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Abstract-Isothermal interphase mass transfer measurements were carried with the partially miscible Type I 
system glycerol (lbwater (2bacetone (3) in a modified batch Lewis extraction cell. Three types of experiments 
were performed: 

(A) in which the acetone-rich phase was saturated and the initial glycerol-rich phase composition lay on the 
extension of the corresponding tie-line, 

(B) in which the glycerol-rich phase was saturated and the initial acetone-rich phase composition lay on the 
extension of the corresponding tie-line and 

(C) in which initially both the acetone-rich and glycerol-rich phases were unsaturated. 
The equilibration trajectory was monitored in both phases by sampling at suitable intervals. In 

experiments A and B rectilinear equilibration trajectories were obtained while in the experiment C the 
approach towards equilibrium was highly curvilinear in the composition space. 

A theoretical model, based on irreversible thermodynamics and allowing for diffusional coupling between 
species transfers, is developed to simulate the three types of experiments above. The matrix of equilibration 
rate constants, in either fluid phase, is re-constructed by determining the eigenvectors and eigenvalues from 
experimental observations. It is found that both matrices of rate constants in the acetone-rich and glycerol- 
rich phases have extremely large off-diagonal elements. It is stressed in the discussions that the experimental 
results cannot be explained, even qualitatively, without inclusion of these off-diagonal contributions. 

Some interesting mass transfer phenomena in the region of the plait point are pointed out and the need for 
a fundamental irreversible thermodynamics approach to interphase mass transfer is emphasised. It is 
concluded that rigorous mass transfer formulations, allowing for diffusional coupling, will be required to be 
incorporated into design of extractors involving highly non-ideal liquid mixtures. 

INTRODUCTION 

In three publications [l--3] in recent years we have 
presented experimental evidence for mass transfer in 
ternary distillation (in sieve tray and wetted-wall 
columns) and in ternary absorption/condensation (in 
wetted-wall column) to demonstrate the peculiar trans- 
fer characteristics of multicomponent mixtures, of- 
which a three-component system forms the simplest 
case. Experimental confirmation was presented for 

three interaction phenomena, characteristic of multi- 
component mixtures: reuerse d@usion (transfer of a 
component against its composition driving force), 
osmotic dijiision (diffusion of a component in the 
absence of a composition driving force) and difusion 
barrier (a component does not diffuse even though a 
driving force exists for its transfer). The practical 
consequences of these interaction phenomena include 
the possibility that the point Murphree efficiency of a 
component could assume values exceeding unity or 
even vanish or assume negative values. In an early 
computational study Toor and Burchard [4] showed 
with the aid of a design example with the system 
methanol-iso-propanol- water that neglect of multi- 
component interaction effects could lead to severe 
underdesign. 

+Correspondence should be addressed to: Dr. R. Krishna, 
Indian Institute of Petroleum, Debra Dun 248005, India. 

The modelling of the interphase mass transfer 
processes in non-ideal multicomponent systems re- 
quires a fundamental basis in irreversible thermody- 
namics [S-7] and the matrix of transfer coefficients in a 
given fluid phase has to allow for non-zero off- 
diagonal elements. Pseudo-binary approaches to 
multicomponent mass transfer, e.g. by use of effective 
diffusion coefficients, have been shown to fail even 
at the qualitative level [l-3]. Quantitative confir- 
mation of the mass transfer models developed at 
UMIST[8,9] have also been published by other 
research workers [lC~17]. Design procedures for dis- 
tillation and condensation equipment with the inclu- 
sion of these mass transfer models have also been 
presented [18-231. 

One further important practical application of 
multicomponent mass transfer is in liquid-liquid 
extraction. Such systems are necessarily thermo- 
dynamically non-ideal and it must be expected that 
diffusional coupling would be important in such 
systems. An early publication originating from our 
laboratories reported experimental data for the system 
glycerol-water-acetone in a batch extraction cell and 
demonstrated that the results could only be explained 
by considering diffusional coupling effects [24]. The 
theoretical analysis of this paper was however funda- 
mentally wrong due to an incorrect application of the 
Onsager reciprocal relations to interphase mass trans- 
fer processes. This error was noted subsequently [S]. 
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The values of the matrix of mass transfer coefficients 
reported earlier [24] are therefore incorrect, though 
the broad qualitative conclusions of the paper remain 
valid. 

In the present communication we develop an alter- 
native approach to the determination of the matrix of 
mass transfer coefficients in either fluid phase. This 
new approach was inspired by the elegant analysis of 
Wei and Prater [25] for the determination reaction 
rate constants in complex reacting systems. To de- 
monstrate the utility of our approach further exper- 
imental data for the system glycerol - water-acetone 
were obtained. We also took the opportunity of 
improving the accuracy of our liquid-liquid equilib- 
rium data fitting by performing additional equilibrium 
experiments. 

We give a brief outline of our experimental pro- 
cedure before developing our theoretical analysis. 

