the partner species in the mixture. We may 

expect that the frictional drag to be proportional to differences in the velocities of the diffusing species 

 ji uu  . For a mixture containing a total of n penetrants, 1, 2, 3,..n we write 
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 (13) 

The left members of equation (13) are the negative of the gradients of the chemical potentials, with 

the units N mol-1; it represents the driving force acting per mole of species 1, 2, 3,..n. The term ijÐRT  

is interpreted as the drag coefficient for the i-j pair. The subscript m refers to the polymer membrane, 

that is regarded as the (n+1) th component in the mixture. The multiplier xj in each of the right members 

represents the mole fraction of component j; this factor is introduced because we expect the friction to 

be dependent on the number of molecules of j relative to that of component i. The M-S diffusivity ijÐ  

has the units m2 s-1 and the physical significance of an inverse drag coefficient. The magnitudes of the 

M-S diffusivities ijÐ  do not depend on the choice of the mixture reference velocity because equation 

(13) is set up in terms of velocity differences. 

Only n of the chemical potential gradients 
dz

d i  are independent, because of the Gibbs-Duhem 

relationship 
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The Maxwell-Stefan diffusion formulation (13) is consistent with the theory of irreversible 

thermodynamics. The Onsager Reciprocal Relations imply that the M-S pair diffusivities are symmetric  

 jiij ÐÐ   (15) 

For diffusion across polymeric membranes, the velocity of the polymer, um = 0. For diffusion in 

multicomponent polymer solutions such as acetone/cellulose acetate, um  0, i.e. the polymer chains 

have a finite velocity of diffusion.  The discussions in this article are, in the main, focused on polymeric 

membranes and we proceed further with the assertion um = 0.  In the last section, we will analyze the 

diffusion processes in the immersion precipitation process for membrane preparation, that involves 

determining the diffusion equilibration trajectories in polymeric solutions in which um  0. 

For modelling mixture permeation across polymeric membranes, we need to reformulate the 

Maxwell-Stefan equations using volume fractions instead of mole fractions.7, 10, 16  The mole fraction is 

related to the volume fraction by 
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The M-S equations written in terms of volume fractions take the form 
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We re-write equation (16) as  
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Let us define the volumetric flux of component i, expressed as m3 m-2 s-1 as ii
V
i uN  .  The molar 

flux of component i, expressed as mol m-2 s-1 is 
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.  In terms of the volumetric 

fluxes of components, equation (17) is  
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Let us define a n n dimensional matrix of inverse diffusivities  B  whose elements are given by 
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It is helpful to express the left member of equation (17) in terms of the volume fraction gradients by 

introducing an n n dimensional matrix of thermodynamic factors   : 
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Combining Equations (18), (19) and (20) and casting these in n-dimensional matrix notation we write 
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The corresponding expression for the molar fluxes is obtained from use of the 
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in the final expression as follows 
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We now consider the special cases of unary permeation and binary mixture permeation. 

6. The Maxwell-Stefan description of unary permeation 

For the special case of unary permeation through polymer membrane (indicated with subscript m), 

0 V
mm NN , we write 
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The thermodynamic correction factor, 
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 can be evaluated by analytic differentiation of the 

Flory-Huggins Equation (2). 

The “effective” Fick diffusivity is  

 
1

1
1

1
,1 ln

ln

1

1

 





a
ÐD V

meff  (24) 

We note, in passing, that the Fick diffusivity is defined as 
1

1
1 ln

ln


 a

ÐV
m  in the works of Fornasiero et 

al.16 and Ribeiro et al.7 We choose to define the effective Fick diffusivity using equation (24), because 

this allows a more convenient generalization to n-component mixtures as discussed in the foregoing 

section. In order to underscore the differences in the definitions, we have added the adjective “effective” 

for differentiation purposes. 
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As illustration of the dependence of the M-S and effective Fick diffusivities on the volume fraction of 

the penetrant, we present in Figure 16 calculations for (a) thermodynamic correction factor, 
1

1

ln

ln





a

, 

(b) modified Maxwell-Stefan diffusivity, V
mÐ1 , and (c) effective Fick diffusivity, 

1

1
1

1
,1 ln

ln

1

1

 





a
ÐD V

meff , for water (component 1) in 2-hydroxyethyl methacrylate (HEMA) (indicated 

by subscript m) at T = 296.65 K.   

Figure 17a shows calculations of the effective Fick diffusivities for unary permeation of CO2 and 

C2H6 across a cross-linked polyethylene oxide (XLPEO) membrane at 298.15 K. The x-axis represents 

the volume fraction of the penetrant. The corresponding calculations of the thermodynamic factors are 

shown in Figure 17b. The influence of the thermodynamic correction factors is particularly strong for 

C2H6; this is because of the large value of the Flory-Huggins interaction parameter 0804.22 m . 

The unary molar flux of penetrant 1 can be determined by integrating equation (23) over the 

membrane thickness,  .  

  





 











1

10

1

10

1
1

1
1

11

1,1

1

1 ln

ln

1

111
d

a
Ð

V
dD

V
N V

meff  (25) 

In equation (25), 10  and 1  are the volume fractions of the penetrant 1 at the upstream and 

downstream faces, respectively. Fornasiero et al.17 use Equation (25) to describe the steady-state 

diffusion of water through soft-contact-lens materials. The integral in Equation (25) can be determined 

analytically. 

In the membrane literature, the experimental data are commonly presented in terms of the  

permeability of component i that is defined as  

i

i
i f

N


  (26) 



 

SM 18

In equation (26), if  is the difference in the fugacities in the upstream and downstream 

compartments. The SI units for the permeability is mol m m-2 s-1 Pa-1. The more commonly used 

engineering unit for permeability is the Barrer expressed in cm3 (STP) cm cm-2 s-1 (cm Hg)-1. To convert 

to the commonly used engineering units of Barrers we divide the value in mol m m-2 s-1 Pa-1 by 

3.348×10-16.  

Combining equation (25) and (26), we obtain 

  










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
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
1
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1
1

1
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111
1,1

111

1
1 ln
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11111
d

a
Ð

Vf
dD

Vff

N V
meff  (27) 

The membrane thickness does not appear in the model calculations presented in Equation (27). 

If the volume fraction of the component 1 at the downstream face of the polymer membrane is taken 

to be vanishingly small, i.e. ;0;0 11   f , and effD ,1  is evaluated at the arithmetic average volume 

fraction 
 

2
110  

, we get 

    10,1

110
10,1

111

1
1

11
0

11  effeff D
Vf

D
Vff

N






  (28) 

Equation (28) represents the simplified, i.e. linearized, solution to the Maxwell-Stefan equations. 

In order to demonstrate the accuracy of the linearized solution to the M-S equations, let us consider 

the unary permeation of penetrants CO2 and C2H6 across a cross-linked polyethylene oxide (XLPEO) 

membrane (indicated by subscript m). The input data on the Flory-Higgins parameters, and the 

Maxwell-Stefan diffusivities are culled from the papers by Ribeiro et al.3, 4, 7, 18 The input data for 

temperatures of (a) 298.15 K, and (b) 263.15 K are summarized in Table 1, and Table 2 

Figures 18a,b present the experimental data, as reported in Figure 2 of Ribeiro et al.,18 on the 

permeabilities for unary permeation of CO2 and C2H6 across a cross-linked polyethylene oxide 

(XLPEO) membrane at 298.15 K. The continuous solid lines are the calculations using the simplified 

linearized Equation (28). The agreement of the linearized solution is indistinguishable from the exact 
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solution given in Equation (27).  Both models are in excellent agreement with the experimental data of 

Ribeiro et al.18  

Figures 18c,d present the corresponding data for permeabilities for unary permeation of CO2 and 

C2H6 across a cross-linked polyethylene oxide (XLPEO) membrane at 263.15 K. At the lower 

temperature, the volume fractions of the penetrants in the membrane are higher, and interactions 

between the penetrants and membrane is stronger. Consquently, the linearized solution deviates slightly 

from the exact analytical solution at high upstream fugacities. Both linearized model, and exact 

solutions, are in excellent agreement with the experimental data of Ribeiro et al.18 

7. The Maxwell-Stefan description of binary mixture permeation 

For binary mixture permeation across a polymeric membrane (indicated with subscript m), 

0 V
mm NN , we write 
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
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



 (29) 

Let us define a 2 2 dimensional matrix of inverse diffusivities  B  whose elements are given by 

 

V
m

m
VV

VV
m

m
V

ÐÐ
B

Ð
B

Ð
B

ÐÐ
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221

1
22

21

2
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1
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112

2
11

;

;




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

 (30) 

It is helpful to express the left member of equation (17) in terms of the volume fraction gradients by 

introducing an 2 2 dimensional matrix of thermodynamic factors   : 
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 (31) 

The four elements 22211211 ,,,   can be determined by analytic differentiation of Equation (4). 

Explicit analytic expressions are provided by Ribeiro et al.7  

Combining Equations (29), (30) and (31) and casting these in 2-dimensional matrix notation we write 
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The matrix inversion 
1
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1211








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
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BB
 can be performed explicitly 
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The 2 2 dimensional matrix of Fick diffusivities is 
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The “effective” Fick diffusivities of components 1 and 2 are 
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The molar fluxes can be determined from 
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In the linearized solution, the 2-dimensional matrix 




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.  Furthermore, the gradients of the volume fraction are 

evaluated using the linearized relation: 
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8. Permeation of CO2/C2H6 mixtures across XLPEO membrane 

Generally speaking, thermodynamic coupling effects are important in mixture permeation across 

polymer membranes. In order to highlight the importance of thermodynamic coupling effects, let us 

consider the permeation of penetrants CO2 (component 1) and C2H6 (Component 2) across a cross-

linked polyethylene oxide (XLPEO) membrane (indicated by subscript m) at 263.15 K. The upstream 

face of the membrane is in equilibrium with 70% CO2 gas mixture. In the calculations, the partial 

fugacity of CO2 is increased, keeping the gas mixture composition constant. The input data on the 

Flory-Higgins parameters are culled from the papers by Ribeiro et al.3, 4, 7, 18. Figure 19a shows the 

calculations of the four elements of the matrix of thermodynamic factors ij . Particularly noteworthy is 

the large magnitude of 12 . The significance of thermodynamic coupling may be quantified by the ratio 

222121

212111







; see calculations in Figure 19b. For thermodynamically ideal mixtures, this ratio should be 

constant. Thermodynamic coupling effects strongly influence trans-membrane fluxes and 

permeatbilities, as we shall see below.  
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Figure 19c presents calculations of the effective Fick diffusivities of CO2 (component 1) and C2H6 

(Component 2). Both effective diffusivities show strong increases with increasing partial fugacities of 

CO2 in the gas mixture in the upstream compartment. 

