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Using the Maxwell–Stefan formulation for diffusion in zeolites as a basis, we develop a general analytic
expression for the self-diffusivity of a component in a multicomponent mixture. Correlation effects are
accounted for by the introduction of particle–particle ‘‘ exchange ’’ coefficients. Various formulae for estimation
of these exchange coefficients have been postulated. The developed procedure for estimation of the self-
diffusivity is verified by comparison with kinetic Monte Carlo simulations for binary and ternary mixtures in
MFI zeolite and in a square lattice. Additional verification of the analytic model is obtained using published
molecular dynamics simulations and experimental data.

1. Introduction

Zeolites are widely used as adsorbents or catalysts in separa-
tion and reaction processes.1–3 In the design of zeolite based
processes, it is essential to have information on the diffusivities
of the various components. While there are several experimen-
tal, and computational, studies on single species diffusion,1,2

there is very little corresponding data on mixture diffusion.
Snurr and Kärger4 performed pulsed field gradient (PFG)
NMR measurements and molecular dynamics (MD) simula-
tions to determine self-diffusivities in a mixture of CH4 and
CF4 in MFI zeolite. Jost et al.

5 performed similar studies for
mixtures of CH4 and xenon in MFI. Gergidis et al.

6,7 studied
the self-diffusivities in a mixture of CH4 and n-butane in
MFI using molecular dynamics and quasi-elastic neutron scat-
tering (QENS). Paschek and Krishna8 used kinetic Monte
Carlo (KMC) simulations to study self-diffusivities in a mix-
ture of CH4 and CF4 in MFI. Schuring et al.

9 have determined
the self-diffusivities in a mixture of n-hexane and 2-methylpen-
tane in MFI using a tracer exchange positron emission profil-
ing technique. There is no published data on self-diffusivities in
mixtures containing three or more species.
Self-diffusivities in zeolites are strongly influenced by corre-

lation effects associated with molecular jumps and, conse-
quently, their values are lower than the ‘‘corrected ’’, or
Maxwell–Stefan diffusivities.10,11 In order to predict self-diffu-
sivities, we need to model correlation effects in multicomponent
mixtures. No such model has been published yet.
The objectives of this work are two-fold. Firstly, we develop

a general, analytic, expression for self-diffusivity of a compo-
nent in a multicomponent mixture. The derivation uses the
Maxwell–Stefan diffusion formulation as a basis. Correlation
effects are taken account of by introducing particle–particle
exchange coefficients; several approaches for estimation of
these exchange coefficients are suggested. Secondly, we per-
form KMC simulations for self-diffusivities for diffusion of bin-
ary and ternary mixture in two types of lattices (see Fig. 1): (a)
square lattice, and (b) MFI zeolite topology. These KMC
simulations are used to validate the developed expression for
self-diffusivities and to choose the appropriate model for esti-
mation of the exchange coefficients. Further verification of

the developed model is obtained using published MD mixture
simulation data4,6 and the experiments of Schuring et al.9

2. Development of theory for self-diffusivity

Consider n-component diffusion within a zeolite. The fluxes Ni
can be related to the gradients of the fractional occupancies
Hyi by the following relation by the generalized Fick’s law:

ðNÞ ¼ �r½Ysat�½D�ðHyÞ ð1Þ

where [D] is the n-dimensional square matrix of Fick diffusiv-
ities; r is the zeolite matrix density expressed as unit cells (or
supercages) per m3; [Ysat] is a diagonal matrix with elements
Yi,sat , representing the saturation loading of species i. The
fractional occupancies yi are defined as:

yi � Yi=Yi;sat; i ¼ 1; 2; :::n ð2Þ

where Yi represents the loading of species i expressed in mole-
cules of sorbate (diffusant) per unit cell (or supercage).
For calculation of the fluxes Ni we need to estimate the n� n

elements of [D]. The elements of [D] are influenced not only by
the species mobilities but also by the sorption thermody-

