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Abstract

The Maxwell–Stefan (M–S), or corrected, diffusivity, in zeolites shows a variety of dependencies on the molecular loading or

occupancies. This loading dependence is caused by a variety of factors, including zeolite topology, connectivity, and molecule–

molecule interactions, that lead to a decrease or increase in the energy barrier for diffusion. Using the quasi-chemical theory of Reed

and Ehrlich [Surf. Sci. 105 (1981) 603–628] for surface diffusion on a square lattice as a basis, a simple model is developed to describe

the loading dependence of the M–S diffusivity for a lattice topology with an arbitrary coordination number. The developed model is

validated by kinetic Monte Carlo simulations in square, cubic and MFI zeolite topologies. Published Molecular Dynamics simula-

tions of the loading dependence of M–S and self-diffusivities in a variety of zeolite topologies can be modeled using this approach.

The M–S formulation allows accurate prediction of the transport and self-diffusivities in binary mixtures using only pure component

diffusion data. For the prediction of mixture diffusion, correlation effects also need to be properly quantified and a scheme is sug-

gested for estimation of these effects using data on M–S and self diffusivities of single components.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The proper description of diffusion of molecules with-

in zeolites is an essential step in the development of reac-

tion and separation processes involving zeolite catalysts
and adsorbents [1,2] and it is generally accepted that the

Maxwell–Stefan (M–S) diffusion formulation provides a

convenient and general framework that can be used in

practice [3–5]. For single component diffusion of species

i, the M–S formulation:

Ni ¼ �qHi–Di
1

RT
rT ;pli � �qHi;sat–Di

hi

RT
rT ;pli ð1Þ

relates the flux Ni to the chemical potential gradient

$T,pli. In Eq. (1), Hi is molecular loading expressed

say in molecules per unit cell, Hi,sat is the saturation
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loading, hi � Hi/Hi,sat is the fractional occupancy, q is
the zeolite framework density expressed as the number

of unit cells per m3, R is the gas constant, T is the tem-

perature, and –Di is the M–S, or corrected diffusivity. For

solving practical problems involving single component
diffusion it is necessary to have information on the var-

iation of the M–S diffusivity –Di with the fractional occu-

pancy hi. In the literature on zeolite diffusion, two

special scenarios have often been assumed for this occu-

pancy dependence [4,5]. In the weak confinement sce-

nario the M–S diffusivity is taken to be independent of

the occupancy and identified with the zero-loading diffu-

sivity value

–Di ¼ –Dið0Þ ð2Þ

In the strong confinement scenario the M–S diffusivity

is a decreasing function of occupancy following:

–Di ¼ –Dið0Þð1� hiÞ ð3Þ
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Nomenclature

ai constants defined in Eq. (19), dimensionless

Di,self self-diffusivity, m2s�1

–Di Maxwell–Stefan diffusivity of species i in zeo-

lite, m2/s
–Dii self-exchange diffusivity, m2/s
–Dij binary exchange diffusivity, m2/s

E activation energy for diffusion, J/mol

f parameter defined by Eq. (6), dimensionless

Ni molecular flux of species i, moleculesm�2 s�1

p jump probability, dimensionless
r position coordinate, m

R gas constant, 8.314Jmol�1K�1

t time, s

T absolute temperature, K

z coordination number of lattice, dimensionless

Greek letters

b parameter defined by Eq. (6), dimensionless
e parameter defined by Eq. (6), dimensionless

m jump frequency, s�1

hi fractional occupancy of component i,
dimensionless

Hi molecular loading, molecules per unit cell

Hi,sat saturation loading, molecules per unit cell

k jump distance on lattice, m

[K] matrix of Onsager coefficients, m2s�1

li molar chemical potential, Jmol�1

q zeolite density, number of unit cells per m3

Subscripts

1 component 2 in binary mixture

2 component 2 in binary mixture

i component i

sat referring to saturation conditions

i, j components in mixture
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Recently, Skoulidas and Sholl [6,7] have performed