Figures 20a and 20b present experimental data  (indicated by symbols) of Ribeiro et al.18 for the 

permeabilities, expressed in Barrers, of CO2 and C2H6 for binary CO2/C2H6 mixture permeation across a 

cross-linked polyethylene oxide (XLPEO) membrane at 298.15 K. The x-axis represents the partial 

fugacity of the permeants in the bulk gas phase in the upstream compartment. Five different mixture 

compositions are considered. We note that the permeability of CO2 is practically unaffected by the 

mixture composition of the bulk gas phase in the upstream compartment. In sharp contrast, we note that 

the permeability of C2H6 is strongly influenced (increased) by increasing proportion of CO2 in the bulk 

gas phase mixture in the upstream compartment. The continuous solid lines in Figures 20a and 20b are 

the permeabilities calculated using equation (36), wherein 















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1
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1211
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 is evaluated at the 

arithmetic average volume fractions 
   

2

0

2
00 


 iii   . The linearized set of M-S equations captures, 

quantitatively, all the essential features of the composition dependence of the permeabilities of CO2 and 

C2H6.  

Figures 21a, and 21b compare the experimental data CO2, and C2H6 for binary mixture permeation 

across a XLPEO at a lower temperature of 263.15 K at which molecule-molecule and molecule-

membrane interactions are significantly stronger, and composition dependent. At this lower 

temperature, the permeabilities of both components are influenced by the mixture composition. The 

linearized M-S model, in combination with F-H, affords a quantitative reproduction of all the essential 

features of the experimental data as presented in Figure 4b and Figure 5b of Ribeiro et al.18  

If the friction between the two penetrants is ignored, i.e. V
m

VV
m

V ÐÐÐÐ 212112 ;   then the matrix  B  

simplifies to a diagonal matrix 
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 scenariofriction  2-1 negligible;0; ;   jiijV
im

m
ii B

Ð
B


 (37) 

The calculations in Figure 22a,b are obtained with equation (37) for binary permeation at 263.15 K.  

We note that this simplified scenario captures the composition dependence qualitatively, but the 

quantitative agreement is not as good as in Figures 21a, and 21b 

9. Water/ethanol pervaporation across cellulose acetate membrane 

Thermodynamic coupling effects also strongly influence the separation of water/alcohol mixtures by 

pervaporation. In order to demonstrate this, Figure 23a presents calculations for the thermodynamic 

correction factors for the ternary mixture consisting of water (component 1), ethanol (component 2) and 

cellulose acetate (polymer, component m) using the Flory-Huggins parameters from Mulder et al.6, 19 

Cellulose acetate membranes are hydrophilic, and preferentially adsorb water from water/ethanol bulk 

liquid mixtures. Figure 23b plots the ratios 
11

12




, and 
22

21




 as a function of the volume fraction of water 

in the bulk liquid mixture. The large magnitude of 
22

21




 implies that the flux of ethanol is strongly 

influenced by the driving force for water transport. 

The influence of thermodynamic coupling is to suppress the flux of ethanol and enhance the water 

flux, a desirable result for pervaporation separations. In order to illustrate the influence of 

thermodynamic coupling on the pervaporation fluxes, we perform calculations using the input 

diffusivity data from Mulder et al;19 see data summary in Table 3. The pervaporation fluxes are 

determined from:  
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The expression for the Fick diffusivity matrix, ignoring the 1-2 interactions is 
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 (39) 

In the linearized approach, equation (39) is estimated at the arithmetic average volume fractions 

 
22

00 iii   


.  

The continuous solid lines in Figure 23c are the calculations of the permeation fluxes using  equations 

(38) and (39). The origin of the maximum in the water flux can be traced to the corresponding 

maximum in the volume fractions of water penetrant, as observed in Figure 7.  

The dashed lines in Figure 23c represent calculations of the permeation fluxes assuming a scenario in 

which the thermodynamic coupling effects are ignored and we assume 




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1211 , the identity 

matrix [I], and therefore the Fick diffusivity matrix is uncoupled 
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Neglect of thermodynamic coupling has a relatively stronger effect on the ethanol fluxes.  Figure 23d 

presents calculations of the permeation selectivities defined by 
   

LL

MNMN

21

2211


. Inclusion of 

thermodynamic coupling effects improves the separation selectivity in favor of water.  

Heintz and Stephan20 have also underscored the importance of diffusional coupling effects for 

pervaporation of water/ethanol mixtures across a poly (vinyl alcohol) /poly (acrylonitrile) (PVA/PAN) 

composite membrane. Interestingly, their experimental data also show a maximum in the ethanol fluxes, 

analogous to the observations in Figure 23c. 

10. Water/ethanol pervaporation across polyimide membrane 

Thermodynamic coupling effects are also significant for water/ethanol pervaporation across 

polyimide membrane. Figure 24a shows the calculations of the elements of    as function of the mass 
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fraction of water in the bulk liquid mixture in the upstream compartment. The off-diagonal elements are 

non-negligible in comparison with the diagonal elements; see Figure 24b. 

The experimental data of Ni et al.12 on the volumetric fluxes of water, and ethanol are plotted in 

Figures 24c, and 24d. Based on unary permeation, the input data values for binary mixture simulations 

are the ones provided in Table 1 of Ni et al.12: 13
1 105.25 V
mÐ , and  13

2 101.2 V
mÐ  m2 s-1; both 

these diffusivities are assumed to be composition independent.  

Since no data on  VÐ12  is available, we use the approach of Mulder et al.6, 19 and use equation(39), 

ignoring 1-2 frictional contribution; the calculations are presented by the dashed lines in Figures 24c, 

and 24d. The flux of water is slightly over-predicted, and the ethanol flux is significantly under-

predicted.   

In Figure 5 of Ni et al.12 the  VÐ12  is determined to be composition dependent, lying between  V
mÐ1  and  

V
mÐ2  at either ends of the composition scale. For our purposes here, we estimate VÐ12  using the 

logarithmic interpolation formula of Vignes 21 that has its origins in diffusion in binary liquid mixtures 
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The limiting scenarios are  
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
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m
V

V
m

V

ÐÐ

ÐÐ
 (42) 

Equation (41) is commonly used in the description of binary mixture diffusion in microporous 

crystalline materials.22-24 

The inclusion of 1-2 fraction using Equation (41) provides improved agreement with the experimental 

data on ethanol fluxes. In particular the maximum in the ethanol flux is reasonably well captured. Ni et 

al.12 also concluded that 1-2 friction cannot be ignored.   



 

SM 26

11. Water/ethanol pervaporation across PVA/PAN membrane 

Heintz and Stephan20 have also underscored the importance of diffusional coupling effects for 

pervaporation of water/ethanol mixtures across a poly (vinyl alcohol) /poly (acrylonitrile) (PVA/PAN) 

composite membrane. Interestingly, their experimental data (see Figure 25a) also show a maximum in 

the ethanol fluxes, analogous to the observations in Figure 23c and Figures 24d. 

They have modelled their experiments using a combination of the Maxwell-Stefan model with the 

UNIQUAC description of phase equilibrium. For our purposes here, we use the M-S + F-H combination 

to model their pervaporation experiments with the objective of demonstrating the significance of 1-2 

friction. The Flory-Huggins model provides a reasonably good descripition of phase equilibrium; see 

Figure 11.  

Figure 25b shows the M-S+F-H model calculations assuming strong 1-2 friction, taking 

1214
122

1213
1 s m105;s m105   VV

m
V
m ÐÐÐ ; the matrix of Fick diffusivities is evaluated at 

the average volume fractions in the membrane layer.  The maximum in the ethanol fluxes is reasonably 

well captured in the simulations with strong 1-2 friction.  If the value of VÐ12  is assumed to be ten times 

larger, i.e. 1214
2

1213
121 s m105;s m105   V

m
VV

m ÐÐÐ , the maximum in the ethanol flux 

practically disappears; see the simulation results in Figure 25c.   

For proper modelling of pervaporation processes, 1-2 friction is strong and cannot be ignored. 

12. The M-S formulation for diffusion in multicomponent polymer 
solutions 

We now turn our attention to the description of diffusion processes in which the polymer is dissolved 

in a homogeneous solution. The analysis of the diffusion process is important in a wide variety of 

contexts including that for membrane preparation, discussed in the foregoing sections.  The diffusion 

velocity of the polymer molecules is finite, and equation (16) needs to be modified as follows 
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 (43) 

The modified M-S diffusivities are the same as encountered in the foregoing analyses of membrane 

permeation; they are related to the more common M-S diffusivities defined in terms of mole fractions 

by: V
ij

jij
jijt Ð

V

VÐ
VÐc  , and V

m
mm

mmt Ð
V

VÐ
VÐc 1

1
1  .  

Let us define the volumetric diffusion fluxes relative to the volume average velocity of the mixture  
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Equation (43) can be re-written in terms of the diffusion fluxes 
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Let us start by considering a binary solution consisting of solvent (1) and polymer (m). Equation (43) 

simplifies to yield 
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The V
m

V JJ ,1  are the volumetric diffusion fluxes relative to the volume average velocity of the mixture 
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In view of equation (47), we may re-write equation (46) as  

 
dz

d
D

dz

d
Ð

dz

d

RT
ÐJ VV

m
V
m

V 1
1

1
1

1
111

1    (48) 

where 
1

1

ln

ln





a

 is the thermodynamic correction factor as before, and 
1

1
11 ln

ln





a

ÐD V
m

V  is the Fick 

diffusivity.  
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13. Comparison of M-S and Bearman formulations for diffusion 

In the vast literature on diffusion in polymer solutions,25, 26 it is customary to use the friction 

formulation for multicomponent diffusion, normally credited to Bearman,27 written in a manner such as 

in equation (1) of Price and Romdhane26 

    miim
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m
jiij

n

j j

ji uu
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uu
Mdz

d

ij
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 (49) 

or equivalently, as    miimmjiij

n

j
j

i uucuuc
dz
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ij

 
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. 