Fig. 1 Diffusion unit cells for (a) square lattice and (b) MFI. The
large dots indicate the sorption sites.
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namics. For estimating [D] it is necessary to use the Maxwell–
Stefan formulation in which the chemical potential gradients
are written as linear functions of the fluxes:12–14

�r
yi
RT

Hmi ¼
Xn
j¼1
j 6¼i

YjNi �YiNj
Yi;satYj;satÐij

þ Ni
Yi;satÐi

; i ¼ 1; 2; . . . n ð3Þ

We have to reckon in general with two types of Maxwell–
Stefan diffusivities: Ði and Ðij . The Ði are the diffusivities that
reflect interactions between species i and the zeolite matrix;
they are also referred to as jump or ‘‘corrected ’’ diffusivities
in the zeolite literature.1–3 Experimental and MD simulation
data15 for weakly confined guest molecules in zeolitic hosts
(e.g. methane in MFI) show thatÐi are practically independent
of the loading, i.e.

Ði ¼ Ðið0Þ ð4Þ

where Ði(0) are the zero-loading diffusivities. For more
strongly confined guest molecules, the M–S diffusivity
decreases with the total occupancy, following:

Ði ¼ Ðið0Þð1� y1 � y2 � :::� ynÞ ð5Þ

Such behaviour is exhibited, for example, for diffusion of CF4
in MFI zeolite.16

A site-to-site jump leaves behind a vacancy. Subsequent
jumps are more likely to fill this vacancy, thus producing
‘‘vacancy correlation’’ effects. An important consequence of
vacancy correlations is that the self-diffusivities are reduced.
When the jump of species i creates a vacancy and this vacancy
is filled by species j, the vacancy correlation effect is captured
by the term containing the ‘‘exchange ’’ coefficients Ðij in
eqn. (3). The Onsager reciprocal relations demand Ðij ¼ Ðji .
The net effect of this exchange is a slowing down of a faster
moving species due to interactions with a species of lower
mobility. Also, a species of lower mobility is accelerated by
interactions with another species of higher mobility. When
the jump of species i creates a vacancy and this vacancy is filled
by species i itself, the correlation effect is described by Ðii ; this
must be expected to be identical to the pure component M–S
diffusivity Ði .
For structures such as MFI, consisting of a three-dimen-

sional network of intersecting straight and zig-zag channels,
additional correlation effects arise due to geometric effects
and due to ‘‘ballistic ’’ jumps that begin and end at sites that
are not nearest neighbours.17–19

The estimation of the exchange coefficients Ðij is a key issue
in the proper description of mixture diffusion and, in particular
self-diffusivities that are strongly influenced by correlation
effects. In general we may expect the interchange between spe-
cies species i and species j to be dictated by the mobilities of the
pure species and their compositions in the mixture:

Ðij ¼ f Ði;Ðj ;
yi

yi þ yj
;

yj
yi þ yj

� �
ð6Þ

Drawing inspiration from diffusion in fluid mixtures,
Krishna and Wesselingh12 suggested the logarithmic interpola-
tion formula:

Ðij ¼ ½Ði�yi=ðyiþyjÞ½Ðj �yj=ðyiþyjÞ ð6aÞ

This formula was found to predict the transport diffusivities in
binary mixtures in MFI with reasonable accuracy.14

Alternatively, we may postulate a linear interpolation for-
mula

Ðij ¼
yi

ðyi þ yjÞ
½Ði� þ

yj
ðyi þ yjÞ

½Ðj � ð6bÞ

or assume that the interchange process is composition indepen-
dent, obeying say the square root formula

Ðij ¼ ½ÐiÐj �1=2 ð6cÞ

For facile particle–particle exchange, vacancy correlation
effects tend to get washed out; this is described by

Ðij ! 1 ð6dÞ

Facile counter-exchange of molecules could occur, for exam-
ple, within the cages of FAU and LTA zeolites when intra-cage
hopping rates are high. When Ðij!1, eqn. (3) simplify to give
a set of uncoupled flux equations:

Ni ¼ �rYi;satÐi
yi
RT

Hmi; i ¼ 1; 2; :::n ð7Þ

Self-diffusivities are more significantly influenced by correla-
tion effects than are the transport diffusivities and therefore
provide more stringent tests for the applicability of eqn. (6a),
(6b), (6c) or (6d).
The chemical potential gradients in eqn. (3) may be

expressed in terms of the gradients of the occupancies by intro-
duction of the matrix of thermodynamic factors [G]

yi
RT

Hmi ¼
Xn
j¼1

GijHyj ; Gij �
Yj;sat
Yi;sat

� �
Yi
pi

@pi
@Yj

; i; j ¼ 1; 2 . . . n

ð8Þ

Knowledge of the sorption isotherm is sufficient to allow
estimation of [G] and H(m). If the n-component sorption can
be described by the multicomponent Langmuir isotherm, the
elements of [G] are given by

Gij ¼ dij þ
yi

1� y1 � y2 � :::� yn
; i; j ¼ 1; 2:::n ð9Þ

where dij is the Kronecker delta.
It is convenient to define a n-dimensional square matrix [B]

with elements

Bii ¼
1

Ði
þ
Xn
j¼1
j 6¼i

yj
Ðij

; Bij ¼ � yi
Ðij

; i; j ¼ 1; 2::::n ð10Þ

With this definition of [B], eqn. (3) can be cast into n-dimen-
sional matrix form:

ðNÞ ¼ �r½Ysat�½B��1½G�HðyÞ ð11Þ

which gives the following expressions for the Fick matrix

½D� ¼ ½B��1½G� ð12Þ

Measurements of self-diffusivities are commonly made by
labelling (i.e. tracing) species 1 and monitoring it during the
diffusion process. Therefore, to determine the self-diffusivity
of component 1 in say a ternary mixture consisting of species
1, 2 and 3 we consider a quaternary system made up of species
1, 2, 3 and 4 where species 4 is the labelled species 1. The total
number of molecules of 1 and 4 are held constant during the
diffusion process, and therefore we have the constraint:

Hy4 ¼ Hy1 ¼ �Hy1 ð13Þ

Furthermore, during self-diffusivity measurements of compo-
nent 1, there are no concentration gradients for species 2 and
3, i.e.

Hy2 ¼ 0; Hy3 ¼ 0 ð14Þ
During tracer diffusion we essentially have equimolar diffu-

sion of component 1 and its labelled form, i.e. component 4,
giving:

N1 ¼ �N4 ¼ �N1 ð15Þ
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Applying the constraints (13) and (14) to eqn. (11) we
obtain

N1 ¼ �rY1;satðD11 �D14ÞHy1 ¼ �rY1;satD

1Hy1 ð16Þ

where D11 and D14 are the (1,1) and (1,4) elements of the Fick
matrix [D]. Eqn. (16) also serves to define the self (or tracer)
diffusivity of component 1, D

1; this diffusivity is identical to
D
1 , defined by

N4 ¼ N1 ¼ � rY1;satðD44 �D41ÞHy4 ¼ �rY1;satD

1Hy1

ð17Þ

because 1 and 4 are the same molecular species. The exchange
coefficient Ð14 when estimated using eqn. (6) is identical with
the pure component M–S diffusivity of component 1, i.e.
Ð14 ¼ Ð11 . Furthermore, since species 4 is the tracer compo-
nent its concentration in the mixture is vanishingly small, i.e.
y4! 0.
Calculating the elements of [D] using eqn. (12), after intro-

ducing the various simplifications for tracer diffusion outlined
above, we obtain the following simple and elegant expression
for D

1:

D
1 � D11 �D14 ¼

1

1

Ð1
þ y1
Ð11

þ y2
Ð12

þ y3
Ð13

ð18Þ

It is clear from eqn. (18) that the self-diffusivity is strongly
influenced by particle–particle exchanges Ð12 and Ð13 . Eqn.
(18) may be extended to a general n-component mixture:

D
1 ¼

1

1

Ð1
þ y1
Ð11

þ y2
Ð12

þ y3
Ð13

þ ::::::
yn
Ð1n

ð19Þ

Eqn. (6) provides a procedure for estimation of the various
exchange coefficients, Ðij and, in conjunction with eqn. (4) or
(5), eqn. (19) relates the self-diffusivity D

1 to the zero-loading
diffusivities Ði(0). By rotating the subscripts in eqn. (19), ana-
logous expressions are obtained for the self-diffusivities of
components 2, 3,...n. The expression (19) reduces for a single
component system to

D
1 ¼

1

1

Ð1
þ y1
Ð11

ð20Þ

that was derived earlier.11 For a binary mixture, the formula
(19) simplifies to

D
1 ¼

1

1

Ð1
þ y1
Ð11

þ y2
Ð12

ð21Þ

We note, in passing, that the expression derived earlier in ref. 8
for self-diffusivity in a binary mixture is flawed as a conse-
quence of an incorrect derivation. It is important to stress that
the expression for the self-diffusivity (19) is not influenced by
the thermodynamic correction factor [G]. Put another way,
sorption thermodynamics play no role in the determination
of the self-diffusivity.

3. KMC simulation methodology

We first perform KMC simulations in which each component
follows Langmuir isotherm behaviour. We assume the lattice
to be made up of equal sized sites that can be occupied by only
one molecule at a time. Particles can move from one site to a
neighbouring site via hops. Two types of topologies were stu-
died: (a) square lattice, and (b) MFI; see Fig. 1. For the square

lattice (Fig. 1(a)) we take the distance of separation between
adjacent sites to be unity, l ¼ 1. Furthermore the jump fre-
quency of species 1 is taken to be equal in all directions and
set to unity, i.e., n1 ¼ 1 s�1. The jump frequency of component
2 is taken to be sixteen times that of component 1. For the
MFI topology, the jump frequencies along the straight and
zig-zag channels for component 1 are taken to correspond to
that for 2-methyl hexane (2MH) at 300 K, n1,str ¼ 1.4� 105
s�1; n1,zz ¼ 5� 104 s�1; these values were calculated by Smit
et al. using the transition state theory.20 The maximum loading
was taken to be 4 molecules per unit cell, where the molecules
are all located at the intersections. We have published the
details of the pure component 2MH simulations earlier;10 these
simulations have established the validity of eqn. (5) to describe
the variation of the jump diffusivity Ði with occupancy. The
jump frequencies for the other components 2 and 3 are taken
to be, respectively, twice and half, the corresponding values
for component 1; Table 1 summarises the jump frequencies
and the zero-loading jump diffusivities for all three compo-
nents.
We employ a standard KMC methodology to propagate the

system (details in ref. 10, 21 and 22). A hop is made every
KMC step and the system clock is updated with variable time
steps. For a given configuration of random walkers on the lat-
tice a process list containing all possible M moves to vacant
intersection sites is created. Each possible move i is associated
with a transition probability ni . Now, the mean elapsed time t
is the inverse of the total rate coefficient

t�1 ¼ ntotal ¼
XM
i¼1

ni ð22Þ

which is then determined as the sum over all processes con-
tained in the process list. The actual KMC time step Dt for a
given configuration is randomly chosen from a Poisson distri-
bution

Dt ¼ �lnðuÞ=ntotal ð23Þ

where u2 [0,1] is a uniform random deviate. The time step Dt is
independent of the chosen hopping process. To select the
actual jump, we define process probabilities according to
pi ¼

Pi
j ¼ 1nj/ntotal . The ith process is chosen, when

pi� 1< g< pi , where g2 [0,1] is another uniform random devi-
ate. After having performed a hop, the process list is updated.
In order to avoid wall effects we employ periodic boundary
conditions. We have investigated the finite size effect on the dif-
fusivity and found systems of 10� 10 and 5� 5� 5 unit cells
for the square lattice and MFI topologies, respectively, to be
sufficiently large and giving satisfactory results.10,14 From the
KMC simulations we calculate the self-diffusivity of each of
the three components from the mean square displacement of
the individual particles:

D
i ¼

1

6
lim

Dt!1

1

Dt
1

Ni

XNi
j¼1

ri;j tþ Dtð Þ � ri;j tð Þ
� �2D E

ð24Þ

where h� � �i denotes both ensemble and time averaging over the
entire system trajectory; Ni is the number of particles belong to
species i; ri,j(t) is the position vector at time t.

Table 1 Transition probabilities and zero-loading diffusivities for a

three-component system

Species, i Yi,sat nzz/s
�1 nstr/s

�1 Ði(0)/m
2 s�1

1 (¼ 2MH) 4 5� 104 1.4� 105 6.85� 10�14

2 4 1� 105 2.8� 105 13.7� 10�14

3 4 2.5� 104 7� 104 3.43� 10�14
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Applying linear response theory, the Onsager transport
coefficients Lij can be determined using the displacement for-
mula

Lij ¼ lim
Dt!1

Lij Dtð Þ ¼ 1

6

1

Ns
lim

Dt!1

1

Dt

XNi
l¼1

rl;iðtþ DtÞ � rl;iðtÞ
� � !*

�
XNj
k¼1

rk;jðtþ DtÞ � rk;jðtÞ
� � !+

ð25Þ

In contrast to the formula for Lij used by Sanborn and Snurr
23

in their MD simulations, the normalising volume is replaced
by Ns , the total number of discrete adsorption sites in the
simulation. Eqn. (25) yields the Lij in units of m

2 s�1 and they
are related to the Fick [D] by the formula derived in our earlier
publication14

D½ � ¼ L½ �
1=y1 0 0

0 . .
.

0
0 0 1=yn

2
64

3
75 G½ � ¼ B½ ��1 G½ � ð26Þ

The Onsager coefficients Lij are subject to strong correlation
effects and therefore the obtained values of the transport coef-
ficients vary strongly with the separation time between two
configurations Dt; a Dt of 10�3 s was employed, on the basis
of our previous experience.10,14

4. Verification of self-diffusivity model

4.1 Binary mixtures

Let us first consider KMC simulations for the square lattice
with a binary mixture with jump frequencies n1 ¼ 1; n2/
n1 ¼ 16. The total occupancy of the system is fixed as
y1+ y2 ¼ 0.96. Simulations were carried out for various mole
fractions of component 1 in the mixture; the results are pre-
sented as open symbols in Fig. 2(a) and (b). The calculations
using eqn. (21) in conjunction with eqn. (5) and the four var-
iants of eqn. (6) are also shown in Fig. 2. As expected, the
facile exchange model is hopelessly in error; this model ignores
the strong correlations that influence self-diffusivities. Of the
three other mixture rules for the exchange coefficient, the
square root model, eqn. (6c) does not portray the right limiting
values for the diffusivities. The logarithmic and linear interpo-
lation formulae both show the proper limiting behaviour. The
logarithmic interpolation formula is superior to the linear
interpolation formula in its predictive capability for compo-
nent 2, that is strongly decelerated by the slower moving 1.
In Fig. 3 we present the KMC simulation results for the ele-

ments of the Onsager matrix [L] for the same system as above.
We see that the predictions of eqn. (26) using the logarithmic
interpolation formula eqn. (6a) is clearly superior to that of
the other scenarios for exchange. In particular the cross-coeffi-
cient L12 is predicted extremely well. It is interesting to note
that though the predictions of Onsager [L] using eqn. (6a)
are extremely good, the corresponding predictions of self-diffu-
sivities (Fig. 2) are less good, emphasising the fact that correla-
tions affect self-diffusivities to a much greater extent than
transport diffusivities.
Next we consider the experimental data of Schuring et al.9