molecular dynamics (MD) simulations for a variety of

molecules in four different zeolite topologies (MFI,

ISV, ITE, and MTW) and demonstrated a rich variety

of occupancy dependencies for –Di that conform to nei-

ther of the two scenarios sketched above. As illustration,

consider diffusion of CH4, CF4, Ar, SF6, Ne and Xe in

MFI at 298K; the occupancy dependencies are shown
in Fig. 1a. While CF4 can be considered to follow the

strong confinement scenario as an approximation, the

weak confinement scenario is not strictly realized for

any of the other molecules. For Xe, we note that –Di
Fractional occupancy,θi
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Fig. 1. (a) Occupancy dependences for diffusion of CH4, CF4, Ar, SF6, Ne an

and Sholl [6,7]. The zero-loading diffusivities and saturation capacities are sp

loading for diffusion of CH4 in MFI. The data has been calculated from the
exhibits a slight maximum. SF6 exhibits a curious inflec-

tion behaviour in the loading dependence of –Di. Inter-

molecular ‘‘interactions’’, leading to varying degrees of

reduction in the energy barrier for diffusion are the root

cause of the variety of occupancy dependencies [8–11].

As support for this contention let us consider diffusion

of CH4 in MFI, for which the M–S diffusivity exhbits

a slight decrease with increased occupancy; see Fig. 1a.
Skoulidas and Sholl [12] have reported MD simulation

data on the M–S diffusivity –Di for 200, 298, 373 and

473K at various loadings H. From their data we have

calculated the activation energy for diffusion as a func-
Loading, Θ / [molecules per unit cell]
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ecified in Table 1. (b) Variation of activation energy of diffusion with

MD simulations of Skoulidas and Sholl [12].
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Fig. 2. Unit cells for: (a) square; (b) cubic and (c) MFI lattice

topologies. For the square and lattice topologies, the occupation is one

molecule per site, indicated by black dots. For simulation of diffusion

of methane in MFI, a total of 24 sites are used per unit cell; these sites

are indicated as black dots (intersections), white dots (straight

channels) and grey dots (zig-zag channels). The distribution of CH4
molecules per unit cell is as follows: 4 at intersections, 8 within straight

channels, and 12 within the zig-zag channels.
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tion of the loading H; see Fig. 1b. We note a small, yet
steady, decrease in the activation energy with increased

loading. There is also some experimental evidence to

show that the activation energy for diffusion decreases

with increased loading; witness the data for diffusion

of n-butane in MFI as reported in Fig. 4 of Gardner
et al. [13].

Clearly, an important factor in describing the occu-

pancy dependence of –Di is the quantification of the reduc-

tion in the energy barrier for diffusion with increased hi.
One candidate theory is the quasi-chemical approach of

Reed and Ehrlich [14] for describing the diffusion of inter-

acting atoms on a square lattice of binding sites, each

capable of holding one atom. Adsorbed atoms, or ada-
toms, on this rigid lattice interact with each other through

nearest neighbours only. For each additional atom

placed at any of the four nearest neighbour sites sur-

rounded an adatom, the energy of the system is increased

by dE. To calculate the effective jump rate or diffusivity,
we need to know two things: the probability p(j) that an

adatom be surrounded by j other adatoms in nearest

neighbour positions, as well as the jump rate m(j) of such
an adatom. The overall jump rate m(h) is then given by

mðhÞ ¼
Xz�1
j¼0

z� j
z

pðjÞmðjÞ ð4Þ

where z is the coordination number of the lattice (z = 4 for

a square lattice), giving the number of nearest neighbours,

pðjÞ ¼
z

j

� �
ðe=f Þj

ð1þ e=f Þz ¼
z!

j!ðz� jÞ!
ðe=f Þj

ð1þ e=f Þz
ð5Þ

and

f ¼ exp dE
RT

� �
; e ¼ ðb � 1þ 2hÞf

2ð1� hÞ ;