EXPERIMENTAL 

The extraction measurements were carried out in a 
modified batch Lewis extraction cell with a capacity of 
about 6OOOml and equipped with two turbine stirrers 
which can be either co- or counter-rotated; see Fig. 1. 
Vertical baffles aid the efficient mixing of the bulk 
phases and a horizontal ring and disc baflle at the 
interface provide the calming action necessary to avoid 
rippling of the annular liquid-liquid interface. The 
ratio of the stirrer speeds can be varied and the stirrers 
were run at the maximum frequencies possible without 
agitating the interface. Because large volume changes 
may occur during the extraction the horizontal baffle 
system was made vertically movable over wide limits so 
that the interface could always be kept at the middle of 

Fig. 1. Modified Lewis extraction cell. (A) Glass cylinder; (B) 
top plate; (C) bottom plate; (D) movable interfacial ring; (E) 
central baflle; (F) upper phase stirring shaft; (G) lower phase 
stirring shaft; (H) upper phase turbine stirrer; (I) lower phase 

turbine stirrer. 

the ring and disc baffles throughout the extraction 
process. Representative samples of the bulk phases 
were withdrawn through sampling tubes at suitable 
intervals during the equilibration process. The whole 
extraction cell was thermostatted at 25°C and the 
stirrer drive provided by a regulated motor with a 
frequency checked by a timer counter with a photocell 
pick-up from a striped disc on a drive sheave. 

The samples were analysed by determining their 
density in Lipkin and capped bottle pycnometers and 
their refractive indices in a Zeiss dipping refractometer 
with a set of thermostatted prisms. By using a number 
of precautions especially with the refractometer meas- 
urements, standard deviations of 0.00015 g ml-’ and 
0.000019 for the density and refractive index determi- 
nations, respectively, were obtained consistently. The 
compositions (expressed in mole fractions) were rep- 
resented by fifth order orthogonal polynomials of the 
density and refractive index in xl, x1. The resultant 
standard deviation of the composition determinations 
as found from the analysis of mixtures of known 
compositions were 

=x1 = 0.0015; UXI = 0.0041; 0”$ = 0.0044 

for the three components glycerol (I), water (2) and 
acetone (3), respectively. 

The heavier glycerol-rich phase (of known amount 
and composition) was introduced at the bottom of the 
cell and the lighter acetone-rich phase (known amount 
and composition) was introduced at the top of the cell. 
The drive was started and the extraction allowed to 
proceed. Samples were withdrawn at suitable intervals 
from both phases and the compositions analysed to 
determine the equilibration trajectory. 

In addition to the equilibration measurements de- 
scribed above, the liquid-liquid equilibrium data were 
measured; Fig. 2 shows the tie-line data for the system. 
Further details on the equilibrium measurements and 
on the experimental procedures adopted in the extrac- 
tion measurements are available elsewhere [26]. 

x,, mole fraction of glycerol 

Fig. 2. Equilibrium tie-line data for the system glycerol 
(lj-water(ZEacetone(3). P is the plait point with the 

composition x, = 0.1437, x1 = 0.4291, xJ = 0.4272. 
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THEORETICAL MODEL DEVELOPMENT AND ANALYSIS 

OF EXPERIMENTAL RESULTS 

Before discussing the results of the experimental 
runs on the equilibration process during extraction we 
shall develop the theoretical framework for the analy- 
sis of the results; the experimental runs were chosen to 
provide crucial tests of the theoretical predictions. 

The initial amounts and compositions of each phase 
are fixed and known from experiment. If the compari- 
tively small amounts of the samples withdrawn from 
either phase are neglected, the extraction cell can be 
considered to be a closed system in which the total and 
constituent masses are constant and equal to the initial 
amounts MtO and Mi,, respectively. At any given time 
therefore 

and 
M;i-M;‘= M,,, (1) 

Mi+My=Mio; i=l,2,3 (2) 

where the superscripts ’ and ” are used to denote the 
acetone-rich and glycerol-rich phases respectively. If xi 
represents the bulk liquid phase composition, then this 
will very nearly equal the average composition of the 
particular phase and we may write 

M: = xi M;; My = x:’ My; i = 1, 2, 3 (3) 

and eq. (2) may be replaced by the conservation 
relationship 

x: M; + x; M; = Mi, = xi,, M,o; i = 1, 2, 3 (4) 

where xi,, represents the initial composition of the 
mixture of the two phases. There are only two 
independent material balance relationships from the 
set of eqs (1) and (4). It is to be noted that all the 
quantities on the left-hand side of the above equations 
are functions of time. 

Now, if A represents the interfacial area between the 
two liquid phases we can calculate the interfacial molar 
fluxes of the individual components, Ni, in either fluid 
phase 

1 dM- 
NiC_L-‘- 

A dt ’ 
i = 1, 2, 3. (5) 

Similarly the mixture molar flux in either fluid phase is 

N =ldMt t __ = jl N,. A dt 

From the material balance relations (1) and (2) we see 
that 

N;+N;‘= 0 (7) 

and 
Ni+Ny=0; i=l,2,3 (8) 

i.e. the rates of transfer in one phase must be negative 
of the corresponding rate for the other. In addition to 
the molar fluxes Ni, relative to the laboratory fixed 
coordinate reference frame, we can calculate molar 
diffusion fluxes Ji with respect to the molar average 
mixture velocity, thus: 

Ji E N,-xxiN,; i = 1, 2, 3 (9) 

where we note because J, + J, + J, = 0, only two of 
the Ji, in either fluid phase, are independent. From eqs 
(5). (6) and (9) we get 

Ji-fM,2, i= 1,2. (101 

If the driving force for mass transfer is taken as the 
difference in compositions between the interface and 
the bulk fluid phase, xi, -xi, the interphase transfer 
rate relations may be written in the form 

(J) = ct PI (XI -x) (11) 
where we have adopted two-dimensional matrix no- 
tation. The extraction process will be described by two 
matrices of mass transfer coefficients: [k’] in the 
acetone-rich phase and [&“I in the glycerol-rich phase. 

