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Abstract

Zeolitic materials are often used for the separation of hydrocarbon mixtures. In this paper we suggest a procedure
for modelling the separation performance using a combination of two techniques:
1. Configurational-bias Monte Carlo (CBMC) simulations for estimating the required pure component and mixture

isotherms, and
2. Maxwell–Stefan formulation of mixture diffusion in zeolites.
The applicability of the suggested approach is demonstrated by comparing the theoretical predictions with experimen-
tal data published on zeolite membrane permeation. The theory provides clues to the development of new separation
techniques and also for optimisation of the operating conditions. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Configurational-bias Monte Carlo simulations; Maxwell–Stefan theory; Dual-site Langmuir isotherm; Real adsorbed
solution theory; Zeolite membranes

Nomenclature

surface area of adsorbent, m2 kg−1A
bi parameter in the Langmuir adsorption isotherm, Pa−1

square matrix of inverse Maxwell–Stefan coefficients, m−2 s[B ]
Fick’s diffusivity of component 1 in zeolite, m2 s−1D1

Fick’s diffusivity of 1–2 binary in fluid mixture, m2 s−1D12

[D ] matrix of Fick’s diffusivities, m2/s
Maxwell–Stefan’s diffusivity of species i in zeolite, m2 s−1Ði
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Ð12 Maxwell–Stefan’s diffusivity of 1–2 binary in fluid mixture, m2 s−1

Maxwell–Stefan’s diffusivity describing interchange between i and j, m2 s−1Ðij

Effective Fick’s diffusivity for component i diffusing in a zeolite, m2 s−1Di,eff

fi fugacity of species i ; fi=pi for ideal gases, Pa
Ji molar or molecular diffusion flux of species i relative to zeolite matrix, mol m−2 s−1

or molecules m−2 s−1

n number of diffusing species, dimensionless
Ni molar or molecular flux of species i, mol m−2 s−1 or molecules m−2 s−1

mixture molar or molecular flux, mol m−2 s−1 or molecules m−2 s−1Nt

system pressure, PaP
vapour pressure analogue in Eq. (4), PaPi

0

partial pressure of species i, Papi

qi adsorbed species molar concentration, mol kg−1

total saturation concentration, mol kg−1qi,sat

gas constant, 8.314 J mol−1 K−1R
time, st
absolute temperature, KT
velocity of the diffusing species i, m s−1ui

mole fraction of species i, dimensionlessxi

z number of nearest neighbour sites, dimensionless
distance coordinate along membrane, mz

Greek letters
d thickness of membrane, m

activity coefficient of species i, dimensionlessgi

G thermodynamic correction factor, dimensionless
matrix of thermodynamic factors, dimensionless[G ]
fractional surface occupancy of component iui

molecular loading, molecules per unit cell or per cageUi

saturation loading, molecules per unit cell or per cageUi,sat

Ui,sat,A maximum loading of site A, molecules per unit cell
maximum loading of site B, molecules per unit cellUi,sat,B

l lateral displacement, m
Wilson parameters, dimensionlessLij

molar chemical potential, J mol−1mi

spreading pressure, Pa mp

jump frequency, s−1n

density of membrane, number of unit cells per m3 or kg m−3r

Subscripts
refers to site AA

B refers to site B
component 1 in binary mixture1
component 2 in binary mixture2

max refers to maximum loading
refers to saturation conditionssat
components in mixturei, j
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eff effective parameter
p derivative at constant pressure
T,p derivative at constant temperature and pressure
n+ l pseudo species

Superscripts
0 pure component parameter

Vector and matrix notation
( ) component vector
[ ] square matrix

Operators
9 gradient or nabla

1. Introduction

The separation of hydrocarbon mixtures is a
problem of considerable practical importance.
Materials such as silicalite, mordenite, NaX and
NaY are often used for this purpose and separa-
tion is achieved by relying on the principle of
selective sorption and diffusion within the zeolite
structure [1]. There are fundamentally two ways in
which the separation process can be realised, (a)
using a packed bed adsorber [2] or (b) allowing
the mixture to permeate across a supported zeolite
membrane [3–5]. The packed bed adsorber oper-
ates essentially in an unsteady-state fashion
whereas zeolite membrane permeation is essen-
tially carried out in a steady-state manner. Sorp-
tion and diffusion are closely inter linked and for
screening and design purposes we require infor-
mation on the fluid mixture–zeolite equilibria (the
mixture isotherm) and a method for calculating
the diffusion fluxes of the individual species. In
this paper we discuss a strategy for generating the
required information by using (1) configurational-
bias Monte Carlo (CBMC) simulations to develop
the required mixture isotherms and (2) the
Maxwell–Stefan theory for describing mixture
diffusion across a zeolite membrane.

The major objective of this paper is to demon-
strate the validity of this approach by comparing
model predictions with published experimental
data on zeolite membrane permeation. Further-

more, we shall show how this approach leads to
development of novel separations.

2. CBMC simulations of pure component and
mixture isotherms

While there is a considerable amount of pub-
lished experimental data on pure component
isotherms for various hydrocarbons [6,7], there is
very little data on mixture isotherms. This lack of
mixture isotherm data is most probably due to the
difficulty of experimentation. Earlier publications
[8–16] have shown the power of CBMC simula-
tions for calculating pure component and mixture
isotherms for normal and branched alkanes in
silicalite and ferrierite. For linear and branched
alkanes in silicalite, Vlugt et al. [15] have provided
a detailed comparison of pure component
isotherms estimated from CBMC techniques with
published experimental data to demonstrate the
accuracy of CBMC simulations. In this work we
have carried out further pure component and
mixture isotherm simulations in order to examine
whether the mixture isotherms can be predicted
on the basis of pure component isotherms. All the
CBMC simulations reported here have been car-
ried out for silicalite-1.

Our simulations have been performed in the
grand canonical ensemble wherein the zeolite is in
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contact with a reservoir that fixes the chemical
potential of each component and also the temper-
ature. In a CBMC simulation, it is essential to
successfully exchange particles with the reservoir.
With this technique we grow a flexible alkane
molecule atom by atom in such a way that the
‘empty spaces’ in the zeolite are found. The bias
of this growing scheme is removed exactly by a
modification of the acceptance rules [13,15]. The
acceptance ratio of the particle exchange move is
increased by 10–100 orders of magnitude and
thus makes these simulations possible. To increase
the efficiency for the mixture simulations, we also
performed trial moves which change the identity
of a particle. In the simulations presented in this
work the linear and branched alkanes are de-
scribed with a united-atom model, i.e. CH3, CH2

and CH groups are considered to be single inter-
action centres. The zeolite is assumed to be rigid
and the interactions of the alkane with the zeolite
are dominated by the oxygen atoms of the zeolite.
The alkane–zeolite and alkane–alkane interac-
tions are described by a Lennard–Jones potential.
The intra-inolecular interactions include bond-
bending and torsion potentials and a fixed C�C
bond length. The force-field parameters are re-
ported in Vlugt et al. [15].

Our simulation box consists of 16 (2×2×4)
unit cells of silicalite. The simulations are per-
formed in cycles; in each cycle an attempt is made
to perform one of the following moves, (1) dis-
placement of a chain; a chain is selected at ran-
dom and given a random displacement; (2)
rotation of a chain; a chain is selected at random
and given a random rotation around the centre of
mass; (3) partial regrowing of a chain; a chain is
selected at random and part of the molecule is
regrown using the CBMC scheme; (4) exchange
with reservoir using the CBMC scheme; it is
decided at random whether to add or to remove a
molecule from the zeolite; and (5) change of iden-
tity (only in the case of mixtures); one of the
components is selected at random and an attempt
is made to change its identity. The acceptance
rules for this type of move are given elsewhere
[13,15]. A total simulation consisted of at least
300 000 Monte Carlo cycles.

In order to illustrate various features of hydro-
carbon mixture isotherm characteristics, we per-
formed CBMC simulations for the following
systems:
1. methane–ethane;
2. methane–propane;
3. ethane–propane;
4. n-butane–iso-butane;
5. n-hexane–3-methyl pentane (3MP);
6. n-hexane–2,2 dimethyl butane (22DMB);
7. iso-butane–propane;
8. n-pentane–2-methyl pentane (2MP).