for self-diffusivities in the mixture of n-hexane (nC6, compo-
nent 1) and 2-methylpentane (2MP, component 2) in MFI zeo-
lite at a temperature T ¼ 433 K and total pressure P ¼ 6.6
kPa. In Fig. 4(a) the experimental data are compared with
the self-diffusivities calculated using eqn. (5), (6a) and (21).
The sharp decrease in the self-diffusivity of nC6 with increasing
2MP loading is portrayed very well by the model. In Fig. 4(b)
we compare the self-diffusivity calculations for nC6 using four
different scenarios for the estimation of the exchange coeffi-

cient, eqn. (6a), (6b), (6c) or (6d). The facile exchange assump-
tion is hopelessly in error. The square root model predictions
are good for low 2MP loadings but do not show the proper
trend with higher 2MP loadings. Both the linear and logarith-
mic interpolation formulae show the right limiting behaviour
but the linear interpolation formula shows significant devia-
tions at intermediate composition ranges. Only the logarithmic
interpolation formula is successfully able to predict the right
trend over the entire composition range. These findings are
consonant with those obtained from Fig. 2(b) for the square
lattice simulations.
Consider now the MD simulations of Snurr and Kärger4 for

self-diffusivities in a mixture of CH4 (component 1) and CF4
(component 2) in MFI zeolite at 200 K. The MD simulations
were carried out at a total mixture loading of Y1+Y2 ¼ 12
molecules per unit cell and the methane loading is varied from
0–12 molecules per unit cell; their simulation data are shown as
open symbols in Fig. 5. We will try to calculate the self-diffu-
sivities from pure component data. The pure component diffu-
sivities at zero loading are estimated as Ð1(0) ¼ 60� 10�10 m2

Fig. 2 KMC simulations of the self-diffusivities for binary mixture in
a square lattice. The total occupancy of the lattice is 0.96. The lattice
parameters are l ¼ 1 and the jump frequency of component 1,
n1 ¼ 1 and that of component 2, n2 ¼ 16. The Onsager coefficient
has been normalised with respect to the zero-loading diffusivity value
Ð1(0). The KMC simulation results are compared with predictions
using eqn. (5), (6) and (21). Four different methods for estimation of
the exchange coefficient, using either eqn. (6a), (6b), (6c) or (6d) are
compared.
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s�1, Ð2(0) ¼ 25� 10�10 m2 s�1. Methane being a smaller mole-
cule has a higher saturation loading than that of CF4 ; we
therefore take Y1,sat ¼ 22 and Y2,sat ¼ 12 on the basis of

information on mixture isotherms.24 The calculations of the
diffusivities D

1 and D

2 using eqn. (5), (6) and (21) are also

shown in Fig. 5 for four different scenarios for the estimation
of the exchange coefficients. Clearly, the assumption of facile
exchange is not valid. All the other mixture rules give compar-
able results and in very good agreement with the MD simula-
tion results.
Gergidis and Theodorou6 have performed two sets of MD

simulations for the self-diffusivities in mixture of CH4 (1)
and n-butane (2) at 300 K in MFI; see Fig. 6. In the first set
(Fig. 6(a)) the n-butane loading Y2 is kept constant at 4
molecules per unit cell and the methane loading Y1 is varied.
In the second set (see Fig. 6(b)) the methane loading Y1 is kept
constant at 4 molecules per unit cell and the n-butane loading
Y2 is varied. We now attempt to model the self-diffusivities
using the M–S formulations developed above. The saturation
loadings are estimated as Y1,sat ¼ 22 and Y2,sat ¼ 12. The
pure component diffusivities at 300 K are taken as

Fig. 3 KMC simulations of the self-diffusivities for binary mixture,
of varying composition, in a square lattice. The total occupancy of
the lattice is 0.96. The lattice parameters are l ¼ 1 and the jump fre-
quency of component 1, n1 ¼ 1 and that of component 2, n2 ¼ 16.
The Onsager coefficient has been normalised with respect to the
zero-loading diffusivity value Ð1(0). The markers are the KMC simula-
tions and the continuous lines represent using eqn. (26). Four different
methods for estimation of the exchange coefficient, using either eqn.
(6a), (6b), (6c) or (6d) are compared.