Let us now examine the structure of the matrix [k] in 
either fluid phase. If the interphase mass transfer 
process is considered to be quasi-steady state, then [k] 
will be given by 

[k] = !a 
s (12) 

where S is the effective “film” thickness and [D] is the 
matrix of Fickian diffusivities. It is shown in Appendix 
A, using the theory of irreversible thermodynamics, 
that for the system glycerol-water-acetone the matrix 
of Fickian diffusivities [D] must be expected to have 
significant off-diagonal elements D,, and D,,. Since 
[k] is directly proportional to [D] in the film theory, 
we must expect the structure of [k] to include signifi- 
cant off-diagonal elements too. 

If on the other hand a surface renewal type. mechan- 
ism governs the transfer process, as is likely to be the 
case for the stirred cell, then the matrix [k] will show a 
square-root dependence on [D]: 

[k] = [D]” si 

where s is the renewal frequency. In this case, because 
of the weaker dependence on the molecular dif- 
fusivities, the cross-coefficients will be smaller (in 
proportion to the diagonal coefficients) than in the film 
model for transfer. Nevertheless the cross-coefficients 
k,, and kZ1 will still remain finite. 

Other factors such as surface instabilities will also 
determine the structure of [k]. Sethy and Cullinan [27] 
found that though the measured [D] for the system 
acetonitrileebenzene-n-heptane has sizable off- 
diagonal elements, extraction trajectories in a Lewis 
stirred cell could be interpreted by assuming vanishing 
off-diagonal elements in [k]. They ascribed this non- 
conformity in the structure between [k] and [D] to 
Marangoni instabilities which reduced molecular dif- 
fusional coupling. We obtained Schlieren data to verify 
that our experiments with glycerol-water-acetone 
were not influenced by Marangoni type instabilities. 
We should on the basis of the above discussions expect 
the structure of [k] to include sizable off-diagonal 
elements. One of the major objectives of the exper- 
imental study is to verify this expectation and to 
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determine the significance of the cross-coefficients in 
determining the extraction trajectories. 

[K]. The eigenvalues are given by 

Introducing eq. (11) into eq. (10) and expressing the 
result in two-dimensional matrix notation we get the 
differential equation describing the transient diffusion 
process in either phase: 

d (~1 Ct Ckl A -=-(x1-x). 
dt M, 

(13) 

During the extraction process, ct. [&I and M,, in 
either fluid phase can all be expected to vary. Also, 
there is no requirement that the interfacial com- 
position xii instantaneously attains the final equilib- 
rium state, corresponding to either end of the appro- 
priate tie-line. Put another way, we should expect the 
interfacial state to vary during the extraction process, 
with a gradual approach to the final equilibrium state 
at the interface. The interpretation of the extraction 
experiments taking into proper account the transient 
variations of c,, [k], M, and xi, is a formidable task. 
Keeping in mind that our objective in the experimental 
study was to determine the influence of coupling 
effects, signified by the cross-coefficients k,, and k,,, 
we chose an alternative approach to the solution of 
the differential eq. (13) by making the following 
simplifications: 

(i) That the “volumetric” mass transfer coefficient 
matrix [K]: 

CtCkl A CKI = 7 t 
(14) 

remains constant during the extraction process. This 
essentially means that our results yield some integral 
averaged value for each phase: [K’] for the acetone- 
rich phase and [K’] for the glycerol-rich phase. One 
test of the validity of this assumption will be the 
success, or failure, of the model assuming constant [K] 
to reproduce the experimentally observed trajectories. 

(ii) We assume in the ensuing analysis that the 
interface instantly attains its final equilibrium state and 
remains invariant throughout the extraction process. 
This assumption is most likely to be in error during the 
initial stages of the extraction process. Taking into 
consideration the fact that each equilibration run to be 
discussed later lasts for about 6 h, we feel that the 
assumption of constant xi1 will not have a significant 
effect on the final calculated values of [K]. 

With the above two key assumptions we obtain the 
linear, two-dimensional, matrix differential equation 

subject to the initial condition 

t = 0, (x) = (x0); (x, -x) = (xt -xg). (16) 

To solve eq. (16) we proceed by first determining the 
eigenvalues ;i, and 1, and eigenvectors (ei) and (eJ of 

1,,a,= K,,+K,,+K,,--22 
2  _  2 

‘=,,Kn X 
l+W,, --2212’ (17) 

The eigenvectors (eJ, corresponding to ;li, is only 
determined to an arbitrary scalar multiplier and its 
direction is given by 

(ei)=(-+)=(-“:-“>; i=l,*. (18) 

We construct the modal matrix [E] of [K] by 
placing (el) and (e2) in order, i.e. 