For mixtures a, b and c the components of the
mixture differ in size, i.e. the number of C atoms.
Mixtures d, e and f consist of hydrocarbon iso-
mers with linear and branched alkanes having the
same number of C atoms; these mixtures have
different molecular configurations. Mixtures g
and h consist of linear and branched alkanes with
differing number of C atoms; here both size and
configuration effects play a role. In all the above
cases we performed CBMC simulations of the
constituent pure components and of the mixtures.

2.1. Modelling the pure component isotherms

For the pure component linear and branched
alkanes studied here, the dual-site Langmuir
(DSL) model was found to be applicable in all the
cases. The DSL model for the loading, expressed
in molecules per unit cell, is

U i
0(P)=

Ui,sat,Abi,AP
1+bi,AP

+
Ui,sat,Bbi,BP

1+bi,BP
(1)

gives a good description of the pure component
isotherms. The superscript 0 on U i

0(P) is used to
emphasise that the relation is for pure component
loadings. For silicalite-1 a molecular loading of
four molecules per unit cell corresponds to 0.6935
mol kg−1 and therefore the molar loading, qi

0(P),
is given by the following expression

qi
0(P)=U i

0(P)×0.1734 (2)

In Eq. (1) the subscripts A and B refer to two
sorption sites within the silicalite structure, with
different sorption capacities and sorption
strengths. The fitted parameters for the pure com-
ponent isotherms are listed in Table 1. With in-
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creasing number of carbon atoms the saturation
capacity, Ui,sat=Ui,sat,A+Ui,sat,B, decreases; see
Fig. 1. The fitted DSL isotherms for linear and
branched (2-methyl) alkanes for C numbers rang-
ing from 1–9 are shown in Fig. 2. All the

branched alkanes show inflection at a loading of
four molecules per unit cell because these
molecules prefer to locate at the channel intersec-
tions (see Fig. 3) rather than within the channel
interiors. An extra ‘push’, i.e. pressure is required

Table 1
Pure component parameters for dual-site Langmuir model

Component i Dual-site Langmuir parameters, see Eq. (1)Temperature/K

Site BSite A

Ui,sat,A/molecules per unit Ui,sat,B/molecules per unitbi,B/Pa−1bi,A/Pa−1

cellcell

300 11.0Methane 2.38×10−7 8.04.86×10−6

2.0×10−7 8.0303 4.6×10−6 11.0
300 9.73×l0−5Ethane 12.0 4.38×10−7 3.0
303 3.03.73×10−712.08.28×10−5

5.06×10−611.0 1.09.64×10−4300Propane
1.0303 7.95×10−4 11.0 1.59×10−6

n-Butane 300 1.6×10−2 9.0 1.1×10−5 1.0
300iso-Butane 2.84×10−2 4.0 4.3×10−6 6.0
300 0.51.95×10−5n-Pentane 8.00.218

1.7×10−34.0 4.06.32×10−2362n-Hexane
4.0373 3.29×10−2 4.0 8.1×10−4

4.0398 8.1×10−3 4.0 1.6×10−4

2.21.22×10−54.05.2862-Methyl 300
pentane

2.33-Methyl 362 4.75×10−2 4.0 2.27×10−5

pentane
04.05.67×10−33732,2 Dimethyl

butane
1.6×10−3 0398 4.02,2 Dimethyl

butane

Fig. 1. Saturation loadings (molecules per unit cell) of alkanes in silicalite-1 obtained from CBMC simulations.
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Fig. 2. Pure component isotherms for (a) linear and (b) 2-methyl-alkanes in silicalite-1 at 300 K calculated using CBMC.

to make these occupy the interiors. This gives rise
to the inflection. For linear alkanes with six or
more C atoms, we observe an inflection at a
loading of four molecules per unit cell.

Both differences in the saturation capacities and
molecular configurations are important determi-
nants of the sorption selectivity in the mixture,
defined by

Sorption selecivity=
U1/U2

p1/p2

(3)

In Eq. (3) Ui refers to the loadings of the compo-
nents in the mixture within the zeolite.

2.2. Modelling the mixture isotherms using IAS
and RAS theories

The mixture loadings can also be estimated
from the pure component isotherms using the
ideal adsorbed solution (1AS) theory of Myers
and Prausnitz [17]. Briefly, the basic equation of
IAS is the analogue of Raoult’s law for vapour–
liquid equilibrium, i.e.

Pyi=Pi
0(p)xi (4)

where, xi is the mole fraction in the adsorbed
phase

xi=
Ui

U1+U2

(5)

and Pi
0(p) is the pressure for sorption of every

pure component i, which yields the same spread-

ing pressure, p, as that for the mixture. The
spreading pressure is defined by the Gibbs adsorp-
tion isotherm

pA
RT

=
& P=Pi

0

P=0

qi
0(P)
P

dP (6)

where A is the surface area of the adsorbent and
U i

0(P) is the pure component isotherm given by
Eq. (1). The total amount adsorbed is obtained
from

U1+U2=
1

x1/U1
0(P1

0)+x2/U2
0(P2

0)
(7)

The set of Eqs. (1), (4)–(7) need to be solved
numerically to obtain the mixture loadings of
components 1 and 2.

Fig. 3. Sorption sites within silicalite.
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Table 2
Wilson non-ideality parameters for mixture isotherms

Temperature/KMixture Wilson parameters

L12 L12

303 1(a) Methane 1
–ethane

303(b) Methane 1 1
–propane

(c) Ethane 300 1 1
–propane

300(d) n-Butane 6.95 1.005
–iso-butane

0.215(e) n-Hexane 362 1.01
–3-methyl
pentane

0.01(f) n-Hexane–2,2 373 2.6
dimethyl
butane

2.6398 0.01
(g) iso-Butane 300 9.6 4.27

–propane
(h) n-Pentane 15.83300 1.416

–2-methyl
pentane

The values of the fitted Wilson parameters are
given in Table 2. We now discuss the various
features of the mixture isotherms studied.

2.3. CBMC mixture simulations

CBMC simulation results for pure component
and mixture loadings for methane–ethane at 303
K are shown in Fig. 4a and b. The mixture
loadings obtained from CBMC simulations show
excellent agreement with the predictions of the
IAS theory; see Fig. 4b. At high loadings within
the zeolite, the smaller sized methane (with a
higher saturation capacity) is preferred because
the vacant spaces in the zeolite can be more
efficiently filled up with methane molecules than
with ethane. This is a size entropy effect [8,19].
The sorption selectivity towards ethane decreases
with increasing partial pressure of ethane due to
size entropy effects; see Fig. 4c.

The pure component and mixture loadings for
methane–propane determined by CBMC simula-
tions at 303 K are shown in Fig. 5a and b. The
size entropy effects for methane–propane mix-
tures are more significant than that for methane–
ethane. This is illustrated in Fig. 5c which shows
that the sorption selectivity towards propane de-
creases significantly with increasing partial pres-
sure of propane in the bulk gas phase. The
predictions of the IAS theory are again in excel-
lent agreement with the CBMC calculations for
the mixture loadings; see Fig. 5b.

The pure component and mixture loadings for
ethane–propane determined by CBMC simula-
tions at 300 K are shown in Fig. 6a and b). The
size entropy effects for ethane–propane mixtures
are less significant than that for methane–pro-
pane and there is a slight decrease in propane
sorption selectivity with increasing partial pres-
sure of propane in the bulk gas phase; see Fig. 6c.
The predictions of the IAS theory are once again
in excellent agreement with the CBMC calcula-
tions for the mixture loadings; see Fig. 6b.