In equation (49), the imij  ,  are friction coefficients that are related to the modified Maxwell-Stefan 

diffusivities  
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Furthermore, an alternative flux expression is used to describe for diffusion in polymer solutions; the 

mass fluxes, ji, kg m-2 s-1, relative to the volume average velocity of the mixture, are expressed as a 

linear function of the mass concentration gradients.26 For the specific case of a binary solvent/polymer 

system  
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The Fick diffusivity, 1D , defined above in the volume average reference velocity frame, is related to 

the Bearman friction coefficient, and the modified Maxwell-Stefan diffusivity: 
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In equation (52) we have used the equalities 
m

mm
mmm M

V
Vc

  . 
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14. Self-diffusivity in binary solvent/polymer solutions: Free-volume 
theory 

It is also common in the polymer diffusion literature, to relate the Fick diffusivity 1D  to the self-

diffusivity, selfD ,1 .  The rationale for this is that the free volume theory allows prediction of self-

diffusivity, selfD ,1 .2, 25, 28  The relation between 1D  and selfD ,1  requires careful and rigorous derivation. 

We start with the Bearman equation (49) and apply it to a ternary mixture containing species 1, tagged 

species 1*, and polymer (m). The tagged species 1* is identical to species 1 with respect to 

thermodynamics and diffusion. This results in the following expression for  selfD ,1  
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m

m

self RTMRTMD 111
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From the equalities 
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  we derive the following expression in terms of 

the M-S diffusivities 
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The VÐ11  is the self-diffusivity of species 1 in pure 1; this can be estimated using the procedure such as 

Wilke-Chang.29-31  

The corresponding expressions for the self-diffusivity of the polymer (m) are 
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Combining equation (52) and (54) we obtain 
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Equation (56) is precisely equivalent to equation (8) of Price and Romdhane.26 For the limiting case 

of dilute solvent (species 1) in polymer (m) solutions, i.e. m 1 , we obtain 
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In view of equation (57), we find selfm
V
m DÐ ,11   for the case of negligible 1-1 friction. 

The thermodynamic correction factor 
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From experiments, we can determine the Fick diffusivity 1D , along with the self-diffusivities selfD ,1 , 

and selfmD ,  of solvent (1) and polymer (m). As illustration, Figure 26a  shows the experimental data as 

reported in Figure 6 of Zielinski32 for the self-diffusivities of toluene (1), and polystyrene (m) in 

polystyrene at 383 K as a function of the mass fraction of toluene. Also shown are the data for the Fick 

(mutual) diffusivity, D1. The plotted data are those obtained from five different types of measurement 

techniques. There is a variation of about six orders of magnitude in the diffusivity values as a function 

of the mass fraction, 1. This strong variation make the task of predicting, or estimating, diffusivities in 

polymer solutions an extremely difficult one.   

A further point to note in the experimental data for 0.5 < 1 < 1.0 is that Fick diffusivity is lower than 

the self-diffusivity of toluene, selfD ,1  by about 1-2 orders of magnitude. We calculate the 

thermodynamic correction factor, 
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
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, by about 1-3 orders of magnitude as 11  . Figure 26c compares the M-S 
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diffusivity, calculated using 
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11 


RT

DÐV
m , with D1, D1,self, and D2,self. We note that selfm DÐ ,11  ;  

this implies that the 1-1 friction is not of significant importance.   

The free-volume theory2, 25, 28 is commonly used for estimation of the self-diffusivity, selfD ,1 . The 

expression for the self-diffusivity for solvent(1)/polymer(2) system is commonly written as5 
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For the system toluene/polystyrene, the free-volume parameters are provided in Table 2 of Alsoy and 

Duda.33 The continuous solid line in Figure 26c are the estimations of the self-diffusivity for toluene in 

polystyrene using equation (58).  The excellent agreement is no surprise, because the free-volume 

parameters, totaling 12 in number, have been determined by fitting to experimental data on self-

diffusivities.  

Broadly speaking, self-diffusivities display an exponential increase with increasing volume fractions. 

This provides the rationale for the use of the exponential model7, 34  

   jijii
V
im

V
im CAÐÐ   exp0,  (59) 

for describing the composition dependence of the M-S diffusivity. 

Verros and Malamataris5 provide a further illustration of use of the free-volume theory for estimation 

of the diffusivity of acetone (component 1) in cellulose acetate (indicated by subscript m) at T = 298.15 

K.  Calculations, using the input data provided in their paper, are presented in Figure 27. For this 

system, the penetrant (1) –membrane (m) interaction parameter is dependent on the volume fraction and 

the activities are calculated according to equation (3). The thermodynamic correction factor 
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is a strongly decreasing function of the volume fraction, 1 , and mass fraction 1 ; see Figure 27a. The 

Fick diffusivity is calculated using the approximation 











1

11
,11 


RT

DD selfm .  

15. The Fick diffusivity matrix for diffusion in polymer solutions 

For diffusion in a ternary mixture consisting of two solvent species (1, 2) and polymer (m), equations 

(45) and (44) yield 
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For the case of negligible 1-2 friction equation (60) simplifies to yield 
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We define the matrix of thermodynamic factor as in equation (20). In 2-dimensional matrix notation, 

equation (61) takes the form 
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The matrix inversion can be performed analytically, and we get the following explicit expression for 

the Fick diffusivity matrix 
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 (63) 

Table 1 of Alsoy and Duda33 provides four different scenarios (called Cases 1, 2, 3, and 4 in their 

paper) for estimation of the elements of the Fick diffusivity matrix; their expressions are in terms of the 

self-diffusivities in the ternary mixture.  

The expression for the self-diffusivities in a mixture of 1,2 and polymer (m) are 
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For the case of negligible 1-2, 2-2, and 1-2 friction, equation (64) simplifies to yield 

 selfm
V

mselfm
V
m DÐDÐ ,22,11 ;    (65) 

In view of equation (65), it is noted that Equation (63) is precisely equivalent to their Case 4. 

The free-volume theory2, 25, 28 is commonly used for estimation of the self-diffusivity, selfD ,1 , and 

selfD ,2  in the mixture of 1/2/polymer mixture. The expression for the self-diffusivities for 1, and 2 in the 

solvent(1)/solvent(2)/polymer(3) system are given by equations (23), (24) and (25) of Zielinski and 

Hanley,35 as reproduced below using their nomenclature.  
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We shall illustrate the estimations of the use of the free-volume theory by estimating the matrix of 

Fick diffusivities  D , for methanol (component 1)/toluene (2)/poly(vinylacetate) (PVAc, subscript m) 

at T = 333.15 K.  Figure 28a presents calculations for (a) matrix of thermodynamic correction factors, 

  , using equation (31) along with the Flory-Huggins parameters 78.0;19.1;1 2112  mm  . 

Particularly note-worthy are the negative values of the off-diagonal elements 2112 , . The self-

diffusivities are estimated using the equations (66) and (67) along with free-volume parameters 

provided in Table 1 of Zielinski and Hanley.35  The Fick diffusivity matrix  D  can then be calculated 

by combination of  Equation (63) and equation (65); the results are presented in Figure 28b. Both the 

off-diagonal elements 2112 , DD  are negative. It is also noteworthy that the magnitude of 21D  is 

comparable to the magnitude of 22D ; this implies that the flux of toluene will be strongly influenced by 

the driving force of methanol. 
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In their Table IV, Cussler and Lightfoot36 report experimental data for the Fick diffusivity matrix  D  

for polystyrene(1)/cyclohexane(2)/toluene(3) mixtures.  At composition mass fractions  

95.0;05.0;05.0 321   , they report   1110
1.2039.8

6.19.8 










D  m2 s-1. It is to be stressed that 

the values of the Fick diffusivity matrix depending on the component numbering. For the same 

compositions, if the numbering is chosen as cyclohexane(1)/toluene(2)/polystyrene(3), the values of the 

Fick matrix can be re-calculated, using the basis of the data on the  partial specific volumes provided in 

Table IV of Cussler and Lightfoot,36 we obtain   1110
26.38.235

9.8212 









D  m2 s-1. In order to 

understand the large negative value of D21, we estimated the matrix of thermodynamic factors for  

cyclohexane(1)/toluene(2)/polystyrene(3), using F-H parameters 3548.0;51.0;476.0 231312   , 

we obtain   









0.0540.877-

0.03-0.93
.  The large negative value of 21 is the main cause of the large 

negative value of D21. 

In the literature on diffusion in multicomponent polymer solutions, equation (63) is often further 

simplified and used in the following form19 
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 (68) 

We shall use Equation (68) for the analysis of equilibration trajectories in the immersion precipitation 

process for membrane preparation. Essentially, we make the assumption that all diffusional coupling 

effects accrue from the off-diagonal elements 2112 , . 

16. Immersion precipitation process for preparation of cellulose acetate 
membrane 

The influence of the thermodynamic correction factors is particularly strong in composition regions 

close to demixing regions. Diffusion close to demixing regions is of importance in membrane 

preparation by immersion precipitation.37, 38 In order to illustrate this, let us consider diffusion in the 
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ternary mixture consisting of water (non-solvent, component 1), acetone (solvent, component 2) and 

cellulose acetate (polymer, component m). The binodal and spinodal curves for this ternary mixture are 

shown in Figure 29. The spinodal curve defines the limit of phase stability, and along the spinodal 

curve, the condition   = 0 must be satisfied, i.e. we must have 21122211  , the product of the off-

diagonal elements is equal in magnitude to the product of the diagonal elements.39, 40 This situation 

implies a significant degree of thermodynamic coupling.  

The inset to Figure 29 shows calculations of the elements of the matrix of thermodynamic factors    

as a function of the volume fraction of acetone, keeping the ratio 
75

25

3

1 



.  We note that the value of 

21  becomes increasingly negative as the binodal curve is approached. This implies that the flux of 

acetone is strongly coupled with the flux of water. Strong thermodynamic coupling will induce strong 

diffusional coupling.  