CEI = C (cl) (e2)l (19) 
which has the property that 

L-El - ’ CKI [El= CA1 (20) 
where [J.] is a diagonal matrix with the eigenvalues Ai 
and II, on its principal diagonal and zeros elsewhere. 

In the further analysis it is convenient to define 
pseudo-compositions (2) by 

(2) = [E-J - i (x); (RO) = [E] - 1 (x0); (2,) = [E] - i (Xi). 
(21) 

By pre-multiplying eq. (15) by [E] - ’ we obtain a set of 
two linear uncoupled differential equations in the 
pseudocomposition space 

dx^. 
L= ai (R,l-~i); 
dt 

j = 1, 2 

subject to the initial condition 

t = 0, Gi = &,,; AgiO = gir - &; i= 1,2. (23) 

The two differential eqs (22) can be solved in- 
dependently giving the transient trajectory in pseudo- 
space 

_ _ n xi, - xi = exp ( -Lit) Axi,; i = 1,2 (24) 
or, expressed in matrix notation: 

(5$ -2) = 
exp (-nit) AG1,, 
exp ( - 1, r)Ax^,, > . 

(25) 

Premultiplying eq. (25) by [E] = [(e,) (e,)] we 
obtain the transient composition trajectories in real 
composition space 

(xi-x) = exp(--;l,t)Ax^,,(el) 

+ exp ( - a2t)AR2, (e2) (26) 
which relation is most useful in analysing the exper- 
imental data. 

On examining eq. (26) we note that if the starting 
composition in the particular phase is so chosen that 
either AZ,,, or ACzO vanishes then the equilibration 
trajectory must be rectilinear, parallel to the eigenvec- 
tors (e2) and (e,) in the two respective cases. But since 
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the elements of [K] are not known in advance, the 
matrix [E] is unknown and it is not possible to make 
the choice of the initial state such that one of the A&, 
vanishes. However, the choice of the initial state 
leading to a rectilinear equilibration trajectory can be 
made on purely physical grounds. Consider the con- 
ditions depicted as Run A in Fig. 3. The acetone rich 
phase is chosen initially to have the composition A, 
corresponding to the saturation point A, on the 
binodal curve. The initial composition in the glycerol- 
rich phase is chosen such that the point G, lies on the 
extension of the tie-line through A,. Since the mixture 
composition also lies on the tie-line, we must conclude 
purely from material balance considerations that the 
trajectory in the glycerol phase must lie on the straight 
line G, -G,; any deviations from rectilinearity will 
violate the mass balance constraints for the individual 
species. The crosses on the straight line G, -GGI 
correspond to the experimentally determined com- 
positions for this type of experiment, lending confir- 
mation to our fundamental expectations. By an exactly 
parallel reasoning, we must conclude that if the 
glycerol-rich phase is chosen to have the initial satu- 
ration composition G, and the initial acetone-rich 
phase composition A,, corresponds to a position on the 
extension of the tie-line through G,, then the equilib- 
ration trajectory A,, -A, must be rectilinear. This was 
indeed experimentally confirmed as evidenced by the 
crosses (measured data) on the line A, - A, for Run B 
in Fig. 3. 

A more stringent test of eq. (26) is to determine the 
eigenvalue corresponding to the straight line trajectory 
using eq. (26). If the two key assumptions made in the 
derivation of eq. (26), i.e. constancy of [K] and of xi,, 
are satisfactory, then a plot of - In (xl1 -xi) vs t should 
yield a straight line. The two plots for Runs A and Bare 
shown in Fig. 4. In the glycerol-rich phase L’i is 
calculated to be 0.19 h-’ and the agreement with the 
theory is good for this Run A. For Run B the 
agreement with theory is not so good. This is because 

0.8 I\ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.9 1.0 

x,, mole fraction of glycerol 

Fig. 3. Rectilinear trajectories obtained experimentally for 
glycerol-water-acetone. For Run A, the acetone-rich phase 
remains saturated throughout the experiment and for Run B, 
the glycerol-rich remains at its saturation point on the binodal 

throughout the experiment. 

t (ht 

Fig. 4. Plot of -In (XII -x1) vs time for Runs A and B. .I1 is 
the eigenvalue (rate constant) for the equilibration process. 

during the equilibration process the viscosity of the 
acetone-rich phase (with no glycerol in the starting 
composition A,,) increases substantially and the as- 
sumption of constant [K] is severely tested. The 
limitations in the assumption of constant [K] in the 
acetone-rich phase will also be raised again in a further 
connection. Even so, we consider the value of A; 
= 0.287 h- ’ to be a fair representation of the trajec- 
tory A, -A, of Run B. 