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4hð1� hÞð1� 1=f Þ

p
ð6Þ

Assuming a simple model for the jump rate

mðjÞ ¼ mð0Þf j ð7Þ
we obtain after substituting Eqs. (5)–(7) in Eq. (4) and

application of the polynomial theorem

mðhÞ ¼ mð0Þ ð1þ eÞz�1

ð1þ e=f Þz ð8Þ

When the zero-loadingM–S diffusivity for component

i, –Dið0Þ is identified with 1
z mð0Þk

2 where k is the jump dis-
tance on the lattice, we obtain the following relation for

the loading dependence of the M–S diffusivity

–DiðhÞ ¼ –Dið0Þ
ð1þ eÞz�1

ð1þ e=f Þz ð9Þ

In the limiting case where there are no interactions

between adatoms, i.e. dE = 0, we get f = 1, b = 1, e =
h/(1 � h) leading to the strong confinement scenario de-
scribed by Eq. (3). We also note that for no combination

of the model parameters z and f, does Eq. (9) yield the

weak confinement scenario. This is due to the fact that
the hopping rates are dependent on the vacancy, and

therefore for h = 1, –DiðhÞ ¼ 0.
Our major objective in this paper is to demonstrate

that Eq. (9) affords a convenient and simple approach

to describe the occupancy dependence of –Di in zeolites.

To achieve this objective we perform kinetic Monte

Carlo (KMC) simulations in square, cubic and MFI

lattice topologies, as depicted in Fig. 2. Once the loading
dependence for individual guest–host combination can

be quantified, this information can be used to describe

the mixture behaviour without additional parameter

inputs.
2. KMC simulation methodology

We perform kinetic Monte Carlo (KMC) simulations

of a system of adsorbed particles on discrete lattice sites

with nearest neighbour interactions. Particles can move

from one site to a neighbouring site via hops. The prob-

ability per unit time to move from one site to another is

determined by a certain hopping rate m. Mixtures of par-
ticles are identified by their individual particle mobility.

In order to investigate the influence of lattice topology
(dimensionality and connectivity) on the diffusivity we

have investigated square, cubic and MFI lattice (con-

taining 24 sorption sites) topologies as shown in Fig. 2.

We employ a standard KMC methodology to propa-

gate the system [15–20]. A hop is made every KMC step
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and the system clock is updated with variable time steps.

For a given configuration of random walkers on the lat-

tice a process list containing all possibleM moves to va-

cant intersection sites is created. Each possible move i is

associated with a jump probability mi Note that the val-
ues depend on the particular type a particle belongs to,
as well as on the possible occupation of neighbouring

sites. The mean elapsed time s is the inverse of the total
rate coefficient

s�1 ¼ mtotal ¼
XM
i¼1

mi ð10Þ

which is then determined as the sum over all processes

contained in the process list. The actual KMC time step
Dt for a given configuration is randomly chosen from a
Poisson distribution

Dt ¼ � lnðuÞ=mtotal ð11Þ
where u 2 [0,1] is a uniform random deviate. The time

step Dt is independent from the chosen hopping process.
To select the actual jump, we define process probabilities
according to pi ¼

Pi
j¼1mj=mtotal. The ith process is cho-

sen, when pi�1 < t < pi, where t 2 [0,1] is another uni-
form random deviate. After having performed a hop,

the process list is updated. In order to avoid wall effects

we employ periodic boundary conditions. We have

investigated the finite size effect on the diffusivity and

found systems of 10 · 10 and 6 · 6 · 6 unit cells to be
sufficiently large for the 2D and 3D lattices. In order
to provide sufficiently accurate data a total of 108–109

simulation steps were required. These simulations ex-

tended to several CPU days on a single IBM SP2 node.

In order to account for nearest neighbour interac-

tions, the transition rates have to be altered if another

particle occupies an adjacent site. The employed proce-

dure is illustrated in Fig. 3. It is based on the assumption
Etrans

EB

δEAB

Position A

Position B

δEAB
EA

Fig. 3. Energy scheme used for KMC simulations used here. Two

particles adsorbed at adjacent sites experience a repulsive interaction

energy dEab.
that the logarithm of the hopping rate is proportional to

the relative height of the energy barrier, as for example

given by Etrans � EA for the move from A to B. Consider

two neighboring particles at positions A and B. In order

to ensure energy conservation, both particles have to

experience the same repulsive interaction dEAB. The
depth of the potential well of a particle at position A