In order to demonstrate the influence of thermodynamic coupling, let us consider transient inter-

diffusion between two compartments for the mixture water/acetone/CA. The binodal and spinodal 

curves for this system were determined using the numerical procedures outlined in Altena and 

Smolders.41 The right compartment (R) contains the polymer solution with initial volume fractions 

3.0;7.0;0.0 21  mRRR  . The left compartment (L) is the coagulation bath with initial volume 

fractions 233.0;507.0;26.0 21  mLLL  , that lie on the binodal curve. The matrix of 

thermodynamic correction factors at this composition in the coagulation bath is 

  









0.5430.5624-

0.0865-0.1682
. Note the large negative value of 21  in relation to 22 ; this implies that the 

flux of acetone is strongly influenced by the driving force for water. The transient equilibration process 

is described by the coupled two-dimensional matrix equation 
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The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,42 is required for explicit 

determination of the 2-dimensional square matrix     




  21

4
D

t

z
erfQ . The matrix of diffusivities 

are calculated from equation (62), at the average composition 










RL

RL

22

11

2

1



. The Fick diffusivity matrix 

is calculated using equation (62), i.e. in the scenario of negligible 1-2 friction. 

For the case of two distinct eigenvalues, 1 , and 2  of the 2-dimensional Fick matrix  D , the 

Sylvester theorem yields 
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In equation (70),  I  is the identity matrix with elements ik . The functions  if   are calculated from 
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For calculation of the diffusional equilibration trajectories, we assume that the modified M-S 

diffusivities are the same as for water/ethanol/CA. The calculations can be easily implemented in 

MathCad 15.1  

Figure 30 shows the equilibration trajectory followed in the two compartments, plotted in ternary 

volume fraction space. We note that equilibration trajectory follows a strongly curvilinear path. The 

volume fraction profiles on either side of the interface, at time t = 1 s,  are plotted in the inset to Figure 

30.  During transient equilibration, both acetone and CA experience overshoots, and undershoots; these 

overshoots/undershoots signify the phenomenon of uphill diffusion that is commonly observed for 

transient uptake in micro-porous and macro-porous adsorbents.43-46 The diffusional equilibration 

trajectory follows a strongly curvilinear path in ternary composition space. 

Curvilinear equilibration trajectories for water/acetone/CA have been reported in the immersion 

precipitation process for membrane preparation.37, 38 Figure 31 shows the equilibration trajectories when 

a 10% solution of Cellulose Acetate (CA) in acetone is immersed in a bath of pure water; the 
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trajectories at three different times, t = 10 s, t = 25 s, and t = 50 s are depicted. We note the curvilinear 

trajectory at t = 50 s has entered the meta-stable region. This foray into the meta-stable region impacts 

on the membrane structure.37, 38 Tsay and McHugh47 present detailed modelling of the transient 

equilibration trajectories for water/acetone/CA systems. 

In order to demonstrate the foray into the meta-stable region, we perform transient diffusion from a 

well-stirred coagulation bath of constant composition (left compartment) into a polymer solution (right 

compartment) in the homogeneous single-phase region of the ternary diagram. The left compartment is 

the coagulation bath of constant composition 71855.0;10078.0;18067.0 21  mLLL  ; this 

composition lies on the binodal curve. The right compartment is the polymer solution of initial 

composition 16.0;6.0;24.0 21  mRRR  . We focus on the transient equilibration in the right 

compartment, 0z . The transient development of concentrations of the ions in the Right compartment 

is described by  
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 (72) 

The transient volume fraction profiles in the right compartment is determined using essentially the 

same procedure as described above. A step-wise numerical scheme is used in which the matrix of 

diffusivity values is re-calculated at the values of volume fractions available for the previous position, z, 

as the volume fractions approach the values correspond to those in the left compartment. We note that 

the equilibration trajectory experiences a foray into the meta-stable region that lies between the binodal 

and spinodal curves. The profiles at time t = 1 s are plotted in the inset to Figure 32; the equilibration of 

water shows a distinct 1 overshoot, that is indicative of uphill diffusion.  

For the ternary system water (non-solvent, component 1), 1,4 dioxane (solvent, component 2) and 

cellulose acetate (polymer, component m), the Flory-Huggins parameters as provided by Altena and 

Smolders41 produce binodal and spinodal curves that have similar shapes and characteristics as those for 

the water/acetone/CA system. Also, in this case forays into the meta-stable region are observable as 
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indicated by the results in Figures 33a,b. In this case, the left compartment is the coagulation bath of 

constant composition 706.0;113.0;181.0 21  mLLL  ; this composition lies on the binodal curve. 

The right compartment is the polymer solution of initial composition 26.0;5.0;24.0 21  mRRR  . 

The equilibration trajectory is indicated by the blue line in Figure 33a; this indicates a clear incursion 

into the meta-stable region.  The volume fraction profiles in the polymer solution (right compartment) at 

time t = 1 s after the start are shown in Figure 33b. The equilibration of water shows a distinct 1 

overshoot, that is indicative of uphill diffusion.  

17. Immersion precipitation process for preparation of 
poly(ether)sulfone (PES) membrane 

Thermodynamic coupling effects and curvilinear diffusional equilibration trajectories are generic 

characteristics of ternary membrane forming systems. As further demonstration, Figure 34 shows the 

diffusional equilibration trajectory in a ternary system consisting of water (non-solvent, component 1), 

N-methyl-2-pyrrolidone (NMP) (solvent, component 2) and poly(ether)sulfone (PES) (polymer, 

component m). The calculations are analogous to those presented in Figure 30. At time t = 0, the 

composition of the polymer solution in the right compartment is: 1L = 0.0, 2L = 0.5. The initial 

composition of the coagulation bath (left compartment) is 1R = 0.18,  2R = 0.21; these compositions lie 

on the binodal curve. The equilibration trajectory follows a strongly curvilinear path in ternary 

composition space. The inset to Figure 34 shows the transient volume fractions in either compartment, 

monitored at t = 1 s. Note the overshoots and undershoots in the volume fraction of PES polymer. 

Also for this ternary mixture, forays into meta-stable region is possible.  In order to demonstrate the 

foray into the meta-stable region, we perform transient diffusion from a well-stirred coagulation bath of 

constant composition (left compartment) into a polymer solution (right compartment) in the 

homogeneous single-phase region of the ternary diagram. The left compartment is the coagulation bath 

of constant composition 6211.0;2007.0;1782.0 21  mLLL  ; this composition lies on the binodal 

curve. The right compartment is the polymer solution of initial composition 
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2.0;7.0;1.0 21  mRRR  . We focus on the transient equilibration in the right compartment, 0z . 

The transient development of concentrations of the ions in the right compartment is described by 

equation (72). 

The transient volume fraction profiles in the right compartment is determined using the same 

procedure as described for water/acetone/CA; see Figure 35. The profiles at time t = 1 s are plotted in 

the inset to Figure 35. We note that the equilibration trajectory experiences a foray into the meta-stable 

region that lies between the binodal and spinodal curves. 

18. Immersion precipitation process for preparation of poly(vinylidine 
fluoride) (PVDF) membrane 

For the ternary system water (non-solvent, component 1), dimethyl formamide (DMF, solvent, 

component 2) and poly(vinylidine fluoride) (PVDF, polymer, component m), the binodal and spinodal 

curves are shown in Figure 36. Also, in this case forays into the meta-stable region are observable in the 

diffusion equilibration trajectories. In this case, the left compartment is the coagulation bath of constant 

composition 864402.0;072498.0;0631.0 21  mLLL  ; this composition lies on the binodal curve. 

The right compartment is the polymer solution of initial composition 38.0;6.0;02.0 21  mRRR  . 

The equilibration trajectory is indicated by the blue line in Figure 36; this indicates a clear incursion 

into the meta-stable region.  The volume fraction profiles in the polymer solution (right compartment) at 

time t = 1 s after the start are shown in the inset to Figure 36. The equilibration of water shows a 

perceptible overshoot in volume fraction, that is indicative of uphill diffusion.  

19. Immersion precipitation process for preparation of polysulfone 
(PSF) membrane 

For the ternary system water (non-solvent, component 1), NMP (solvent, component 2) and 

polysulfone (PSF, polymer, component m), the binodal and spinodal curves are shown in Figure 37. 

Also, in this case forays into the meta-stable region are observable in the diffusion equilibration 

trajectories. In this case, the left compartment is the coagulation bath of constant composition 
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784359.0;200073.0;015568.0 21  mLLL  ; this composition lies on the binodal curve. The right 

compartment is the polymer solution of initial composition 39.0;6.0;01.0 21  mRRR  . The 

equilibration trajectory is shown by the blue line in Figure 37; this indicates a clear incursion into the 

meta-stable region. The volume fraction profiles in the polymer solution (right compartment) at time t = 

1 s after the start are shown in the inset to Figure 37. The equilibration of water shows a sharp overshoot 

in volume fraction, that is indicative of uphill diffusion.  

20. Immersion precipitation process for preparation of poly(etherimide) 
(PEI) membrane 

For the ternary system water (non-solvent, component 1), NMP (solvent, component 2) and 

poly(etherimide) (PEI, polymer, component m), the binodal and spinodal curves are shown in Figure 38. 

Also, in this case forays into the meta-stable region are observable in the diffusion equilibration 

trajectories. In this case, the left compartment is the coagulation bath of constant composition 

7205.0;200545.0;078955.0 21  mLLL  ; this composition lies on the binodal curve. The right 

compartment is the polymer solution of initial composition 34.0;6.0;06.0 21  mRRR  . The 

equilibration trajectory is shown by the blue line in Figure 38; this indicates a clear incursion into the 

meta-stable region. The volume fraction profiles in the polymer solution (right compartment) at time t = 

1 s after the start are shown in the inset to Figure 38. The equilibration of water shows a distinct 

overshoot in volume fraction, that is indicative of uphill diffusion.  

21. Forays into meta-stable region of methanol/acetone/CA 

Forays into meta-stable zones are also feasible for non-solvents other than water. We demonstrate this 

for the ternary system methanol (non-solvent, component 1), acetone (solvent, component 2) and 

cellulose acetate (CA, polymer, component m), the binodal and spinodal curves are shown in Figure 39. 

In this case, the left compartment is the coagulation bath of constant composition 

743295.0;00224.0;35447.0 21  mLLL  ; this composition lies on the binodal curve. The right 

compartment is the polymer solution of initial composition 12.0;52.0;36.0 21  mRRR  . The 
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equilibration trajectory is shown by the blue line in Figure 39; this indicates a clear incursion into the 

meta-stable region. The volume fraction profiles in the polymer solution (right compartment) at time t = 

1 s after the start are shown in the inset to Figure 39. The equilibration of methanol shows a distinct 

overshoot in volume fraction, that is indicative of uphill diffusion.  