Clearly, experiments of the types Run A and B, 
though confirming our expectations of rectilinear 
trajectory, yield only limited information on the 
structure of [K]. On the basis of these experiments it is 
not possible to conclude whether the off-diagonal 
elements of [K] are significantly non-zero or not. To 
gain better insight into [K] it is necessary to perform 
an experiment of the type shown in Fig. 5, with both 

mole fraction of glycerol 

Fig. 5. Experimentally observed equilibration trajectories for 
Run C with two unsaturated phase compositions A,, and Go 
as initial points. M is the mixture point. A, - G, represents the 

tie-line through M. 
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the initial compositions G, and A,, being unsaturated 
and not lying on a tie-line. For the conditions depicted 
in Fig. 5, highly curvilinear trajectories were obtained 
experimentally. Interestingly, the approach towards G, 
in the glycerol-rich phase is concave to the binodal 
curve, while the corresponding approach to A, is 
convex. Furthermore, towards the last stages of 
equiiibration to G,, the approach was found to be 
collinear with the tie-line A, - G,. On the other hand, in 
the acetone-rich phase the approach to A,, towards the 
latter stages of the equilibration process, was along the 
binodal curve, as shown in Fig. 5. 

eigenvector can, therefore, be determined by drawing a 
tangent to the observed trajectory at the initial point. 
Following this procedure we determine the two eigen- 
vectors (e;) and (e;) to be 

First let us examine whether a pseudo-binary for 
mass transfer will be adequate to describe the com- 
position trajectories measured for Run C. We shall 
assume that each component in the ternary mixture 
relaxes to the equilibrium with its own characteristic 
rate constant, Ki,ee. Then the composition trajectories 
are 

@,I -xi) = exp (- K,,,,t) Axi& i = 1, 2, 3. (27) 

Since the component driving forces add to zero we can 
eliminate the Axjo to obtain 

Cexp (- Kl,eff r) - exp ( - K,,,s) 1 AxI o 
+Cew (--K,.,d)--xp (-K,,,,t)l Axzo = 0 

(28) 
which equality must hold for all combinations of Axlo 
and Ax,,, which are each independently variable. So 
the only solution possible to eq. (28) is when the 
pseudo-binary rate constants are equal to one another: 

K -K I,& - 2,em = K3,ell. = K (29) 

or in other words the matrix [K] must reduce to a 
scalar, K, times the identity matrix [Z]. When this 
happens the composition trajectories given by eq. (27) 
must be rectilinear. Since the observed trajectories are 
highly curvilinear we must reject the premise that a 
pseudo-binary mass transfer formulation can be used 
to describe the interphase mass transfer process. 
Another, even more persuasive, argument to support 
this conclusion arises by a visual examination of the 
trajectory in the glycerol-rich phase in Fig. 5. A tangent 
to the initial trajectory passing through G, will miss 
the binodal curve completely showing that a simple 
relation of the form of eq. (27) cannot be valid. Put 
another way, accepting eq. (27) implies that the 
composition trajectories must always be directed 
towards the equilibrium point, which is certainly not 
the case for Run C. 

On the basis of the arguments given above we must 
accept that the trajectories obtained for Run C can 
only be explained if we allow for off-diagonal elements 
in [K]. When this is the case the two eigenvalues A, and 
1, will be different from each other; both will however 
be positive and real (see Appendix A for proof of this). 
Without loss of generality we take A, to be the 
dominant eigenvalue and so exp (-Art) will decay 
much faster than exp ( - /Z,t). From equation (26) we 
must conclude therefore that in the initial stages the 
composition trajectory must lie along (ei). The first 

(e;) = (-y.45); (e;‘) = (-:*4) (30) 

in the acetone-rich and glycerol-rich phases 
respectively. 

Towards the end of the equilibration process, 
exp ( -n,t) will have decayed to zero and the final 
trajectory must lie along (e& see eq. (26). In the 
glycerol-rich phase, the approach to G, is observed to 
be collinear with the tie-line A, -GI, as seen in Fig. 5. 
The second eigenvector (e;‘) can then be taken as the 
tie-line A, -G, and so 

(e;‘) = ‘1’ 
( > 

. (31) 

In the acetone-rich phase, the final trajectory is seen 
to hug the binodal curve and we take (e;) to be the 
tangent to the binodal curve at A,, giving 

(e;) = 0’;’ ( > . 
With the knowledge of these eigenvectors we can 

construct the modal matrix [E] in each phase: 

[E’, = [ -lo.45 ,,‘I; [E”] = [ - ‘4 ‘f] 
(33) 

which now allow us to determine the pseudo- 
composition trajectories from the measured data by 
use of eq. (21). It follows from eq. (24) that a plot of 
-In (Ti, - Ti) vs t should yield a straight line whose 
slope can be identified with li. Figure 6 shows the plots 

3.8 

c 

/* 
3.6 l 

*-.-I 

3.4: 
X,=0.07 hm ’ 

/ 

/ 
X,=0.5 h-’ 

. 

/ Run C 
glycerol-rich phase 

1.61 1 I I I I 
0 1 2 3 4 5 

r(h) 

Fig. 6. Plots of - In (x^,, - 5Zi) vs t for Run C in the glycerol- 
rich phase. 
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acetone-rich phase 

2.6 

2.4 

2.2’ r 
2.000 5 

t(h) 

Fig. 7. Plots of --In (2, -Pi) vs f for Run C in the acetone- 
rich phase. 

for pseudo-components 1 and 2 in the glycerol-rich 
phase. Reasonable agreement with this theoretical 
expectation is observed and the eigenvalues n’i’ and Xi 
are determined to be 0.5 h - ’ and 0.07 h - i respectively. 