Fig. 4 (a) Experimental data of Schuring et al.9 for self-diffusivities in
MFI of the mixture of n-hexane (nC6, component 1) and 2-methylpen-
tane (2MP, component 2) are compared with calculations using eqn.
(5), (6a) and (21). The temperature T ¼ 433 K and total pressure
P ¼ 6.6 kPa. (b) Self-diffusivity of nC6 calculated using four different
models for estimation of the exchange coefficient, using either eqn.
(6a), (6b), (6c) or (6d). The calculations were performed taking
Ð1(0) ¼ 52.5� 10�12; Ð2(0) ¼ 1.61� 10�12 m2 s�1. The component
loadings at various 2MP gas phase compositions were taken from
experimental data reported in Fig. 6 of Schuring et al.9 The saturation
loadings are Y1,sat ¼ 8 and Y1,sat ¼ 4 molecules per unit cell.
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Ð1(0) ¼ 11� 10�9 m2 s�1 and Ð2(0) ¼ 5� 10�9 m2 s�1 on the
basis of the data presented by Gergidis and Theodorou.6 The
calculations of the diffusivities in the mixture, D

1 and D

2 using

eqn. (5), (6a) and (21) show good agreement with the MD
simulations for both simulation sets.

4.2 Ternary mixtures

We now turn to self-diffusivities in ternary mixtures in MFI
zeolite using the data summarized in Table 1. In the first series
of KMC simulations with the ternary mixture, we keep the
mixture composition constant and y1 ¼ y3 ¼ y3 ¼ 0.333 for
each species and study the influence of varying the total occu-
pancy (y1+ y3+ y3). The KMC simulation results for the D

i

are shown in Fig. 7(a) as open symbols. Calculations of D
i

using eqn. (18), in conjunction with eqn. (5) and (6a), are
shown in Fig. 6(a) as continuous lines. The agreement of
KMC simulations with the expression (18) is excellent. If all
the particle–particle exchange process is assumed to take place
infinitely fast, i.e. Ðij!1, the calculations using eqn. (18) are
significantly worse, especially for the faster moving 2 and 3; see
Fig. 6(b). Put another way, correlation effects tend to affect the
faster moving species to a greater extent than the slower mov-
ing species.
Next, we performed a set of three KMC simulations in

which the total occupancy was held constant

(y1+ y3+ y3 ¼ 0.48) but the mixture compositions were var-
ied. In Fig. 8(a) we present the simulation results which were
carried out for an equimolar mixture of 2 and 3 in which the
mole fraction of component 1, y1/(y1+ y3+ y3) was varied
from 0 to 1. The continuous lines in Fig. 8(a) were calculated
using eqn. (18), along with eqn. (5) and (6a). The predictions
for the species 1 and 3 are good while the predictions for the
fastest moving species 2 are significantly less good. This is
because the fastest moving species is affected more by correla-
tion effects and these effects are apparently not entirely cap-
tured by the logarithmic interpolation formula. Geometric
correlations exist in practice7 and these are picked up by
KMC simulations but not entirely by the assumption of iso-
tropy implied by our use of the Maxwell–Stefan equations.
Similar conclusions can be drawn from two further ternary

KMC simulation results presented in Fig. 8(b) and (c) wherein
the compositions of components 2 and 3 are varied in equimo-
lar mixtures of the remaining two components.
The inability of eqn. (6a) to mirror all correlation effects pre-

sent during diffusion in MFI zeolite, is less crucial in the pre-
diction of the transport coefficients. In order to demonstrate

Fig. 6 Comparison of MD binary mixture simulations of Gergidis
and Theodorou6,7 for the mixture of CH4 (1) and n-butane (2) in
MFI at 300 K with calculations using eqn. (5), (6a) and (21). The cal-
culations were performed taking Ð1(0) ¼ 11� 10�9 m2 s�1 and
Ð2(0) ¼ 5� 10�9 m2 s�1. The saturation loadings are Y1,sat ¼ 22 and
Y1,sat ¼ 12 molecules per unit cell.