The pure component and mixture loadings for
n-butane–iso-butane determined by CBMC simu-
lations at 300 K are shown in Fig. 7. The pure

On the basis of the CBMC mixture simulations
we can establish that for mixtures (d)–(h) the IAS
theory is not adequate to describe the mixture
behaviour and that non-ideality effects need to be
taken into account. The mixture non-ideality ef-
fects can be quantified by the introduction of
activity coefficients into Eq. (4). The resulting real
adsorbed solution (RAS) theory is described by

Pyi=P1
0(p)xigi (8)

Following the work of Calleja et al. [18] we
have used the Wilson model for the activity
coefficients:

ln(g1)

=1− ln(x1+x2L12)−
x1

x1+x2L12

−
x2L21

x2+x1L21

ln(g2)

=1− ln(x2+x1L21)−
x2

x2+x1L21

−
x1L12

x1+x2L12

(9)
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Fig. 4. Pure component and mixture loadings for methane (1)–ethane (2) at 303 K in silicalite.

Fig. 5. Pure component and mixture loadings for methane (1)–propane (2) at 303 K in silicalite.

Fig. 6. Pure component and mixture loadings for ethane (1)–propane (2) at 300 K in silicalite.
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Fig. 7. Pure component and mixture loadings for n-butane (1)–iso-butane (2) at 300 K in silicalite.

component isotherm for iso-butane shows a pro-
nounced inflection at a loading of four molecules
per unit cell; see Fig. 7a. This inflection behaviour
has been explained in earlier work [14] and is due
to the fact that the iso-butane molecules prefer to
locate at the channel intersections and require an
extra ‘push’ to make these occupy the channel
interiors. The normal butane molecules, on the
other hand, have no particular preference for
either the channel intersections or interiors.

CBMC simulations of the loadings of normal
and iso-butane are shown in Fig. 7b for a 50–50
mixture and in Fig. 7c at varying bulk fluid
compositions. Contrary to the three mixtures
studied earlier, the mixture loadings do not agree
with the predictions of the IAS theory. Appar-
ently, non-ideality effects begin to play a role. The
reason for the non-ideality can be understood by
examining a snapshot of the location of the
molecules at a total pressure of 1000 kPa and 300
K; see Fig. 8. We see that the iso-butane
molecules are located only at the intersections.
However, due to the specific size of the molecules,
the n-butane molecules are slightly displaced
along the channel interiors. A consequence of this
is that the n-butane molecules ‘stick out’ into the
adjoining intersection site. Every other intersec-
tion site is not available for accommodating either
molecule. The RAST and IAST predictions of the

mixture loadings are compared with CBMC simu-
lations in Fig. 7b and c. We note that the mixture
non-ideality effects are quite significant. In Fig. 7b
we also note that the branched alkane shows a
maximum in the loading; this maximum occurs
precisely at a total mixture loading of four
molecules per unit cell.

Fig. 8. Snapshot showing the location of n-butane (1)–iso-bu-
tane (2) at 300 K and 1000 kPa in silicalite. The view is in the
z direction.
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Fig. 9. Pure component and mixture loadings for n-hexane (1)–3MP(2) at 362 K in silicalite.

The pure component and mixture isotherms for
n-hexane and 3-methyl pentane calculated from
CBMC simulations are compared with both IAST
and RAST predictions in Fig. 9. The branched
alkane 3MP exhibits a curious maximum with
respect to molecular loading within the silicalite
structure. As the partial pressures increase to 100
Pa, the sorbate loading of both linear and
branched alkanes increase till a maximum is
reached in the loading of 3MR. This occurs at a
total loading of four molecules per unit cell. Up
to this point there is really no competition be-
tween n-C6 and 3MP and both are almost equally
easily adsorbed.

Examination of a snapshot of the molecular
sittings at 100 Pa shows that all the 3MP
molecules are located at the intersections between
the straight channels and the zigzag channels
whereas n-C6 are located everywhere; see Fig. 10.
The n-C6 molecules fit nicely into both straight
and zigzag channels [12], these molecules have a
higher ‘packing efficiency’ than 3MR. As the pres-
sure is increased beyond 100 Pa, it is more effi-
cient to obtain higher loading by ‘replacing’ the
3MP with n-C6; this configurational entropy effect
is the reason behind the curious maximum in the
3MP isotherm.

We note from Fig. 9b and c that mixture non-
ideality effects are present and that the CBMC
simulations show a stronger exclusion of 3MP at
high pressures than anticipated by the IAS theory.
For prediction of separation selectivities non-ide-
ality effects must clearly be taken into account; we

return to this point later during our discussions
on membrane permeation.

For the mixture n-hexane–22DMB, a similar
result is obtained [11]. CBMC simulations at 373
and 398 K are shown in Figs. 11 and 12, respec-
tively. Again we note the maximum in the
22DMB loading when the mixture loading corre-
sponds to four molecules per unit cell. The Wilson
non-ideality parameters for the 373 and 398 K
simulations are the same showing, at least for the
temperature ranges studied, the non-ideality ef-

Fig. 10. Snapshot showing the location of a 50–50 mixture of
n-hexane (1)–3MP (2) at 362 K and 100 Pa. Preferential siting
of 3 MP alkanes at the intersections between the straight and
zigzag channels is evident. The linear alkane can be located at
any position within the silicalite structure.
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Fig. 11. Pure component and mixture loadings for n-hexane (1)–22DMB (2) at 373 K in silicalite.

Fig. 12. Pure component and mixture loadings for n-hexane (1)–22DMB (2) at 398 K in silicalite.

fects are not strongly temperature dependent; this
is a useful conclusion. Non-ideality effects are
important to describe the mixture isotherms; we
will see later in this paper that such non-ideality
effects have a significant effect on the permeation
fluxes across a silicalite membrane.

CBMC simulations of iso-butane–propane and
n-pentane–2MP are shown in Figs. 13 and 14,
respectively. These mixtures differ both in the
number of C atoms and in the molecular configu-
ration. The mixture non-ideality effects can be
expected to be stronger than for the other systems
considered above. This is indeed found to be the
case; compare the Wilson parameters in Table 2.

Having described the fluid–zeolite equilibria,
we turn to the description of diffusion of hydro-
carbon mixtures within the zeolite structure.

3. The Maxwell–Stefan theory for diffusion

3.1. Points of departure from fluid phase diffusion

When describing diffusion within a zeolite,
there are several points where we depart from the
conventional treatment of bulk fluid phase diffu-
sion [20,21].
1. First, when we consider movement of species

within a zeolite structure, it is important to
realise that we are talking of movement of
sorbed species. Diffusion and sorption pro-
cesses within zeolites are closely inter-twined.

2. Secondly, when describing the diffusion of a
mixture of n species within a zeolite, the ‘zeo-
lite matrix’ is treated as an additional
(pseudo), (n+ l)th component, in the mixture.
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So, when we speak, say, about diffusion of
benzene (component 1) within silicalite we are
in fact considering diffusion in a binary mix-
ture made up of benzene (component 1) and
silicalite (pseudo-component 2).

3. The third point concerns the concentration
measures. Commonly used concentration mea-
sures for sorption are (1) mol of sorbate (diffu-
sant) per kg of zeolite, qi, and (2) molecules of
sorbate per unit cell of zeolite, Ui. Corre-
sponding to these two concentration measures
we could define the molar flux Ni in two
different ways. The first alternative is in terms
of moles of sorbate diffusing per square meter
per second:

Ni
rqiui ; i=1, 2, …, n−1 (10)

where r is the zeolite matrix density expressed
in kg m−3. The second alternative is to define
Ni in terms of molecules transported per
square meter per second

Ni
rUiui ; i=1, 2, …, n−1 (11)

in which case r is the zeolite matrix density
expressed as unit cells per m3. Without loss of
generality we proceed further with the choice
of Ui, as the concentration measure; relations
in terms qi can be written down in an
analogous manner.

4. The fourth point of departure from bulk fluid
phase diffusion concerns the choice of the

Fig. 13. Pure component and mixture loadings for iso-butane (1)–propane (2) at 300 K in silicalite.