The corresponding results for the acetone rich phase 
are shown in Fig. 7. Due to the very significant viscosity 
increases in this phase as extraction proceeds, the 
assumption of constant [K] is severely tested and the 
agreement with the theoretical prediction (of constant 
&‘) is not as good as for the glycerol-rich phase, though 
still quite reasonable, in our opinion. The two eigen- 
values A’, and X2 are determined to be 0.58 h-i and 
0.20 h- i respectively. Having determined the eigen- 
values and eigenvectors in either phase, it is now 
possible to reconstruct [K] from the relation 

which procedure yields 

[K’] = [ _“0::‘5 

CK”1 = [ _i::;:, -;:::;I (35) 

with the units h-‘. 
The matrices [K’] and [K”] have indeed quite 

significant off-diagonal elements confirming our ex- 
pectation for this highly non-ideal system. In Figs 8 
and 9 we compare the predictions of the composition 
trajectories using these coefficients with the measured 
data in the glycerol-rich and acetone-rich phases 
respectively. The agreement between the predictions 
and measurements is extremely good in the glycerol- 
rich phase (Fig. 8) and somewhat less good in the 
acetone-rich phase. Even so, the calculated [K’] is able 
to reproduce the essential features of the convexity in 
the approach to the equilibrium point (Fig. 9). 

EQUILIBRATION TRAJECTORY IN THE VICINITY OF THE 

PLAIT POINT 

We now consider some further interesting features 
of interphase mass transfer processes in the vicinity of 
the plait point (P in Fig. 2). It is here that the theory of 
irreversible thermodynamics is indispensible in our 
analysis of the diffusion processes. At the plait point we 
have from equilibrium thermodynamic considerations 
(see Appendix A) 

IGI = 0 (36) 
and one of the eigenvalues of the Fickian matrix of 
diffusion coefficients [o] vanishes at P. Since [K] is 
related to the [O], we must conclude that one of the 
eigenvalues of [K] also vanishes at P. Let us take I, 
= O.Fromeq. (17)weseethatAi = K,, +K,,andthe 
two eigenvectors in the region of P take the form 

(el)= (%>- @2)= (-F). (37) 

Run C 
k 0.25 - /--=* glycerol-rich phase 2 C- 

z 0.20 - 
6 
z 
F 0.15=---- 

_y 
z 0.10 

x” 0.05- ____________------------ - 0.05 ____-___---- 

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 

x,, mole fraction ot glycerol 

Fig. 8. Comparison of experimentally observed equilibration trajectory with theoretical predictions for Run 
C in the glycerol-rich phase. 
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b 
rm 0.18 
3 
% O-16- 
6 
t; 0.14 - 
m 

u 0.12- 

E 
- 

*” 
O.lO- 

0.08 - 

0.06 - 

0.04 - 

0.26 

0.24 

0.22 acetone-rich phase 

V __-- ___---- 
A, .__---- 
t 

______.--- ____-- 
0.021 I I I II 1 L a 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 

x, , mole fraction of glycerol 

Fig. 9. Comparison of experimentally observed equilibration 
trajectory with theoretical predictions for Run C in the 

acetone-rich phase. 

The slope of the second eigenvector dx,/dx, is 
therefore --K,,/K,,. If the interphase mass transfer 
process can be considered to operate under quasi- 
steady state conditions, then the film theory model can 
be used and [K] will be directly proportional to [D]. In 
this case the slope of the second eigenvector will be 
-D, JD,,. As shown in Appendix B, the limiting tie- 
line has the slope -D, ,/D,* and so we conclude that 
the second eigenvector of [K] in the region of P, i.e. 
(e2). is parallel to the limiting tie-line. The final stages 
of decay of the composition will therefore be parallel to 

0.8 r 

the limiting tie-line. Figure 10 shows diagramatically 
the actual equilibration run performed with the initial 
phases lying on the tangent to the binodal curve at the 
plait point P; these experiments are described in detail 
in thesis of Louizos [29]. The actual experimental path 
was indeed found to be linear and the rates of mass 
transfer lower than in other regions of the ternary 
diagram. The slowness of the mass transfer can be 
understood from the fact that the equilibration process 
is dictated by the smaller of the two eigenvalues and as 
the critical point is approached, this eigenvalue A, 
tends to vanish. The above evidence is indicative of the 
interesting features of interphase mass transfer pro- 
cesses in the region of P and more experiments will be 
necessary to reveal further features. There appears to 
be a shortage of experimental mass transfer measure- 
ments in the region of the ternary critical point but the 
available information would suggest that coupling 
effects are likely to be of great importance here; see for 
example the experimental data of Vitagliano et al. [30] 
for the system water-chloroform acetic acid. 