22. Forays into meta-stable region of 2-propanol/DMSO/EVAL 

We demonstrate forays into meta-stable region for the ternary system 2-propanol (non-solvent, 

component 1), DMSO (solvent, component 2) and poly(ethylene-co-vinylalcohol) (EVAL, polymer, 

component m); the binodal and spinodal curves are shown in Figure 40. In this case, the left 

compartment is the coagulation bath of constant composition 

67578.0;12796.0;19626.0 21  mLLL  ; this composition lies on the binodal curve. The right 

compartment is the polymer solution of initial composition 4.0;45.0;15.0 21  mRRR  . The 

equilibration trajectory is shown by the blue line in Figure 40; this indicates a clear incursion into the 

meta-stable region. The volume fraction profiles in the polymer solution (right compartment) at time t = 

1 s after the start are shown in the inset to Figure 40. The equilibration of 2-propanol shows a distinct 

overshoot in volume fraction, that is indicative of uphill diffusion.  
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23. Notation 

ai  activity of species i, dimensionless 

[B]  matrix defined by Equations (30), m-2 s 

ci  molar concentration of species i, mol m-3 

ct  total molar concentration of mixture, mol m-3 

1D    Fick diffusivity for unary penetrant 1, m2 s-1 

mÐ1    M-S diffusivity for unary penetrant 1, m2 s-1 

ijÐ    M-S diffusivity for binary pair i-j, m2 s-1 

V
ijÐ    modified M-S diffusivity for binary penetrant pair i-j, m2 s-1 

V
imÐ    modified M-S diffusivity for penetrant i in polymer m, m2 s-1 

Di,eff  Effective diffusivity in mixture, m2 s-1  

Di,self  self-diffusivity in mixture, m2 s-1  

 D    Fick diffusivity matrix, m2 s-1  

fi fugacity of species i, Pa 

fi,sat saturation fugacity of species i, Pa 

 I   Identity matrix with elements  ij, dimensionless 

V
iJ  volumetric flux of species i relative to volume average velocity, m3 m-2 s-1 

Mi   molar mass of species i, kg mol-1 

M   mean molar mass of mixture, kg mol-1 

n number of penetrants, dimensionless 

m refers to polymer membrane (= species n+1), dimensionless 

Ni molar flux of species i, mol m-2 s-1 

V
iN  volumetric flux of species i, m3 m-2 s-1 

p  total system pressure, Pa 

 Q   matrix quantifying fractional unaccomplished change, dimensionless 
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R  gas constant, 8.314 J mol-1 K-1  

t  time, s  

T  absolute temperature, K  

Tg  glass transition temperature of polymer, K  

xi  mole fraction of component i in fluid phase, dimensionless 

ui  velocity of diffusion of species i, m s-1 

LL

L
Lu

21

2
2 




  relative volume fractions in bulk liquid mixture, dimensionless 

21

2
2 




u  relative volume fractions in polymer phase, dimensionless 

iV   partial molar volume of species i, m3 mol-1 

V    molar volume of mixture, m3 mol-1 

z  direction coordinate, m  

 

Greek letters 
 

   membrane or slab thickness, m 

 ij  Kronecker delta, dimensionless 

ij  thermodynamic factors, dimensionless 

    matrix of thermodynamic factors, dimensionless 

i  molar chemical potential, J mol-1 

0
i   molar chemical potential at standard state, J mol-1 

i  mass density of component i, kg m-3 

i0  mass density of pure component i, kg m-3 

i  volume fraction of penetrant i in polymer, dimensionless 

m  volume fraction of polymer, dimensionless 

LL
21 ,    volume fraction in bulk liquid mixture, dimensionless 

i  mass density of penetrant i, kg m-3 

t  mass density of mixture, kg m-3 
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  interaction parameter in Flory-Huggins model, dimensionless 

i  mass fraction of component i, dimensionless 

 

Subscripts 
 

i  referring to penetrant i 

m   referring to membrane 

t  referring to total mixture 

 

Superscripts 
 

V  referring to use of volume fractions 
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Table 1. Flory-Huggins parameters for permeation of penetrants CO2 (component 1) and C2H6 

(Component 2) across a cross-linked polyethylene oxide (XLPEO) membrane (indicated by subscript 

m) at T = 298.15 K. The input parameters are based on calculations using the information presented in 

Appendix A of  Ribeiro et al.7 

Input data: 

135
2

135
1

2

1

12

5
,2

5
,1

mol m1004.6

mol m10174.4

0804.2

9085.0

52.1

Pa1028

Pa1043

















V

V

f

f

m

m

sat

sat





 

 

Modified Maxwell-Stefan diffusivities for permeation of penetrants CO2 (component 1) and C2H6 

(Component 2) across a cross-linked polyethylene oxide (XLPEO) membrane (indicated by subscript 

m) at T = 298.15 K. The data are taken from Table 6 of Ribeiro et al.7 

Input data: 

 
  

11
12

12
11

2

1
10

1

1082.2

4.11exp10756.3

86.6exp10069.1













V

V
m

V
m

Ð

Ð

Ð





 m2 s-1. 
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Table 2. Flory-Huggins parameters for permeation of penetrants CO2 (component 1) and C2H6 

(Component 2) across a cross-linked polyethylene oxide (XLPEO) membrane (indicated by subscript 

m) at T = 263.15 K. The input parameters are based on calculations using the information presented in 

Appendix A of  Ribeiro et al.7 

 

135
2

135
1

12

21

1
12

5
,2

5
,1

mol m1014.4

mol m1031.3

76.4421.2

3.120421.1

ln

3.44
2.28

Pa105.14

Pa1021



















V

V

f

f

m

m

sat

sat








 

Modified Maxwell-Stefan diffusivities for permeation of penetrants CO2 (component 1) and C2H6 

(Component 2) across a cross-linked polyethylene oxide (XLPEO) membrane (indicated by subscript 

m) at T = 263.15 K. The data are taken from Table 6 of Ribeiro et al.7 

Input data: 

  
  

   12
21

14
12

12
12

12
2

12
21

12
1

s m109exp103.4

s m832.07.37exp10489.1

s m76.045.18exp105.8



















V

V
m

V
m

Ð

Ð

Ð
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Table 3. The Flory-Huggins parameters for penetrants water (component 1) and ethanol (Component 2) 

in cellulose acetate (CA) membrane (indicated by subscript m) at T = 293.15 K. The data are taken from 

Mulder et al.:6, 9, 19  

       

;00647.0;002.0;309.0

mol m1018

;1.1;4.1

;8897.0;3116.3;15.4;3483.1;9820.0

;

21

2

1

136
1

21

21

2
2

4
2

3
2

2
2212













mm

mm

V

V

V

V

V

V

V

edcba

uueuducuba






 

Modified Maxwell-Stefan diffusivities for permeation of penetrants water (component 1) and ethanol 

(Component 2) across a cellulose acetate (CA) membrane (indicated by subscript m) at T = 293.15 K. 

The data are taken from the legend to Figure 5 of Mulder and Smolders.19 

 
 

m1020

s m3.73.7exp106

s m3.73.7exp108.8

6

12
21

12
2

12
21

12
1


















V

m

V
m

Ð

Ð
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Table 4. The Flory-Huggins parameters for penetrants water (component 1) and ethanol (Component 2) 

in Polyimide membrane (indicated by subscript m) at T = 293.15 K. The data are based on the 

information provided from Ni et al.12 The 12  parameters were taken to be the same as for 

water/ethanol/CA. The values of mm 21 ,   were chosen so that mm
V

V
2

2

1
1    lies between 0.75 and 1.1, 

as recommended by Ni et al.12 

       

;00649.0;002.0;309.0

mol m1018

5.14.2;45.1

;889.0;3116.3;15.4;3483.1;9820.0

;

21

2

1

136
1

21

1
21

21

2
2

4
2

3
2

2
2212
























mm

mm

V

V

V

V

V

V

V

edcba

uueuducuba







 

Modified Maxwell-Stefan diffusivities for permeation of penetrants water (component 1) and ethanol 

(Component 2) across the polyimide membrane (indicated by subscript m) at T = 293.15 K. The data are 

taken from Table 1 of Ni et al.12.   

m1020

s m101.2

s m105.25

6

1213
2

1213
1















V
m

V
m

Ð

Ð
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Table 5. Flory-Huggins parameters for permeation of penetrants ethanol (component 1) and water 

(Component 2) across a PDMS membrane (indicated by subscript m) at T = 298.15 K. The Flory-

Huggins parameters are taken from Yang and Lue8 (specifically; from the legend to their Figure 7).   

       

3
21

21

136
2

136
1

21

21

2
2

4
2

3
2

2
2212

m kg965;997;785;0;0

mol m1018;mol m1069.58

;65.5;05.2

;468.2;941.6;056.8;889.5;969.4

;















mLL

mm

mm

V

V

V

V

VV

edcba

uueuducuba








 

The uptakes in terms of kg penetrant per kg dry membrane are related to the volume fractions by  

mm

iLi
i

mLL

iL

i

i Uptake
UptakeUptake

Uptake






 


 ;
1

2

2

1

1
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Table 6. Flory-Huggins parameters for permeation of penetrants ethanol (component 1) and water 

(Component 2) across a PDMS membrane (indicated by subscript m) at T = 298.15 K. The Flory-

Huggins parameters are taken from Yang and Lue8 (specifically, from the legend to their Figure 7).   