Fig. 14. Pure component and mixture loadings for n-pentane (1)–2MP (2) at 300 K in silicalite.
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reference frame for defining the diffusion
fluxes Ji. In almost all standard treatments of
diffusion in zeolites [22,23], the reference ve-
locity frame is tacitly chosen as one which
moves with respect to the zeolite matrix, taken
to be the (n+ l)th component. The diffusion
fluxes are therefore defined as

Ji
rU
i
(ui−un+1); i=1, 2, …, n (12)

In most of the applications of interest to
chemical engineers the zeolite matrix can be
considered to be stationary, i.e.

un+1
0 (13)

Eq. (14) implies that molar flux Ni equals the
diffusion flux Ji :

Ji
Ni
rUiui (14)

5. The fifth point concerns the choice of a com-
position measure analogous to the mole frac-
tion for bulk fluid phases. The obvious choice
is the fractional occupancy ui of the sorbate
within the zeolite matrix, defined as

ui

Ui

Ui,sat

=
qi

qi,sat

; i=1, 2, …, n (15)

where Ui,sat, and qi,sat, are the saturation load-
ings of species i in the zeolite.

3.2. Diffusion of a single component in a zeolite

Let us first consider the simple case of diffusion
of a single component (1) within a zeolite (consid-
ered to be pseudo-species (2). Fick’s law is usually
written in the following form:

N1= −rD19U1 (16)

or in terms of the occupancy gradients

N1= −rU1,satD19u1 (17)

Eq. (16) or Eq. (17), defines the Fick diffusivity
D1. The Fick diffusivity, D1, is also called the
transport diffusi6ity in the zeolite literature
[22,23].The Maxwell–Stefan formulation [24–30]
of single component diffusion is

N1= −rU1,satÐ1
� u1

RT
9m1

�
(18)

where m1 is the chemical potential of the sorbed
species 1. Assuming equilibrium between the
sorbed species and the bulk fluid phase we have
the following relationship for the chemical poten-
tial m1

m1=m1
0+RT ln( f1) (19)

where m1
0 is the chemical potential in the chosen

standard state and f1 is the fugacity. For not too
high system pressures the component partial pres-
sure, p1, can be used in place of the component
fugacity, f1, i.e. f1:p1. The chemical potential
gradients may be expressed in terms of the gradi-
ents of the occupancy, 9u1,

1
RT

9m1=
1
u1

G9u1; G
u1

( ln p1

(u1

(20)

where G is the thermodynamic correction factor.
The Fick and Maxwell–Stefan diffusivities are
therefore inter-related:

D1=Ð1G ; Ð1=
D1

G
(21)

In the zeolite diffusion literature the Maxwell–
Stefan diffusivity Ð1 is also called the ‘corrected’
diffusivity and the thermodynamic correction fac-
tor G is called the Darken correction factor
[22,23,31].

Consider the sorption data for benzene in sili-
calite-1 [32] at a temperature T=343 K (Fig.
15a). The experimental data are reasonably well
represented by the Langmuir isotherm

U1=
U1,satb1P
1+b1P

; u1=
b1P

1+b1P
(22)

where the saturation capacity U1,sat is four
molecules per unit cell of silicalite and the Lang-
muir constant b1=6×10−4 Pa−1. The thermo-
dynamic correction factor can be determined from
Eq. (20)

G=
1

1−U1/U1,sat

=
1

1−u1

(23)

Fig. 15b shows the variation of the thermody-
namic factor with molecular loading. Notice the
sharp increase in G as U1 approaches the satura-
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Fig. 15. (a) Pure component isotherms for sorption of benzene on silicalite-1 at a temperature of 343 K. Experimental data from
Guo et al. [32]. The Langmuir model parameters are U1,sat=4, b1,A=6×10−4 Pa−1. (b) The thermodynamic correction factor
calculated using the Langmuir model. (c) Fick and Maxwell–Stefan diffusivity data for benzene in silicalite-1 at 343 K. Data from
Shah et al. [33]. (d) Pure component isotherms for sorption of benzene on silicalite-1 at a temperature of 303 K. Experimental data
from Guo et al. [32]. The dual-site Langmuir model parameters are Usat,A=4, Usat,B=4, b1,A=7×10−3 Pa−1, b1,B=1.2×10−5

Pa−1 (e) The thermodynamic correction factor calculated using the Langmuir model. (f) Fick’s diffusivity data for benzene in
silicalite-1 at 303 K. Data from Shah et al. [33].

tion capacity, U1,sat (=4). The Fick diffusivity
data for benzene in silicalite-1 measured by Shah
et al. [33] is shown in Fig. 15c and is seen to
parallel the behaviour of G. As seen in Fig. 15c,
D1 increases sharply as U1 approaches the satura-
tion capacity, U1,sat (=4). The Maxwell–Stefan
diffusivity Ð1, displays a much smaller variation
with sorbate loading; see the square symbols in
Fig. 15c.

Fig. 15d shows the isotherm data for benzene in
silicalite-1 at T=303 K; the inflection at U= four
molecules per unit cell is evident. The DSL model
(Eq. (1)) provides a good description for systems

showing isotherm inflection and the thermody-
namic correction factor G can be determined by
analytic differentiation of Eq. (1). This correction
factor shows two extrema — a maximum at the
inflection point U1,sat,A=4 and a minimum at a
loading U1,sat,ABU1BU1,sat(=U1,sat,A+U1,sat,B).
This behaviour is illustrated for adsorption of
benzene on silicalite at temperatures of 303 K; see
Fig. 15e. Since the Fick diffusivity is proportional
to the thermodynamic factor, it can also be ex-
pected to exhibit two extrema. This is indeed
verified by the experimental data of Shah et al.
[33]; see Fig. 15f.
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The thermodynamic correction factors for lin-
ear and branched alkanes at 300 K are shown in
Fig. 16. Since the Fick diffusivity D1 is expected
to follow the trend in G we would expect to see
striking differences between the occupancy depen-
dency of the Fick diffusivities of say n-hexane and
its isomer 2-methyl pentane as a function of the
molecular loading. It would be most illuminating
to obtain experimental confirmation of this
prediction.

A three-site model for sorption of aromatics on
ZSM-5 has been proposed by Rudzinski et al. [34]
in order to account for two inflection points ob-
served under certain temperature conditions. The
consequences for diffusion can be expected to be
interesting but there is no experimental evidence
in the literature.

3.3. The Maxwell–Stefan diffusi6ity

Mechanistically, the Maxwell–Stefan diffusivity
Ð1, may be related to the displacement of the
adsorbed molecular species, l, and the jump fre-
quency, n, which in general can be expected to be
dependent on the total coverage [35–39]

Ð1=
1
z

l2n (24)

where z represents the number of nearest neigh-
bour sites. The jump frequency n can be expected
to decrease with occupancy. If we assume that a
molecule can migrate from one site to another
only when the receiving site is vacant [31,38], the
chance that this will occur will be a function of
the fraction of unoccupied sites. A general form

Fig. 16. (a) Thermodynamic factor for linear alkanes in silicalite-1 at 300 K calculated using the dual-site Langmuir (DSL). (b)
Thermodynamic factor for 2-methyl alkanes in silicalite-1 at 300 K calculated using the dual-site Langmuir (DSL) model.
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Fig. 17. (a) Maxwell–Stefan diffusivity data for n-heptane in 5A zeolite as a function of molecular loading. Data from Ruthven and
Doetsch [40]. (b) Maxwell–Stefan diffusivity data for n-heptane in 13X zeolite as a function of molecular loading. Data from
Ruthven and Doetsch [40]. (c) Re-plotting of the data in (b) for Maxwell–Stefan diffusivity for n-heptane in 13X zeolite in order
to test the validity of the model proposed in Eq. (27). (d) Arrhenius plot for the Maxwell–Stefan diffusivity. Various data sources
cited in the review by Ruthven and Post [41].

of the Maxwell–Stefan diffusion equation is
therefore

Ð=Ð1(0)f(1−u1) (25)

where, Ð1(0) represents the Maxwell–Stefan diffu-
sivity in the limit of zero loading and f(1−u1) is
some function of the fraction unoccupied sites.

The simplest model for the dependence of the
Maxwell–Stefan diffusivity Ð1 with occupancy is
that it is independent of molecular loading within
the zeolite.