CONCLUDING REMARKS 
We set out to determine the significance of diffu- 

sional coupling effects for interphase mass transfer in 
non-ideal liquid-liquid systems. Our experimental 
results on the composition trajectories in a batch 
extraction cell for the system glycerol-water-acetone 
have shown that the matrices of volumetric mass 
transfer coefficients, or equilibration rate constants, 
[K’] and [K”] in the acetone-rich and glycerol-rich 
phases respectively, have quite significant off-diagonal 
elements. Also, the experimentally observed trajec- 
tories cannot be explained even at a qualitative level by 
the adoption of pseudo-binary approaches to inter- 
phase mass transfer formulations. Rigorous design 
procedures for extraction equipment must therefore 
allow for mass transfer coupling effects by incorporat- 
ing non-diagonal mass transfer coefficient matrices. 

Equlllbrlum paths in region 
. of the plait point P 

*” 0.6 - 
b . 
5 
6 2-Y I ,’ / 

I 

.- _ 1 I T ,/’ , 
g 
aJ 
0 
E 

mole fraction glycerol, x, 

Fig. 10. Experimentally observed equilibration path in the region of the plait point P. Measurements by 
Louizos (291. 
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We have also pointed to some interesting mass 
transfer behaviour in the region of the critical point 
and presented some evidence to show that the expec- 
tations based on the theory of irreversible thermo- 
dynamics are borne out in practice. The analysis of the 
mass transfer process in the region of the critical point 
shows the indispensibility of a fundamental thermo- 
dynamically based approach to mass transport 
phenomena. 

The work reported in this paper could have import- 
ant consequences in the design of extraction columns 
because it has a bearing on the interfacial mass transfer 
rates between the dispersed and continuous phases. In 
practical systems, the phase hydrodynamics will have 
the effect of reducing the influence of molecular 
diffusion coupling; however, close to the interface 
molecular diffusion will still be controlling and the 
effects of diffusional coupling will still be significant, as 
shown by Krishna [32-341 who studied the influence 
of phase contact time and turbulence levels on diffu- 
sional coupling. 

The practical consequences of diffusional coupling 
effects on extraction processes are that the pseudo- 
binary component efficiencies and heights of transfer 
units will be significantly different from one another 
and could be unbounded; this has been confirmed for 
distillation operations [l. 31 and multicomponent ex- 
traction measurements in practical contactors will be 
required to confirm the expectations voiced above. 

2 
A 

G 

CD1 
Ceil 
CEI 
G 
Gij 

Go 
Gl 

[HI 

[II 
Ji 

NOTATION 
initial composition in the acetone-rich phase 
equilibrium composition in the acetone-rich 
phase 
interfacial area, m2 
mixture molar density, kmol me3 
matrix of Fickian diffusivities, mz s-l 
ith eigenvector of [K] 
modal matrix of [K] 
molar Gibbs free energy, J kmol- ’ 
second partial derivative of G with respect to 
composition, J kmol- ’ 
initial composition in the glycerol-rich phase 
equilibrium composition in the glycerol-rich 
phase 
Onsager matrix of coeficients, J kmol- ’ 
m --2 s-1 

identity matrix 
molar diffusion of component i with respect 
to the molar average mixture velocity, 
kmol me2 sP1 
n - 1 dimensional column matrix of molar 
diffusion fluxes, kmol mm2 s-’ 
matrix of mass transf-er coefficients, m s-l 
matrix of volumetric mass transfer coef- 
ficients, or equilibration rate constants, s-l 
or hi-’ 
pseudo-binary equilibration rate constant, 
S -1 or h-’ 
moles of component i in batch cell, kmol 

moles of total mixture in batch cell, kmol 
number of components in mixture 
molar flux of component i referred to a 
laboratory fixed coordinate frame of 
reference 
mixture molar flux relative to a laboratory 
fixed coordinate frame of reference 

s 
t 
xi 

&I 
Xi0 

5zi 

Axi” 

surface renewal frequency, s-l 
time, s or h 
mole fraction of component i in the bulk 
phase 
mole fraction of component i at the interface 
mole fraction of component i at the start of 
the experiment 
pseudo-mole fraction of component i 

= x,, - xiO, initial composition driving force 

Greek letters 

6 film thickness, m 
li eigenvalue of [K], s-l or h-’ 

Pci molar chemical potential of component i, 
J kmol-’ 

(T rate of entropy production, J mm3 s-l K-’ 

% standard deviation of composition de- 
termination 

Matrix notation 

t\ 

n - 1 dimensional column matrix 
n - 1 x n - 1 dimensional square matrix 

c 1-l inverted matrix 

Subscripts 

I referring to interface 
0 referring to initial composition or condition 

at t = 0 

Superscripts 

referring to acetone-rich phase 
I, referring to glycerol-rich phase 
* pseudo-species or parameter 

Vector notation 

VT, P gradient operator under isothermal and iso- 
baric conditions 
dot product between two vectors 
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APPENDIX A 
For diffusion in the absence of external force fields (such as 

gravitational, electrostatic, magnetic etc.), the rate of entropy 
production in n-component component mixtures is obtained 
from the theory of irreversible thermodynamics [S-7] as 

cr = -f”$i Ji.V,,,(ni-p,) Z 0 (A-l) 
1-1 

where the positive definite condition for I? follows from the 
second law of thermodynamics. At equilibrium the rate of 
entropy production vanishes identically. 