Fig. 5 Comparison of MD binary mixture simulations of Snurr and
Kärger4 for (a) CH4 and (b) CF4 in MFI at 200 K with calculations
using eqn. (5), (6) and (21). Four different methods for estimation of
the exchange coefficient, using either eqn. (6a), (6b), (6c) or (6d) are
compared. The calculations were performed taking
Ð1(0) ¼ 60� 10�10 m2 s�1, Ð2(0) ¼ 25� 10�10 m2 s�1. The saturation
loadings are Y1,sat ¼ 22 and Y1,sat ¼ 13 molecules per unit cell.

1896 Phys. Chem. Chem. Phys., 2002, 4, 1891–1898



this we present in Fig. 9 the KMC simulation results for the
elements of the Onsager matrix [L] for a ternary mixture in
which the mole fraction of component 3 is varied in a mixture
where the compositions of the remaining two components 1
and 2 are equimolar. The total occupancy was held constant
(y1+ y3+ y3 ¼ 0.48). The calculations of the diagonal ele-
ments of [L] using eqn. (26) and the logarithmic interpolation
formula are in excellent agreement. The predictions of the
cross coefficients are only somewhat less good, especially for
the elements L13 and L23 .

5. Conclusions

We have derived a simple analytical expression (eqn. (19)) for
the self-diffusivity of a component in a multicomponent mix-
ture in zeolites. The expression for the self-diffusivity contains
various exchange coefficients Ðij that portray correlations in
molecular jumps. Four different scenarios are postulated for
the estimation of these exchange coefficients. By comparison
with KMC and MD simulations, and experimental data, on

Fig. 8 KMC simulations for self-diffusivities in ternary mixture as
function of mole fraction of either component 1, 2 or 3. In each case
the mole fractions of the other two components are taken equal. In
all cases the total occupancy (y1+ y3+ y3) is kept constant at 0.48.
The pure component parameters are specified in Table 1. The KMC
simulation results for the D

i are shown as open symbols. The contin-
uous lines are obtained using eqn. (5), (6a) and (18).

Fig. 7 KMC simulations for self-diffusivity in ternary mixture as
function of total occupancy (y1+ y3+ y3). In these simulations we keep
y1 ¼ y3 ¼ y3 ¼ 0.333 for each species. The pure component para-
meters are specified in Table 1. The KMC simulation results are shown
as open symbols. The continuous lines in (a) and (b) are obtained using
eqn. (5), (6a) and (18).
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binary and ternary mixtures, the following conclusions can be
drawn:
Eqn. (19) provides a good estimate of the self-diffusivities in

multicomponent mixtures for a variety of loadings and compo-
sitions provided the exchange coefficients are estimated using
the logarithmic interpolation formula (6a).
The assumption of facile exchange, i.e. ignoring correlation

effects (by effectively taking Ðij!1), leads to extremely poor
predictions of the self-diffusivities.

Correlation effects affect the transport coefficients to a lesser
extent than they do the self-diffusivities and the predictions of
the Onsager matrix [L] using eqn. (26) are of good accuracy.
We conclude that the Maxwell–Stefan theory for multicom-

ponent diffusion in zeolites can be used to predict self and
transport diffusivities with good accuracy from pure compo-
nent transport data.
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Fig. 9 KMC simulations for Lij in ternary mixture as function of
mole fraction of component 3, y3/(y1+ y3+ y3) with the total occu-
pancy kept constant (y1+ y3+ y3) ¼ 0.48. The mixture is equimolar
in species 1 and 2. The pure component parameters are specified in
Table 1. The KMC simulation results for the Lij are shown as open
symbols. The continuous lines are obtained using eqn. (26) wherein
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