Ð1=Ð1(0) (26)

This is indeed found to be true in several cases
[22,40,41]. As illustration of this behaviour see
Fig. 17a for diffusion of n-heptane in 5A. How-
ever, in other cases Ð1 decreases with increasing
loading within the zeolite; see data in Fig. 17b for
diffusion of n-heptane in 13X. It appears that
increased occupancy leads to a hindering effect.
The experimental data of Ruthven and Doetsch
[40] for n-heptane in 13X appears to follow a
simple relationship

Ð=Ð1(0)
�

1−
U1

Usat

�8

=Ð1(0)(1−u1)8 (27)

where we have taken Usat= four molecules per
unit cage. Fig. 17c compares Eq. (27) with the
experimental data; we see that the agreement is
very good. The value of the exponent 8 can
perhaps be interpreted as the number of nearest
neighbour sites. The exponent in Eq. (27) will
therefore depend on the particular molecule and
the specified zeolite structure. Paschek and Kr-
ishna [42] have performed Monte Carlo simula-
tions for diffusion of 2-methyl hexane in silicalite
and found that Ð1=Ð1(0)(1−u1).

Diffusion within a zeolite structure is an acti-
vated process and this is evidenced by the fact
that the Maxwell–Stefan diffusivity follows an
Arrhenius temperature dependence. Fig. 17d
shows some experimental data to demonstrate the
validity of the Arrhenius dependence.

3.4. Diffusion of multicomponent mixtures within
a zeolite

In order to extend the analysis to two or more
components diffusing within a zeolite, we draw
inspiration from the Maxwell–Stefan equations
developed for bulk fluid mixtures [21,24,28]. In
writing the appropriate equations for diffusion of
n components within a zeolite we treat the zeolite
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itself as species (n+1) and consider the frac-
tional occupancies to be the analogue of the
mole fractions. Following the treatment of
Kapteijn et al. [24] we write

−r
ui

RT
9mi= %

n

j=1

j" i

UjNi−UiNj

Ui,satUj,satÐij

+
Ni

Ui,satÐi

;

i=1, 2, …, n (28)

In the Maxwell–Stefan formulation for zeolite
diffusion (Eq. (28)) we have to reckon in gen-
eral with two types of Maxwell–Stefan diffusivi-
ties, Ðij and Ði. The Ði are the same diffusivites
as encountered earlier when we considered single
component diffusion. Mixture diffusion intro-
duces an additional complication due to sor-
bate–sorbate interactions. This interaction is
embodied in the coefficients Ðij. We can con-
sider this coefficient as representing the facility
for counter-exchange, i.e. at a sorption site the
sorbed species j is replaced by the species i. The
net effect of this counter-exchange is a slowing
down of a faster moving species due to interac-
tions with a species of lower mobility. Also, a
species of lower mobility is accelerated by inter-
actions with another species of higher mobility.
In the foregoing discussions we view the mobil-
ity as reflected in the coefficient Ði. The two
types of Maxwell–Stefan diffusivities are por-

trayed in Fig. 18. In the inset to Fig. 18 we
portray Ð12 as representing the ease with which
species 1 is replaced by species 2.

There are no fundamental models as yet to
predict the counter-exchange coefficient Ðij. A
procedure for the estimation of the counter-
sorption diffusivity has been suggested by Kr-
ishna [25] based on the generalisation of Vignes
[43] relationship for diffusion in bulk liquid mix-
tures

Ðij= [Ði ]
ui /(ui+uj )[Ðj ]

uj /(ui+uj ) (29)

which is essentially a logarithmic interpolation
formula between the values of Ði and Ðj. We
will seek validation of Eq. (29) a little later in
this paper. It cannot be overstressed that the
important advantage of the Maxwell–Stefan for-
mulation is that the mixture diffusion behaviour
can be estimated on the basis of information on
the mobilities of the pure components, Ði (i=1,
2, …, n).

The chemical potential gradients in Eq. (28)
may be expressed in terms of the gradients of
the occupancies by introduction of the matrix of
thermodynamic factors [G ]

ui

RT
9mi= %

n

j=1

Gij9uj ; Gij

�Uj,sat

Ui,sat

�Ui

pi

(pi

(Uj

;

i, j=1, 2, …, n (30)

The elements of [G ] have to be determined by
(numerical) differentiation of the IAST or
RAST isotherm models described by Eqs. (4)–
(9).

Combining Eqs. (28) and (30) we can write
down an explicit expression for the fluxes Ni

using n-dimensional matrix notation

(N)= −r [Usat][B ]−1[G ]9(u) (31)

where the elements of the matrix [B ] are

Bii=
1
Ði

+ %
n

j=1

j" i

uj

Ðij

; Bij= −
ui

Ðij

;

i, j=1, 2, …, n (32)

and [Usat] is a diagonal matrix of saturation
capacities:

Fig. 18. Pictorial representation of the Maxwell–Stefan diffu-
sivities.
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[Usat]=

Æ
Ã
Ã
Ã
È

U1,sat 0 0 0
0 U2,sat 0 0
0 0 · · · 0
0 0 0 Un,sat

Ç
Ã
Ã
Ã
É

(33)

The more commonly used Fick diffusivity ma-
trix is defined as

(N)= −r [Usat][D ]9(u) (34)

Comparing Eqs. (31) and (34) we obtain the
following inter-relation between the Fick and the
Maxwell–Stefan diffusivities

[D ]= [B ]−1[G ]; [B ]−1= [D ][G ]−1 (35)

which is the n-component analogue of Eq. (21).
For the case where the interchange coefficient Ðij

is fast enough not to be a limiting factor, i.e.

1
Ðij

�0; Ðij��; i, j=1, 2, …, n (36)

Eqs. (31)–(35) simplify to yield

[D ]=

Æ
Ã
Ã
Ã
È

Ð1 0 0 0
0 Ð2 0 0
0 0 · · · 0
0 0 0 Ðn

Ç
Ã
Ã
Ã
É

[G ];

(N)= −r

Æ
Ã
Ã
Ã
È

U1,sat 0 0 0

0 U2,sat 0 0

0 0 · · · 0

0 0 0 Un,sat

Ç
Ã
Ã
Ã
É

Æ
Ã
Ã
Ã
È

Ð1 0 0 0

0 Ð2 0 0

0 0 · · · 0

0 0 0 Ðn

Ç
Ã
Ã
Ã
É

[G ]9(u) (37)

The thermodynamic correction factor matrix
[G ] is generally non-diagonal and has a significant
influence on the diffusion behaviour of mixtures.

For a binary mixture, we could force-fit Eq.
(34) for the two fluxes Ni into the form of Fick’s
law for each species:

Ni= −rUi,satDi,eff9ui ; i=1, 2 (38)

where the effective Fick diffusivities of component
1 and 2 are given by

D1,eff=D11+D12

9u2

9u1

(39)

D2,eff=D21

9u1

9u2

+D22 (40)

For the case where the interchange coefficient
Ð12 is fast enough not to be a limiting factor (Eq.
(36)), the expressions (Eqs. (38)–(40)) for the
effective Fick diffusivities simplify to give

D1,eff=
Ð1

(1−u1−u2)
�

(1−u2)+u1

9u2

9u1

�
(41)

D2,eff=
Ð2

(1−u1−u2)
�

(1−u1)+u2

9u1

9u2

�
(42)

which coincide with those given by Habgood
[44,45]. While Habgood derived the above expres-
sions specifically for a two-component system, our
approach can be easily extended to the general
multicomponent case starting with Eq. (34). From
Eqs. (41) and (42) we see that the effective Fick
diffusivities are strong functions of both concen-
trations and concentration gradients. Further-
more, the effective diffusivity of component 1 is
affected by the concentration gradient of compo-
nent 2. This makes mixture diffusion in zeolites a
highly coupled and non-linear process.

In the following, we shall illustrate several in-
teresting features of mixture diffusion across zeo-
lite membranes by considering several examples
and comparing the results with published experi-
mental data.