Due to the Gibbs Duhem relationship, only n ~ 1 of the 
chemical potential gradients Vr,n pi are independent and if we 
construct a linear constitutive relationship between the n - 1 
independent gradients and the n - 1 independent fluxes J,, i.e. 

vT,p (P -A) = - $ [HI(J) (A-2) 

then the matrix of these fundamentally defined coefficients is 
symmetric, i.e. 

CH] = [HI= (A-3) 

which is a statement of the Onsager reciprocal relations [S]. A 
sufficient condition for the entropy production rate d to be 
positive definite is that the determinant of the matrix of 
Onsager coefficients [H] be positive definite, which requires 
that 

IHI 2 0 (A-4) 
and that the principal cofactors be all positive. This implies 
that the diagonal elements are all positive 

Hii >= 0 (A-5) 

whereas the off-diagonal elements must satisfy conditions of 
the form 

H,,H,,-HHf,tO; i,k= 1.2,. n-l. (A-6) 

(i fk) 

The gradients VrT.a (p, - p,J can be expressed in terms of 
the mole fraction gradients by the relation 

VT,~ (cc - P(.) = CGI Wx) (A-7) 
where the elements Gij represent the second derivatives of the 
molar Gibbs free energy G with respect to composition 

dZG 
Gij = ~ z 

a (Pi -PC.) a(Pj-Pn) 

ax,ax, axj ax* 
= Gj,. (A-8) 

The matrix [G] is symmetric and from thermodynamic 
stability considerations [G] must be positive definite [28]. 

Combining eqs (A-2) and (A-7) we obtain 

(J) = - c, [H] - 1 [G] (Vx) (A-9) 

and if we define the matrix of Fickian diffusivities [D] by the 
relation 

we see that 

(J) = -cl CD] (Vx) (A-10) 

[D] = [HI-’ [G]. (A-11) 

The Fickian matrix [D] is a product of two symmetric, 
positive definite matrices and from the Eules of matrix algebra 
it follows that the eigenvalues of [D], D, are real and positive 
definite. Since the structure of [K] is related to the structure 
of [D], it follows that the eigenvalues of [K] are also real and 
positive. 

Now let us examine the structure of [D]. For non-ideal 
liquid mixtures such as glycerol-water-acetone the matrix [G] 
will have significant off-diagonal elements. To illustrate this 
we have calculated G,j for X, = 0.6749, x2 = 0.2588, 
xs = 0.0663 (which represents the glycerol-rich phase com- 
positions measured 2.5 h from the start of the experiment Run 
C) using the NRTL coefficients fitted to the measured 
equilibrium data [26]. The values of Gi, are: 

G ,r = 21.95; G,, = G,, = 18.31; 

G r2 = 28.22 kJ mol-’ (A-12) 

demonstrating the strong non-ideahties in the system. So, 
even if the matrix [H] has small off-diagonal elements, the 
matrix [D], which is the product [H] I [G] will have 
significantly large off-diagonal elements. It must be remarked 
that the matrix [D] is un-symmetric in general. 

An interesting property of [G] is that the determinant ICI 
must vanish at the plait point P, i.e. 

lGI = 0 (A-13) 

and since it follows from eq. (A-i 1) that 

IDI = lGl/lHl (A-14) 

the consequence of eq. (A-13) is that at the plait point 

IDI = 0 (A-15) 

which means that one. of the eigenvalues of [D] must vanish 
identically at this point. Since [K] is relatrd to ED], it follows 
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that one of the eigenvalues of [K] must also vanish at the plait 
point P. 

APPENDIX B 

For equilibrium between the phases ’ and ” the following 
condition must be satisfied 

9: (x;. xi) = J&,(x;‘, x’;); i = 1, 2, 3 (B-1) 

and for small variations in either phase we must have 

dr> = dpf’, i = 1, 2, 3. (B-2) 

Now, at constant temperature and pressure we have from 
the Gibbs-Duhem restriction 

x; d& + x; dp; + x; d& = x;’ d&’ + x’; d& 
+ x; d,u;’ (B-3) 

or writing x, = 1 -x1 -x1 we get 

x;d(~;~~;)+x;d(~;~l~;)=x;Id(~;‘--~) 
+x’;d(& -&) (B-4) 

which can be rearranged to the form 

X” - x’ 
2 2 d WI - 14) d (A’ - 14’) =- 
X” - x’ d(p;-&) = -d(&-&)’ 

(B-5) 
1 1 

In the region of the critical point (P in Fig. 2). eq. (B-5) reduces 
to 

(B-6) 

Now, from eq. (A-7) we have 

d(p--m) = [G]d(x) (B-7) 

and so eq. (B-6) can be expressed in the region of the critical 
point as 

which represents the slope of the limiting tic-line. Solving the 
resultant quadratic equation for dx,/dx, we obtain on 
invoking the condition that ICI = 0 at the critical point: 

(B-9) 

Now, using the relationship [D] = LH] -’ [G] we see that 

(B-10) 

which shows on comparison with eq. (B-9) that the slope of 
the limiting tie-line is 

dx, D2, D,, _= __= -_ 
dx, 22 D D 12 

(B-11) 

which relation was first derived by Kirkaldy and Purdy [31] 
using a slightly different approach. 