       

   

3
21

21

136
2

136
1

2221

21

2
2

4
2

3
2

2
2212

m kg965;997;785;0;0

mol m1018;mol m1069.58

93.01

013.0
064.3;

897.01

02.0
28.1

;468.2;941.6;056.8;889.5;969.4

;




















mLL

mm

m

m

m

m

V

V

V

V

VV

edcba

uueuducuba











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Table 7. Flory-Huggins parameters for permeation of penetrants water (component 1) and ethanol 

(Component 2) across a poly (vinyl alcohol) /poly (acrylonitrile) (PVA/PAN) composite membrane 

(indicated by subscript m) at T = 333 K. The 12  parameters, in the form of a 4-th order polynomial 

were determined from the NRTL model parameters for water/ethanol mixtures at 333 K.  The values of 

mm 21 ,   were chosen to match the  experimental sorption data presented in Figure 2 of Heintz and 

Stephan.13   

       

   

3
21

21

136
2

136
1

2221

21

2
2

4
2

3
2

2
2212

m kg1200;789;1000;0;0

mol m104.58;mol m1018

8.01

008.0
6.1;

8.01

01.0
79.0

;0862.0;006046.0;1695.0;3362.0;8801.0

;




















mLL

mm

m

m

m

m

V

V

V

V

VV

edcba

uueuducuba












 

Membrane thickness: m103.1 7 . Modified Maxwell-Stefan diffusivities for permeation of 

penetrants water (component 1) and ethanol (Component 2) across the PVA/PAN (indicated by 

subscript m) at T = 333 K.  Two sets of values were used in the simulations: 

Strong 1:2  friction: 1214
12

1214
2

1213
1 s m105;s m105;s m105   VV

m
V
m ÐÐÐ  

Weaker 1-2 friction: 1214
12

1214
2

1213
1 s m1050;s m105;s m105   VV

m
V
m ÐÐÐ  
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Table 8. Flory-Huggins parameters for permeation of penetrants water (component 1) and methanol 

(Component 2) across a poly (vinyl alcohol) /poly (acrylonitrile) (PVA/PAN) composite membrane 

(indicated by subscript m) at T = 333 K. The 12  parameters, in the form of a 3-rd order polynomial 

were determined from the NRTL model parameters for water/methanol mixtures at 333 K.  The values 

of mm 21 ,   were culled from Asai et al.48 

     

3
21

1136
2

136
1

21

21

2
2

3
2

2
2212

m kg1000;792;1000

;002.0;mol m1045.40;mol m1018

;14.1;57.1

;1.2600830;1.0144535 -;0.4103115;0.6831948

;















mLL

m

mm

V

V
VV

dcba

uuducuba







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Table  9. Modified Maxwell-Stefan diffusivity for water (component 1) in 2-hydroxyethyl methacrylate 

(HEMA) (indicated by subscript m) at T = 296.65 K. The data are culled from Fornasiero et al.17 

  12
1

12
1 s m2.9exp104  V
mÐ  

The Flory-Huggins parameters are taken from from Fornasiero et al.17 

136
1

1

mol m1018

;82..0




V

m
. 
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Table 10. The Flory-Huggins parameters for penetrants water (anti-solvent, component 1) and acetone 

(solvent, Component 2) in cellulose acetate (CA) (polymer, indicated by subscript m) at T = 298.15 K. 

The Flory-Huggins parameters are taken from Altena and Smolders41 and Altinkaya and Ozbas.49  

       

13

136
2

136
1

21

21

2
2

4
2

3
2

2
2212

mol m030532.0

mol m1092.73

mol m1018

;45.0;4.1

;28.4;7.6;09.4;42.0;1.1

;



















m

mm

V

V

V

edcba

uueuducuba






 

Modified Maxwell-Stefan diffusivities for permeation of penetrants water (component 1) and acetone 

(Component 2) are taken to be the same as for water/ethanol/CA system.19 

 
  12

21
12

2

12
21

12
1

s m3.73.7exp106

s m3.73.7exp108.8











V

m

V
m

Ð

Ð
  

The 1-2 friction is considered to be negligible. 
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Table 11. The Flory-Huggins parameters for penetrants water (anti-solvent, component 1) and 1,4 

dioxane (solvent, Component 2) in cellulose acetate (CA) (polymer, indicated by subscript m) at T = 

298.15 K. The Flory-Huggins parameters are taken from Altena and Smolders41 and Altinkaya and 

Ozbas.49 

       

13

136
2

136
1

21

21

2
2

4
2

3
2

2
2212

mol m030532.0

mol m103.85

mol m1018

;4.0;4.1

;17.8;91.12;15.7;69.0;92.0

;



















m

mm

V

V

V

edcba

uueuducuba






 

Modified Maxwell-Stefan diffusivities for permeation of penetrants water (component 1) and acetone 

(Component 2) are taken to be the same as for water/ethanol/CA system.19 

 
  12

21
12

2

12
21

12
1

s m3.73.7exp106

s m3.73.7exp108.8











V

m

V
m

Ð

Ð
  

The 1-2 friction is considered to be negligible. 
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Table 12. The Flory-Huggins parameters for penetrants water (anti-solvent, component 1) and NMP 

(solvent, Component 2) in polyethersulfone (PES, polymer, indicated by subscript m) at T = 298.15 K. 

The Flory-Huggins parameters are taken from Zeman and Tkacik.50 

13

136
2

136
1

2112

mol m033869.0

mol m1052.96

mol m1007.18

;5.0;5.1;0.1















m

mm

V

V

V



 

Modified Maxwell-Stefan diffusivities for permeation of penetrants water (component 1) and NMP 

(Component 2) are taken to be the same as for water/ethanol/CA system.19  

 
  12

21
12

2

12
21

12
1

s m3.73.7exp106

s m3.73.7exp108.8











V

m

V
m

Ð

Ð
  

The 1-2 friction is considered to be negligible. 
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Table 13. The Flory-Huggins parameters for penetrants water (anti-solvent, component 1) and DMF 

(solvent, Component 2) in PVDF (polymer, indicated by subscript m) at T = 298.15 K. The Flory-

Huggins parameters are taken from Yip,51 and Matsuyama et al.52 

       

13

136
2

136
1

21

21

2
2

4
2

3
2

2
2212

mol m307.0

mol m104.77

mol m1018

;43.0;09.2

;8.0;2.1;8.0;04.0;5.0

;



















m

mm

V

V

V

edcba

uueuducuba






 

Modified Maxwell-Stefan diffusivities for permeation of penetrants water (component 1) and acetone 

(Component 2) are taken to be the same as for water/ethanol/CA system.19 

 
  12

21
12

2

12
21

12
1

s m3.73.7exp106

s m3.73.7exp108.8











V

m

V
m

Ð

Ð
  

The 1-2 friction is considered to be negligible. 
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Table 14. The Flory-Huggins parameters for penetrants water (anti-solvent, component 1) and NMP 

(solvent, Component 2) in Polysulfone (PSF, polymer, indicated by subscript m) at T = 298.15 K. The 

Flory-Huggins parameters are taken from Yip,51 and Kim et al.53 

       

13

136
2

136
1

21

21

2
2

4
2

3
2

2
2212

mol m016.0

mol m102.96

mol m1018

;24.0;7.3

;0;0;0;66.0;785.0

;



















m

mm

V

V

V

edcba

uueuducuba






 

Modified Maxwell-Stefan diffusivities for permeation of penetrants water (component 1) and acetone 

(Component 2) are taken to be the same as for water/ethanol/CA system.19 

 
  12

21
12

2

12
21

12
1

s m3.73.7exp106

s m3.73.7exp108.8











V

m

V
m

Ð

Ð
  

The 1-2 friction is considered to be negligible. 
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Table 15. The Flory-Huggins parameters for penetrants water (anti-solvent, component 1) and NMP 

(solvent, Component 2) in Poly(etherimide) (PEI, polymer, indicated by subscript m) at T = 298.15 K. 

The Flory-Huggins parameters are taken from Yip,51 Kim et al.,53 and Fernandes et al.54 

       

13

136
2

136
1

21

21

2
2

4
2

3
2

2
2212

mol m0176.0

mol m102.96

mol m1018

;507.0;1.2

;0;0;0;66.0;785.0

;



















m

mm

V

V

V

edcba

uueuducuba






 

Modified Maxwell-Stefan diffusivities for permeation of penetrants water (component 1) and acetone 

(Component 2) are taken to be the same as for water/ethanol/CA system.19 
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The 1-2 friction is considered to be negligible. 
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Table 16. The Flory-Huggins parameters for penetrants methanol (anti-solvent, component 1) and 

acetone (solvent, Component 2) in cellulose acetate (CA) (polymer, indicated by subscript m) at T = 

298.15 K. The Flory-Huggins parameters are taken from Table 5 of Dabral et al.55  
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Modified Maxwell-Stefan diffusivities for permeation of penetrants water (component 1) and acetone 

(Component 2) are taken to be the same as for water/ethanol/CA system.19 
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Table 17. The Flory-Huggins parameters for penetrants 2-propanol (anti-solvent, component 1) and 

DMSO (solvent, Component 2) in EVAL (polymer, indicated by subscript m) at T = 298.15 K. The 

Flory-Huggins parameters are taken from Table 1 and Table 2 of Cheng et al.56  
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Modified Maxwell-Stefan diffusivities for permeation of penetrants water (component 1) and acetone 

(Component 2) are taken to be the same as for water/ethanol/CA system.19 
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25.   Captions for Figures 

 

 

 

Figure 1. Schematic of Flory-Huggins lattice model. 

 

 

Figure 2. Influence of the interaction parameter on the activity (a1) and thermodynamic correction 

factor, . In these calculations, the ratio 01 
mV

V
, i.e. the molar volume of the penetrant is negligible in 

comparison to the molar volume of the polymer.  

 

 

Figure 3. Schematic showing mixture permeation across polymeric membrane.  

 

 

Figure 4. Calculations of the volume fractions of penetrants (a) CO2 (component 1) and (b) C2H6 

(Component 2) in a cross-linked polyethylene oxide (XLPEO) membrane (indicated by subscript m) at 

298.15 K. The upstream face of the membrane is in equilibrium with CO2/C2H6 mixtures of five 

different compositions. The experimental data (symbols) on mixed-gas sorption are those presented in 

Figures 5 and 6 of Ribeiro and Freeman.11 Note that the experimental component solubility data are 

converted to volume fractions of penetrants, using the molar volumes. The continuous solid lines are the 

the simultaneous solutions to equations (4) and (5). The input data are summarized in Table 1.  In these 

calculations, the ratio 01 
mV

V
, i.e. the molar volume of the penetrant is negligible in comparison to the 

molar volume of the polymer. 
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Figure 5. Calculations of the volume fractions of penetrants (a) CO2 (component 1) and (b) C2H6 

(Component 2) in a cross-linked polyethylene oxide (XLPEO) membrane (indicated by subscript m) at 

263.15 K. The upstream face of the membrane is in equilibrium with CO2/C2H6 mixtures of five 

different compositions. The experimental data (symbols) on mixed-gas sorption are those presented in 

Figures 5 and 6 of Ribeiro and Freeman.11 Note that the experimental component solubility data are 

converted to volume fractions of penetrants, using the molar volumes. The continuous solid lines are the 

the simultaneous solutions to equations (4) and (5).  The input data are summarized in Table 2.  In these 

calculations, the ratio 01 
mV

V
, i.e. the molar volume of the penetrant is negligible in comparison to the 

molar volume of the polymer. 