3.5. Separation of light hydrocarbons using a
silicalite membrane

For a 50–50 mixture of methane (1)–ethane (2)
at 303 K, the IAST mixture isotherm (see Fig. 4)
can be differentiated to yield the elements Gij ; see
Fig. 19a. Following Van de Graaf et al. [4], who
have reported data on pure component Maxwell–
Stefan diffusivities within a silicalite membrane,
we take Ð1=1.04×10−9 and Ð2=1.5×10−10

m2 s−1. Assuming that these Maxwell–Stefan dif-
fusivities are independent of loading, the matrix
of the Fick diffusivities can be calculated using
Eq. (35). These calculations are shown in Fig.
19b. Comparison of Fig. 19a and b shows the
strong influence of Gij on the elements Dij. The
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Fig. 19. (a) Thermodynamic factor matrix for the mixture of methane (1) and ethane (2) in silicalite-1 at 303 K calculated from IAS
mixture isotherm. (b) Elements of the Fick diffusivity matrix taking Ð1=1.04×10−9 m2 s−1, Ð2=1.5×10−10 m2 s−1. (c)
Effective Fick diffusivities calculated from Eqs. (39) and (40). (d) Transient fluxes for permeation across a silicalite membrane (see
Fig. 20), taking Ð12 into account. (e) Transient fluxes for permeation across a silicalite membrane (see Fig. 20), ignoring the
interchange coefficient Ð12. (f) Permeation selectivity towards ethane. Predictions of IAS–MS model with experimental data of Van
de Graaf et al. [4].

effective diffusivities calculated using Eqs. (39) and
(40) are shown in Fig. 19c. Note the much smaller
difference between D1,eff and D2,eff when compared
with the corresponding values of the pure compo-
nent Maxwell–Stefan diffusivities Ð1 and Ð2.

Consider now diffusion of methane (1)–ethane
(2) mixture across a silicalite membrane (Fig. 20).
The upstream compartment is maintained at con-
stant total pressure. The downstream compartment
is flushed with sweep gas and we assume in the
calculations below that the partial pressures of the
permeating components are negligibly small, i.e.
p1d:p2d:0. The surface occupancy in the silicalite
membrane (of thickness d) is described by

(ui

(t
= −

1
rUi,sat

(Ni

(z
; Ni= −rUi,satDi,eff9ui ;

i=1, 2 (43)

The set of (coupled) partial differential equations
(Eq. (43)) can be solved using the method of lines
as described by Krishna and Van den Broeke [27]
and Van de Graaf et al. [4]. The transient fluxes for
p10=50 kPa, p20=50 kPa are shown in Fig. 19d.
Neglecting the sorbate–sorbate interactions and
invoking the simplification given by Eq. (36) we
obtain the results shown in Fig. 19e. The steady-
state selectivity
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Permeation selectivity=
N2/N1

p20/p10

(44)

is shown in Fig. 19f for the two scenarios, with
and without the interactions described by Ðij. We
note that experimental data [4] agrees very well
with that predicted using IAS mixture theory
along with the complete [D ] matrix given by Eq.
(35). This agreement is remarkable when we con-
sider that the only experimental data inputs con-
sist of the Maxwell–Stefan diffusivities Ð1, Ð2

along with the membrane parameters — silicalite
matrix density, r=1.8×106 kg m−3, membrane
thickness, d=10×10−6 m. The ethane selectivity
predicted with the IAS theory combined with the
simplified Eq. (37), neglecting Ðij, is much lower
than that measured experimentally. The results
therefore underline the need to take the complete
Maxwell–Stefan formulation (Eq. (28)) into
consideration.

There is another aspect of methane (1)–ethane
(2) permeation which needs to be underlined. The
saturation loadings of the two components, Ui,sat

determined from CBMC simulations are 19 and
15 molecules per unit cell, respectively; see Table
1. The size entropy effect favours methane and
therefore the ethane selectivity decreases with in-
creasing total hydrocarbon pressure, correspond-
ing to increasing molecular loading. Both
experimental data and the IAS theory predictions
show that the ethane selectivity decreases with
increasing loading. The difference between the

simulations presented in this paper and that of
Van de Graaf [4] relates to our use of the IAST
for calculating the mixture isotherms; this proce-
dure properly takes account of the differences in
the saturation capacities Ui,sat of methane and
ethane. Van de Graaf [4] assumed that both the
components have equal saturation capacities and
employed a multicomponent Langmuir mixture
isotherm. The importance of the differences in
saturation capacities on permeation fluxes was
first underlined by Kapteijn et al. [24].

Fig. 21 shows the corresponding results for
permeation of the mixture methane (1)–propane
(2) across a silicalite membrane at 303 K. The
saturation loadings of the two components, Ui,sat

determined from CBMC simulations are 19 and
12 molecules per unit cell, respectively. Size en-
tropy effects are expected to be much more signifi-
cant than that for methane–ethane mixture
considered above. This is indeed seen to be the
case as evidenced in the results of Fig. 21f. Both,
the experimental data of Van de Graaf et al. [4]
and IAS theory simulations, show that the pro-
pane selectivity decreases significantly with in-
creasing propane partial pressure. Furthermore,
the importance of the sorbate–sorbate interac-
tions, encapsulated in Ð12, is also strongly under-
lined. Comparing Fig. 21d and e we note that
when taking Ð12 into account the steady-state flux
of propane is higher than that of methane. On the
other hand, if we ignore Ð12, the flux of methane
is higher than that of propane. The experimental
data of Van de Graaf et al. [4] support the model
taking Ð12 into account.

The curious maximum observed for the tran-
sient flux of methane for both mixtures considered
in Figs. 19 and 21 is a typical phenomenon ob-
served during transient permeation of a mixture
comprising of (1) a faster moving species with low
sorption strength and (2) a slower moving species
but with higher sorption strength. In this mixture,
the faster moving species 1 will usually exhibit a
maximum flux during transient permeation. To
illustrate this, we present calculations for perme-
ation of hydrogen (1) and n-butane (2) across a
silicalite membrane at 295 K. For pure compo-
nent permeation, with the upstream compartment
maintained at 50 kPa, the transient fluxes are

Fig. 20. Schematic view of silicalite membrane separation
process for separation of hydrocarbon mixture.
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Fig. 21. (a) Thermodynamic factor matrix for the mixture of methane (1) and propane (2) in silicalite-1 at 303 K calculated from
IAS mixture isotherm. (b) Elements of the Fick diffusivity matrix taking Ð1=1.04×10−9 m2 s−1, Ð2=3.4×10−11 m2 s−1. (c)
Effective Fick diffusivities calculated from Eqs. (39) and (40). (d) Transient fluxes for permeation across a silicalite membrane (see
Fig. 20), taking Ð12 into account. (e) Transient fluxes for permeation across a silicalite membrane (see Fig. 20), ignoring the
interchange coefficient Ð12. (f) Permeation selectivity towards ethane. Predictions of IAS–MS model with experimental data of Van
de Graaf et al. [41].

shown in Fig. 22a. Hydrogen has a higher steady-
state flux than n-butane. The situation changes
dramatically when we consider permeation of a
50–50 mixture, with partial pressures p10=p20=
50 kPa; see Fig. 22b. Under steady-state condi-
tions, hydrogen has a much lower flux than
n-butane because it is virtually excluded from the
pores of silicalite by the more strongly sorbed
n-butane. Again we note the curious, sharp, max-
imum in the flux of the faster-moving hydrogen
during the initial transience. This maximum has
been experimentally confirmed by experiments re-
ported by Kapteijn et al. [46], and provides fur-
ther support of the Maxwell–Stefan formulation.

The calculations for the mixture permeation fluxes
in Fig. 22c have been carried out without taking
Ð12 into account. Comparison of Fig. 22b and c
shows that inclusion of interchange Ð12 has a
significant impact on the magnitude of the fluxes
of hydrogen.

The results seen in Fig. 22 provides the basis of
a commercial process for separating hydrogen
from a mixture of light hydrocarbons (methane,
ethane, propane and butane) from refinery fuel
gases by allowing the mixture to permeate
through a carbon molecular sieve membrane [47];
see Fig. 23. The hydrocarbons are much more
strongly adsorbed than hydrogen and permeate
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selectively across the membrane. Propane and bu-
tanes are nearly completely removed in the perme-
ate stream. Final purification of hydrogen by
pressure swing adsorption is required before recy-
cling back to the refinery. The advantage of this
membrane separation process is that the hydrogen
rich stream is recovered from the retentate (feed)
side of the membrane and can be re-used in the

refinery without the need for further
recompression.

3.6. Separation of hexane isomers using a
silicalite membrane

Consider the problem of separation of linear
alkanes from branched alkanes. Branched alkanes

Fig. 22. (a) Transient permeation fluxes of pure components hydrogen and n-butane across a silicalite-1 membrane at 295 K. (b)
Transient permeation fluxes of a 50–50 mixture of hydrogen and n-butane across a silicalite-1 membrane at 295 K. The upstream
partial pressures are maintained at p10=50 kPa, p20=50 kPa. The parameters used in the calculations are silicalite matrix density,
r=1800 kg m−3; membrane thickness, d= 40 mm; q1,sat=q2,sat=1.0 mol kg−1 of silicalite; Langmuir parameters b1=1×10−5

Pa−1, b2=4×10−4 Pa−1; single component Maxwell–Stefan diffusivities, Ð1=1×10−9 m2 s−1, Ð2=5×10−11 m2 s−1. The
downstream compartment is flushed with sweep gas and we assume in the calculations below that the partial pressures of the
permeating components are negligibly small, i.e. p1d:p2d:0. (c) Transient permeation fluxes calculated including the interchange
coefficient Ð12.

Fig. 23. A microporous carbon membrane can be used for separation of hydrocarbons from a gaseous mixture containing hydrogen.
The hydrocarbons are more strongly adsorbed inside the micropores and are transported across the membrane much faster than
hydrogen. Adapted from Rao and Sircar [47].
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Fig. 24. (a) Transient diffusion fluxes for permeation of 50–50 mixture of n-C6 and 3MP across a silicalite membrane at 362 K. The
upstream partial pressures are p10=5 Pa, p20=5 Pa. (b) Steady-state permeation fluxes as a function of upstream hydrocarbons
pressure. The Maxwell–Stefan diffusivities of the isomers are taken to be equal, i.e.Ð1/Ð2. (c) Separation selectivities as function of
upstream hydrocarbon pressure. The experimental data point in (c) is from Funke et al. [3].

are preferred to linear alkanes as ingredients in
petrol because the branched hydrocarbons burn
more efficiently and have a higher octane number.
Catalytic isomerisation is used to convert straight-
chain hydrocarbons to their mono- or di-
branched structures. However, the product of
catalytic isomerisation is a mixture of linear and
branched hydrocarbons that are in thermody-
namic equilibrium; this gives rise to a separation
problem. As seen in Fig. 2, the sorption isotherms
of branched isomers in silicalite-1 exhibit inflec-
tion behaviour and this can be exploited to de-
velop a process to separate linear alkanes from
branched alkanes [9–11]. In order to illustrate
these concepts let us first consider the specific
example of diffusion of a mixture of n-hexane
(n-C6, component 1) and 3-methyl pentane (3MP,
component 2) through a silicalite-1 membrane at
a temperature of 362 K. The 50–50 mixture
isotherms, determined from CBMC simulations
are shown in Fig. 9b and c calculated with RAST
and IAST, respectively.

Fig. 24a shows the transient permeation fluxes
of a 50–50 mixture of n-C6 and 3MP at 362 K for
p10=p20=1 kPa, calculated according to the
IAST and RAST isotherms (non-ideality parame-
ters in Table 2). In the simulations we assume that
the pure component Maxwell–Stefan diffusivities
are identical for the isomers, i.e. Ð1=Ð2; this
assumption is a conservative one from the view-
point of separation of the isomers as we expect

the branched isomer to have a lower mobility
within the silicalite structure. Since the inter-
change coefficient Ð12 has a value intermediate
between Ð1 and Ð2 we must also have Ð1=Ð2=
Ð12. The inclusion of mixture non-ideality tends
to improve the separation selectivity with respect
to n-hexane. The steady-state fluxes of n-hexane
and 3MP have been plotted over a whole range of
total hydrocarbon pressures in the upstream com-
partment in Fig. 24b. We note that the steady-
state flux of 3MP exhibits a maximum at about
the same pressure as the maximum experienced in
the mixture isotherm; compare Fig. 9b and Fig.
24b. In order to obtain high separation selectivi-
ties the upstream pressure has to be maintained at
a level such that the upstream pressures are at
least 10 kPa. The selectivities have been plotted in
Fig. 24c for the RAST and IAST isotherm calcu-
lations. Also shown in Fig. 24c is the experimen-
tally observed selectivity obtained by Funke et al.
[3]. The RAST isotherm calculations conform
more closely with the experiment; this result un-
derlines the necessity of taking into account the
mixture non-ideality effects.

We now consider diffusion of a 50–50 mixture
of n-hexane and its isomer 22DMB across a sili-
calite membrane at a temperature of 398 K for
which the isotherm has been shown in Fig. 12.Fig.
25a compares the 22DMB flux measured by
Gump et al. [5] with the 22DMB loading calcu-
lated from CBMC simulations. The curious maxi-
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mum in the flux of 22DMB coincides precisely
with the maximum in the 22DMB loading. Cal-
culations of the steady-state 22DMB flux by us-
ing the Maxwell–Stefan theory, along with the
RAST mixture isotherm is able to reproduce the
flux very well; see Fig. 25b. On the other hand,
using the IAST mixture rule along with the
Maxwell–Stefan theory gives a poorer represen-
tation of the 22DMB flux, stressing the need to
take mixture non-idealities into account.

4. Concluding remarks

In this paper we have demonstrated the power
of CBMC simulations, in conjunction with the
Maxwell–Stefan diffusion theory, for modelling
separations of hydrocarbon mixtures.

The following major conclusions can be
drawn:
1. For mixtures of light hydrocarbons methane–

ethane, methane–propane and ethane–pro-
pane, the mixture isotherms calculated from
CBMC simulations are in excellent agreement
with calculations using the IAS theory.

2. Size entropy effects affect the separation selec-
tivities of methane–ethane and methane–pro-
pane mixtures.

3. For the other mixtures considered — n-bu-
tane-iso-butane, n-hexane–3MP, n-hexane–
22DMB, iso-butane–propane, n-pentane–
2MP, mixture non-ideality effects are impor-
tant. Also, for these mixtures both size and
configurational entropy effects determine sepa-
ration selectivities.

4. Mixture non-ideality effects have a significant
influence on separation selectivities, as demon-
strated by the separation of hexane isomers.

In view of the near quantitative agreement ob-
tained between model predictions and experimen-
tal data, we would suggest the use of our model in
screening new separation concepts.
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Fig. 25. Steady-state 22DMB flux for permeation of 50–50 mixture of n-C6 and 22DMB across a silicalite membrane at 398 K.
Experimental data of Gump et al. [5]. Parameter values, rÐ1/d=5×10−6; Ð1/Ð2=3.5. The continuous lines and dashed lines are
predictions of the RAS and IAS theories, respectively.



R. Krishna, D. Paschek / Separation/Purification Technology 21 (2000) 111–136 135

References

[1] K. Huddersman, M. Klimczyk, Separation of branched
hexane isomers using zeolite molecular sieves, AIChE. J.
42 (1996) 405–408.

[2] D.M. Ruthven, S. Farooq, K.S. Knaebel, Pressure Swing
Adsorption, VCH Publishers, New York, 1994.

[3] H.H. Funke, A.M. Argo, J.L. Falconer, R.M. Noble,
Separation of cyclic, branched, and linear hydrocarbon
mixtures through silicalite membranes, Ind. Eng. Chem.
Res. 36 (1997) 137–143.

[4] J. Van de Graaf, F. Kapteijn, J.A. Moulijn, Modeling
permeation of binary mixtures through zeolite mem-
branes, AIChE J. 45 (1999) 497–511.

[5] C.J. Gump, R.D. Noble, J.L. Falconer, Separation of
hexane isomers through nonzeolite pores in ZSM-5 zeolite
membranes, Ind. Eng. Chem. Res. 38 (1999) 2775–2781.

[6] M.S. Sun, O. Talu, D.B. Shah, Adsorption equilibria of
C5–C10 normal alkanes in silicalite crystals, J. Phys.
Chem. 100 (1996) 17276–17280.