 

Figure 6. (a) Calculations of the interaction factor 12  for ethanol(1)/water(2) mixtures at 298.15 K 

using equation (7) and the Wilson parameters provided by Yang and Lue.8  Also shown are the 4-th 

polynomial fits with coefficients specified in Table 5. (b)  Calculations of the interaction factor 12  for 

water(1)/ethanol(2) mixtures at 333 K using equation (7) and NRTL parameters.  Also shown are the 4-

th polynomial fits with coefficients specified in Table 7. (c) Calculations of the interaction factor 12  

for water(1)/methanol(2) mixtures at 333 K using equation (7) and NRTL parameters.  Also shown are 

the 3rd polynomial fits with coefficients specified in Table 8. 

 

 

 

Figure 7. Calculations of the volume fractions of penetrants water (component 1), ethanol (component 

2) in a cellulose acetate membrane (polymer, component m) at 293.15 K. The upstream face of the 

membrane is in equilibrium with water/ethanol liquid mixture of varying mass fractions. In the 
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calculations, mm 21 ,   are composition independent, and 12  follows the composition dependence 

described by equations (8) and (9). The Flory-Huggins parameters are specified in Table 3. 

 

 

Figure 8. Calculations of the volume fractions of penetrants water (component 1), ethanol (component 

2) in polyimide membrane (polymer, component m) at 293.15 K. The upstream face of the membrane is 

in equilibrium with water/ethanol liquid mixture of varying mass fractions. The Flory-Huggins 

parameters are specified in Table 4. 

 

 

 

 

Figure 9. Calculations of the (a) volume fractions, and (b) uptakes per kg dry PDMS, of penetrants 

ethanol (component 1), water (component 2) in polydimethylsiloxane (PDMS) membrane (polymer, 

component m) at 298.15 K. The upstream face of the membrane is in equilibrium with ethanol/water 

liquid mixture of varying volume fractions. In the calculations, mm 21 ,   are composition independent, 

and 12  follows the composition dependence described by equations (8) and (9). The Flory-Huggins 

parameters are specified in Table 5. 

 

 

 

Figure 10. Calculations of the (a) volume fractions, and (b) uptakes per kg dry PDMS, of penetrants 

ethanol (component 1), water (component 2) in polydimethylsiloxane (PDMS) (polymer, component m) 

at 298.15 K. The upstream face of the membrane is in equilibrium with ethanol/water liquid mixture of 

varying volume fractions. In the calculations, all three interaction parameters mm 2112 ,,   are 
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dependent on the volume fractions of the penetrants. The Flory-Huggins parameters are specified in 

Table 6.  

 

 

Figure 11.  Experimental data (symbols) of Heintz and Stephan13  for binary sorption of water/ethanol 

mixtures in poly (vinyl alcohol) /poly (acrylonitrile) (PVA/PAN) composite membrane. The continuous 

solid lines are the F-H model calculations using the input data in Table 7. 

 

Figure 12. Binary sorption of water/methanol mixtures in Nafion membrane. The continuous solid lines 

are the F-H model calculations using the input data in Table 8. 

 

 

 

Figure 13. Diffusivity of a trace of benzene in different polymers at 300 K. The effect of the glass 

transition temperature. The artwork is based on Wesselingh and Krishna.2   

 

 

Figure 14. Effect of permeant volume in a rubbery and an almost glassy polymer. The artwork is based 

on Wesselingh and Krishna.2   

 

 

 

Figure 15. The effect of swelling. The artwork is based on Wesselingh and Krishna.2   
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Figure 16. Calculations for (a) thermodynamic correction factor, 
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(component 1) in 2-hydroxyethyl methacrylate (HEMA) (indicated by subscript m) at T = 296.65 K.  

The input data are provided in Table 9. In these calculations the volume fractions, 1 , are related to the 
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Figure 17. (a) Fick diffusivities for unary permeation of CO2 and C2H6 across a cross-linked 

polyethylene oxide (XLPEO) membrane at 298.15 K. The x-axis represents the volume fraction of the 

penetrant. (b) Calculations of the thermodynamic factor as a function of the volume fraction of the 

penetrant. The input data are summarized in Table 1. Furthermore, in these calculations, the ratio 

01 
mV

V
, i.e. the molar volume of the penetrant is negligible in comparison to the molar volume of the 

polymer.  

 

 

Figure 18. Permeabilities, expressed in Barrers, for unary permeation of (a, c) CO2 and (b, d) C2H6 

across a cross-linked polyethylene oxide (XLPEO) membrane at (a, b) 298.15 K, and (c, d) 263.15 K. 

The input data are summarized in Table 1, and Table 2. Furthermore, in these calculations, the ratio 
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01 
mV

V
, i.e. the molar volume of the penetrant is negligible in comparison to the molar volume of the 

polymer. The experimental data on component permeabilities are those presented in Figure 2 of Ribeiro 

et al.18 

 

 

Figure 19. (a) Calculations of the elements of the matrix of thermodynamic factors for penetrants CO2 

(component 1) and C2H6 (Component 2) in a cross-linked polyethylene oxide (XLPEO) membrane 

(indicated by subscript m) at 263.15 K. The upstream face of the membrane is in equilibrium with a 

70% CO2 gas mixture. In the calculations, the partial fugacity of CO2 is increased, keeping the gas 

mixture composition constant. (b) Calculations of the ratio 
222121

212111







. (c) Calculation of the effective 

Fick diffusivities of CO2 (component 1) and C2H6 (Component 2). The input data are summarized in 

Table 2.  In these calculations, the ratio 01 
mV

V
, i.e. the molar volume of the penetrant is negligible in 

comparison to the molar volume of the polymer. 

 

 

Figure 20. Permeabilities, expressed in Barrers, of (a) CO2, and (b) C2H6 for binary CO2/C2H6 mixture 

permeation across a cross-linked polyethylene oxide (XLPEO) membrane at 298.15 K. The x-axis 

represents the partial fugacity of (a) CO2, and (b) C2H6 in the bulk gas phase in the upstream 

compartment. Five different mixture compositions are considered. The input data are summarized in 

Table 1. Furthermore, in these calculations, the ratio 01 
mV

V
, i.e. the molar volume of the penetrant is 

negligible in comparison to the molar volume of the polymer. The experimental data (symbols) on 
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component permeabilities are those presented in Figures 2, 4, and 5 of Ribeiro et al.18 The continuous 

solid lines are the calculations using the linearized M-S equations, along with the F-H model. 

 

 

Figure 21. Permeabilities, expressed in Barrers, of (a) CO2, and (b) C2H6 for binary CO2/C2H6 mixture 

permeation across a cross-linked polyethylene oxide (XLPEO) membrane at 263.15 K. The x-axis 

represents the partial fugacity of (a) CO2, and (b) C2H6 in the bulk gas phase in the upstream 

compartment. Five different mixture compositions are considered. The input data are summarized in 

Table 2. Furthermore, in these calculations, the ratio 01 
mV

V
, i.e. the molar volume of the penetrant is 

negligible in comparison to the molar volume of the polymer. The experimental data (symbols) on 

component permeabilities are those presented in Figures 2, 4, and 5 of Ribeiro et al.18 The continuous 

solid lines are the calculations using the linearized M-S equations, along with the F-H model. 

 

Figure 22. Permeabilities, expressed in Barrers, of (a) CO2, and (b) C2H6 for binary CO2/C2H6 mixture 

permeation across a cross-linked polyethylene oxide (XLPEO) membrane at 263.15 K. The x-axis 

represents the partial fugacity of (a) CO2, and (b) C2H6 in the bulk gas phase in the upstream 

compartment. Five different mixture compositions are considered. The experimental data (symbols) on 

component permeabilities are those presented in Figures 2, 4, and 5 of Ribeiro et al.18 The continuous 

solid lines are the calculations in which the 1-2 friction between the two penetrants is ignored. 

 

 

Figure 23. (a) Thermodynamic correction factors for the ternary mixture consisting of water (component 

1), ethanol (component 2) and cellulose acetate (polymer, component m). (b) Ratio of the elements of 

thermodynamic correction factors. (c) Molar fluxes of water, and ethanol across CA membrane 
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calculated using the linearized M-S equations, using two different scenarios for [] calculations.  (d) 

Water/ethanol permeation selectivity, defined as 
   

LL

MNMN

21

2211


, across CA membrane calculated 

using the linearized M-S equations, using two different scenarios for [] calculations. The Flory-

Huggins parameters and modified M-S diffusivities are as specified in Table 3. The 1-2 friction is 

considered to be negligible. 

 

 

Figure 24. (a) Thermodynamic correction factors for the ternary mixture consisting of water (component 

1), ethanol (component 2) and polyimide (polymer, component m). (b) Ratio of the elements of 

thermodynamic correction factors. (c, d) Volumetric fluxes of (c) water, and (d) ethanol across 

polyimide membrane calculated using the linearized M-S equations. The symbols represent the 

experimental data as presented in Figure 3 and Figure 4 of  Ni et al.12.  The continuous solid lines are 

the flux calculations using the linearized M-S equations, along with the logarithmic interpolation 

formula. The dashed lines are simulations in which the 1-2 friction is considered to be negligible. The 

Flory-Huggins parameters, and diffusivity input data are provided in Table 4. 

 

 

Figure 25. (a) Experimental data (symbols) of Heintz and Stephan20 for permeation of water/ethanol 

mixtures across a poly (vinyl alcohol) /poly (acrylonitrile) (PVA/PAN) composite membrane. The input 

data are provided in Table 7. (b)  M-S+F-H model calculations assuming strong 1-2 friction, taking 

1214
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1 s m105;s m105;s m105   VV

m
V
m ÐÐÐ . (c)  M-S+F-H model 

calculations assuming weak 1-2 friction, 

taking: 1214
12

1214
2

1213
1 s m1050;s m105;s m105   VV

m
V
m ÐÐÐ . 
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Figure 26. (a) Experimental data as reported in Figure 6 of Zielinski32 for the self-diffusivities of 

toluene (1), and polystyrene (m) in polystyrene at 383 K as a function of the mass fraction of toluene. 