[7] M.S. Sun, D.B. Shah, H.H. Xu, O. Talu, Adsorption
equilibria of Cl–C4 alkanes, CO2 and SF6 on silicalite, J.
Phys. Chem. 102 (1998) 1466–1473.

[8] Z. Du, G. Manos, T.J.H. Vlugt, B. Smit, Molecular
simulation of adsorption of short linear alkanes and their
mixtures in silicalite, AIChE J. 44 (1998) 1756–1764.

[9] R. Krishna, B. Smit, T.J.H. Vlugt, Sorption-induced dif-
fusion-selective separation of hydrocarbon isomers using
silicalite, J. Phys. Chem. A 102 (1998) 7727–7730.

[10] R. Krishna, B. Smit, T.J.H. Vlugt, Influence of isotherm
inflection on diffusion in silicalite, Chem. Eng. Sci. 54
(1999) 1751–1757.

[11] R. Krishna, D. Paschek, Permeation of hexane isomers
across ZSM-5 zeolite membranes, Ind. Eng. Chem. Res.,
39 (2000) 2618–2622.

[12] B. Smit, T.L.M. Maesen, Commensurate ‘freezing’ of
alkanes in the channels of a zeolite, Nature 374 (1995)
42–44.

[13] T.J.H. Vlugt, M.G. Martin, J.I. Siepmann, B. Smit, R.
Krishna, Improving the efficiency of the CBMC al-
gorithm, Mol. Phys. 94 (1998) 727–733.

[14] T.J.H. Vlugt, W. Zhu, F. Kapteijn, J.A. Moulijn, B. Smit,
R. Krishna, Adsorption of linear and branched alkanes in
the zeolite silicalite-1, J. Am. Chem. Soc. 120 (1998)
5599–5600.

[15] T.J.H. Vlugt, R. Krishna, B. Smit, Molecular simulations
of adsorption isotherms of linear and branched alkanes
and their mixtures in silicalite, J. Phys. Chem. B 103
(1999) 1102–1118.

[16] T.J.H. Vlugt, B. Smit, R. Krishna, Adsorption of linear
and branched alkanes in ferrierite: a computational study,
in: M.M.J. Treacy, B.K. Marcus, M.E. Bisher, J.B. Hig-
gins (Eds.), Proceedings of the 12th International Zeolite
Conference, vol. 1, Materials Research Society, Warren-
dale, PA, 1999, pp. 325–332.

[17] A.L. Myers, J.M. Prausnitz, Thermodynamics of mixed
gas adsorption, AIChE J. 11 (1965) 121–130.

[18] G. Calleja, A. Jimenez, J. Pau, L. Dominguez, P. Perez,
Multicomponent adsorption equilibrium of ethylene, pro-
pane, propylene and CO2 on 13X zeolite, Gas Sep. Purif.
8 (1994) 247–256.

[19] J. Talbot, Analysis of adsorption selectivity in a one-di-
mensional model system, AIChE J. 43 (1997) 2471–2478.

[20] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phe-
nomena, Wiley, New York, 1960.

[21] R. Taylor, R. Krishna, Multicomponent Mass Transfer,
Wiley, New York, 1993.

[22] J. Kärger, D.M. Ruthven, Difflusion in Zeolites, Wiley,
New York, 1992.

[23] D.M. Ruthven, Principles of Adsorption and Adsorption
Processes, Wiley, New York, 1984.

[24] F. Kapteijn, J.A. Moulijn, R. Krishna, The generalized
Maxwell–Stefan model for diffusion in zeolites: sorbate
molecules with different saturation loadings, Chem. Eng.
Sci. 55 (2000) 2923–2930.

[25] R. Krishna, Multicomponent surface diffusion of ad-
sorbed species. A description based on the generalized
Maxwell–Stefan diffusion equations, Chem. Eng. Sci. 45
(1990) 1779–1791.

[26] R. Krishna, Problems and pitfalls in the use of the Fick
formulation for intraparticle diffusion, Chem. Eng. Sci.
48 (1993) 845–861.

[27] R. Krishna, L.J.P. van den Broeke, The Maxwell–Stefan
description of mass transport across zeolite membranes,
Chem. Eng. J. 57 (1995) 155–162.

[28] R. Krishna, J.A. Wesselingh, The Maxwell–Stefan ap-
proach to mass transfer, Chem. Eng. Sci. 52 (1997) 861–
911.

[29] L.J.P. Van den Broeke, S.A. Nijhuis, R. Krishna, Monte
Carlo simulations of diffusion in zeolites and comparison
with the generalized Maxwell–Stefan theory, J. Catal. 136
(1992) 463–477.

[30] L.J.P. Van den Broeke, R. Krishna, Experimental verifi-
cation of the Maxwell–Stefan theory for micropore diffu-
sion, Chem. Eng. Sci. 50 (1995) 2507–2522.

[31] R.M. Barrer, Zeolites and Clay Minerals as Sorbents and
Molecular Sieves, Academic Press, London, 1978.

[32] C.J. Guo, O. Talu, D.T. Hayhurst, Phase transition and
structural heterogeneity: benzene adsorption on silicalite,
AIChE J. 35 (1989) 573–578.

[33] D.B. Shah, C.J. Guo, D.T. Hayhurst, Intracrystalline
diffusion of benzene in silicalite: effect of structural het-
erogeneity, J. Chem. Soc. Faraday Trans. 91 (1995)
1143–1146.

[34] W. Rudzinski, J. Narkiewicz-Michalek, P. Szabelski,
A.S.T. Chiang, Adsorption of aromatics in zeolite ZSM-
5: a thermodynamic–calorimetric study based on the
model of adsorption and heterogeneous adsorption sites,
Langmuir 13 (1997) 1095–1103.

[35] E. Aust, K. Dahlke, G. Emig, Simulation of transport
and self-diffusion in zeolites with the Monte Carlo
method, J. Catal. 115 (1989) 86–97.

[36] D.A. Reed, G. Ehrlich, Surface diffusion, atomic jump
rates and thermodynamics, Surface Sci. 102 (1981) 588–
609.



R. Krishna, D. Paschek / Separation/Purification Technology 21 (2000) 111–136136

[37] D.A. Reed, G. Ehrlich, Surface diffusivity and the time
correlation of concentration fluctuations, Surface Sci.
105 (1981) 603–628.

[38] L. Riekert, Rates of sorption and diffusion of hydrocar-
bons in zeolites, AIChE J. 17 (1971) 446–454.

[39] V.P. Zhdanov, General equations for description of sur-
face diffusion in the framework of the lattice gas model,
Surface Sci. 194 (1985) L13–L17.

[40] D.M. Ruthven, I.H. Doetsch, Diffusion of hydrocar-
bons in 13X zeolite, AIChE J. 22 (1976) 882–886.

[41] D.M. Ruthven, M.F.M. Post, Diffusion in zeolite
molecular sieves, in: H. van Bekkum, E.M. Flanigan,
J.C. Jansen (Eds.), Introduction to Zeolite Science and
Practice, second ed., Elsevier, Amsterdam, 2000.

[42] D. Paschek, R. Krishna, Monte Carlo simulations of
self- and transport- diffusivities of 2-methylhexane

in silicalite, Phys. Chem. Chem. Phys. 2 (2000) 2389–
2394.

[43] A. Vignes, Diffusion in binary solutions, Ind. Eng.
Chem. Fundam. 5 (1966) 189–199.

[44] H.W. Habgood, The kinetics of molecular sieve action.
Sorption of nitrogen–methane mixtures by Linde mol-
ecular sieve 4A, Can. J. Chem. 36 (1958) 1384–1397.

[45] G.F. Round, H.W. Habgood, R. Newton, A numerical
analysis of surface diffusion in a binary adsorbed film,
Sep. Sci. 1 (1966) 219–244.

[46] E. Kapteijn, W.J.W. Bakker, L. van de Graaf, G.
Zheng, J. Poppe, L.A. Moulijn, Permeation and separa-
tion behaviour of a silicalite-1 membrane, Catal. Today
25 (1995) 213–218.

[47] M.B. Rao, S. Sircar, Nanoporous carbon membrane for
gas separation, Gas Sep. Purif. 7 (1993) 279–284.

.