Also shown are the data for the Fick (mutual) diffusivity, D1. (b) Calculations of the thermodynamic 

correction factor, 










1

11




RT
, taking 354.0 . (c) Comparison of the M-S diffusivity, calculated using 













1

11
11 


RT

DÐV
m , with D1, D1,self, and D2,self. The continuous solid line is the estimation of the self-

diffusivity using the free-volume theory. 

 

 

Figure 27. Calculations for (a) thermodynamic correction factor, 
1

1

ln

ln





a

, (b) Fick diffusivity, 

1

1
11 ln

ln





a

ÐD V
m , and self-diffusivity, selfD ,1 ,  for acetone (component 1) in cellulose acetate (indicated 

by subscript m) at T = 298.15 K.  The input data are taken from the Verros and Malamataris.5 In these 

calculations the volume fractions, 1 , are related to the mass fractions 1  by 
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  where the 0i  are the mass densities of pure components. Also, 008.01 
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V
. 

 

Figure 28. Calculations for (a) matrix of thermodynamic correction factors,   , (b) Fick diffusivity 

matrix  D , for methanol (component 1)/toluene (2)/poly(vinylacetate)(m) at T = 333.15 K.  The 

calculations are based on the predictions of the self-diffusivities using the free-volume parameters 
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provided in Table 1 of Zielinski and Hanley, 35  along with the Flory-Huggins parameters also provided 

in page 6 of their paper: 78.0;19.1;1 2112  mm  . In these calculations, the mass fractions of 

methanol and toluene are taken to equal each other, i.e. 21   . 

 

 

Figure 29. The binodal and spinodal curves, plotted in volume fraction space, for the ternary mixture 

consisting of water (non-solvent, component 1), acetone (solvent, component 2) and cellulose acetate 

(polymer, component m). The inset to the Figure are calculations of the thermodynamic correction 

factors at compositions that lie along the dotted line indicated in the ternary diagram. The Flory-

Huggins parameters are provided in Table 10. 

 

 

Figure 30. Diffusional equilibration trajectory in a ternary system consisting of water (non-solvent, 

component 1), acetone (solvent, component 2) and cellulose acetate (polymer, component m). The 

plotted data in ternary composition space are in terms of volume fractions. The equilibration trajectory 

is indicated by the blue line in ternary composition space. The inset shows the volume fraction profiles 

in the coagulation bath (left compartment) and in the polymer solution (right compartment) at time t = 1 

s after the start. The Flory-Huggins parameters and diffusivity data are provided in Table 10. 

 

Figure 31.  Diffusion trajectories during the immersion precipitation process for membrane preparation; 

adapted from the papers of van den Berg and Smolders,37 and Reuvers and Smolders.38 A 10% solution 

of Cellulose Acetate (CA) in acetone is immersed in a bath of pure water. The transient equilibration 

trajectories at three different times, t =10 s, t = 25 s, and t = 50 s are depicted. 
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Figure 32. Diffusional equilibration trajectory in a ternary system consisting of water (non-solvent, 

component 1), acetone (solvent, component 2) and cellulose acetate (polymer, component m). The 

plotted data in ternary composition space are in terms of volume fractions. The equilibration trajectory 

is indicated by the blue line in ternary composition space. The inset shows the volume fraction profiles 

in the polymer solution (right compartment) at time t = 1 s after the start. The Flory-Huggins parameters 

and diffusivity data are provided in Table 10. 

 

 

Figure 33. (a) Diffusional equilibration trajectory in a ternary system consisting of water (non-solvent, 

component 1), 1,4 dioxane (solvent, component 2) and cellulose acetate (polymer, component m). The 

equilibration trajectory is indicated by the blue line. (b) Volume fraction profiles in the polymer 

solution (right compartment) at time t = 1 s after the start. The Flory-Huggins parameters and diffusivity 

data are provided in Table 11. 

 

 

Figure 34. Diffusional equilibration trajectory in a ternary system consisting of water (non-solvent, 

component 1), N-methyl-2-pyrrolidone (NMP) (solvent, component 2) and poly(ether)sulfone (PES) 

(polymer, component m). The plotted data in ternary composition space are in terms of volume 

fractions. The equilibration trajectory is indicated by the blue line in ternary composition space. The 

inset shows the volume fraction profiles in the polymer solution and in the coagulation bath at time t = 1 

s. The Flory-Huggins parameters and diffusivity data are provided in Table 12. 
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Figure 35. Diffusional equilibration trajectory in a ternary system consisting of water (non-solvent, 

component 1), N-methyl-2-pyrrolidone (NMP) (solvent, component 2) and poly(ether)sulfone (PES) 

(polymer, component m). The plotted data in ternary composition space are in terms of volume 

fractions. The equilibration trajectory is indicated by the blue line in ternary composition space. The 

inset shows the volume fraction profiles in the polymer solution (right compartment) at time t = 1 s. The 

Flory-Huggins parameters and diffusivity data are provided in Table 12. 

 

 

Figure 36. Diffusional equilibration trajectory in a ternary system consisting of water (non-solvent, 

component 1), DMF (solvent, component 2) and PVDF (polymer, component m). The plotted data in 

ternary composition space are in terms of volume fractions. The equilibration trajectory is indicated by 

the blue line. The insets show the volume fraction profiles in the polymer solution (right compartment) 

at time t = 1 s after the start. The Flory-Huggins parameters and diffusivity data are provided in Table 

13. 

 

Figure 37. Diffusional equilibration trajectory in a ternary system consisting of water (non-solvent, 

component 1), NMP (solvent, component 2) and Polysulfone (PSF, polymer, component m). The plotted 

data in ternary composition space are in terms of volume fractions. The equilibration trajectory is 

indicated by the blue line. The insets show the volume fraction profiles in the polymer solution (right 

compartment) at time t = 1 s after the start. The Flory-Huggins parameters and diffusivity data are 

provided in Table 14. 

 

 

Figure 38. Diffusional equilibration trajectory in a ternary system consisting of water (non-solvent, 

component 1), NMP (solvent, component 2) and Pol(etherimide) (PEI, polymer, component m). The 
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plotted data in ternary composition space are in terms of volume fractions. The equilibration trajectory 

is indicated by the blue line. The insets show the volume fraction profiles in the polymer solution (right 

compartment) at time t = 1 s after the start. The Flory-Huggins parameters and diffusivity data are 

provided in Table 15. 

 

Figure 39. Diffusional equilibration trajectory in a ternary system consisting of methanol (non-solvent, 

component 1), acetone (solvent, component 2) and cellulose acetate (polymer, component m). The 

plotted data in ternary composition space are in terms of volume fractions. The equilibration trajectory 

is indicated by the blue line in ternary composition space. The inset shows the volume fraction profiles 

in the polymer solution (right compartment) at time t = 1 s after the start. The Flory-Huggins parameters 

and diffusivity data are provided in Table 16. 

 

Figure 40. Diffusional equilibration trajectory in a ternary system consisting of 2-propanol (non-solvent, 

component 1), DMSO (solvent, component 2) and EVAL (polymer, component m). The plotted data in 

ternary composition space are in terms of volume fractions. The equilibration trajectory is indicated by 

the blue line in ternary composition space. The inset shows the volume fraction profiles in the polymer 

solution (right compartment) at time t = 1 s after the start. The Flory-Huggins parameters and diffusivity 

data are provided in Table 17. 
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Fig.  S11Water/ethanol/PVA/PAN equilibrium
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Fig.  S12Water/methanol/Nafion equilibrium
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Fig.  S15
Influence of Swelling on Diffusivity
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Fugacity of CO2 in gas, f1 / bar
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Partial fugacity of CO2 in gas mixture, f1 / bar
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Partial fugacity of C2H6 in gas mixture, f2 / bar
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Binary Permeation across Polymer Membrane
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Partial fugacity of CO2 in gas mixture, f1 / bar
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mass fraction of water in upstream compartment, 1
L
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mass fraction of ethanol in upstream liquid mixture, 2
L
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mass fraction of ethanol in upstream liquid mixture, 2
L
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mass fraction of toluene, 1
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Volume fraction of acetone, 1
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mass fraction of methanol, 1
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Fig.  S34
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Fig.  S36

water (1)0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

PVDF (m)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

DMF (2)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

spinodal 
curve

water(1)/
DMF(2)/
PVDF(m);
T = 298.15 K

binodal 
curve

distance, z / m

0 20 40 60 80 100

Vo
lu

m
e 

fra
ct

io
n 

of
 w

at
er

 (
1)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Vo
lu

m
e 

fra
ct

io
n 

of
 D

M
F 

(
2)

 a
nd

 P
VD

F 
(

m
)

0.0

0.2

0.4

0.6

0.8
water
NMP
PVDF

water(1)/
DMF(2)/
PVDF(m);
T = 298.15 K

Volume fraction of water, 1

0.00 0.05 0.10 0.15 0.20

Vo
lu

m
e 

fra
ct

io
n 

of
 D

M
F,

 
2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

spinodal
binodal
equilibration trajectory
start/finish

water(1)/
DMF(2)/
PVDF(m);
T = 298.15 K

spinodal 
curve

binodal 
curve

These are solutions using the 
linearized Maxwell-Stefan 
equations

Profiles at t = 1 s

Foray into meta-stable region
Foray into meta-stable region



Fig.  S37
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Fig.  S38
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Fig.  S39

methanol (1)0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

cellulose
acetate (m)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

acetone (2)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

binodal 
curve

spinodal 
curve

methanol(1)/
acetone(2)/
cellulose acetate(m);
T = 298.15 K

distance, z / m

0 20 40 60 80 100

Vo
lu

m
e 

fra
ct

io
n 

of
 m

et
ha

no
l (
 1

)

0.34

0.36

0.38

0.40

0.42

0.44

0.46

Vo
lu

m
e 

fra
ct

io
n 

of
 a

ce
to

ne
 (

2)
 a

nd
 C

A 
(

m
)

0.0

0.2

0.4

0.6

0.8

methanol
acetone
cellulose acetate

Volume fraction of methanol, 1

0.3 0.4 0.5 0.6

Vo
lu

m
e 

fra
ct

io
n 

of
 a

ce
to

ne
, 

2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

spinodal
binodal
equilibration trajectory
start/finish

methanol(1)/acetone(2)/cellulose acetate(m);
T = 298.15 K

These are solutions using the 
linearized Maxwell-Stefan 
equations

Profiles at t = 1 s

Foray into meta-stable region
Foray into meta-stable region



Fig.  S40
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