is modified by dEA which is determined by summing

over all possible nearest-neighbor interactions

dEA ¼
X
B

dEAB ð12Þ

Here B indicates all occupied nearest neighbour posi-

tions with respect to A. In the KMC scheme the rates

of all possible moves of the particle located at A have

to be changed by a factor

m0A!B0 ¼ mA!B0 exp
dEA

RT

� �
ð13Þ

Here B 0 denotes all empty nearest neighbour positions

with respect to A. Since we do not wish to introduce
an explicit value for the temperature T here, the Arrhen-

ius term in Eq. (13) is replaced by a product of pair–pair

interaction factors fAB

m0A!B0 ¼ mA!B0
Y
B

fAB ð14Þ

with

fAB ¼ f ¼ exp dEAB

RT

� �
ð15Þ

Since only nearest neighbour interactions are involved,

the scheme is simple and the computational effort is

moderate. In our KMC simulations we study the influ-

ence of the pair–pair interaction factors f set equal to
1 (no repulsions), 0.5 (attraction), or 1.5, 2 and 2.5 (var-

ying degrees of repulsion).

From the KMC simulations we calculate the M–S

diffusivity –Di from the mean square displacement of

the centre of gravity of all n adsorbed particles:

–Di ¼
1

6
lim

Dt!1

1

Dt
1

n

Xn
i¼1

riðt þ DtÞ � riðtÞð Þ
 !2* +

ð16Þ

These diffusivities correspond to ‘‘corrected’’ diffusiv-
ities, as shown in the work of Reed and Ehrlich [21] and

Tarasenko et al. [10].

The self diffusivities Di,self are obtained from the mean

square displacement of the individual particles:

Di;self ¼
1

6
lim

Dt!1

1

Dt
1

n

Xn
i¼1

riðt þ DtÞ � riðtÞð Þ2
D E

ð17Þ

The choice of Dt has been discussed in previous pub-
lications [17–20].



R. Krishna et al. / Microporous and Mesoporous Materials 76 (2004) 233–246 237
3. KMC simulation results

The KMC simulations of the M–S diffusivity –Di for

square and cubic lattices are shown by open symbols

in Fig. 4a and b for varying values of the factor

f = 0.5, 1 and 2. Also shown with continuous solid lines
in Fig. 4a and b are the corresponding calculations using

the Reed–Ehrlich model, Eq. (9), taking z = 4 and 6,

respectively, for the square and cubic lattices. The agree-

ment between the KMC simulations and the Reed–Ehrl-

ich model is near perfect as expected, because the KMC

simulations were set up using exactly the same physical

model underlying the Reed–Ehrlich development. With

f = 1, –DiðhiÞ follows the strong confinement scenario, de-
scribed by Eq. (3), as is typical of KMC simulations in

which no molecule-molecule interactions are accounted

for [17]. The strong influence of the coordination num-

ber, z, reflecting the number of nearest neighbours is evi-

dent by comparing the results for square and cubic

lattices for an occupancy of say h = 0.56. The normal-
ized M–S diffusivity –DiðhÞ=–Dið0Þ ¼ 1:65 and 3.44,

respectively for the square and cubic lattices, reflecting
the strong influence of the number of nearest neighbours.

Let us now consider the KMC simulations for diffu-

sion of CH4 in MFI at 300K. The jump frequency along

the straight channels is taken as mstr = 4.2 · 1011 s�1 ;
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Fig. 4. KMC simulations (open symbols) of normalized M–S diffusivity and

topologies. Also shown in (a)–(c) using continuous solid lines are the calcul

calculated using Eq. (18) are shown using continuous solid lines in (d)–(f).
for transport along the zig-zag channels we take

mzz = 3.6 · 1011 s�1. These jump frequency values are

chosen so as to match the self-diffusivity data of Good-

body et al. [22] in x, y and z directions, as described in

our earlier KMC simulation work [18]. The number of

sorption sites within the MFI lattice is taken to be 24
per unit cell; these sorption sites are distributed uni-

formly as indicated by the circles in Fig. 2c. We employ

a slight modification with respect to the model proposed

in ref. [18] in that the jump rate of molecules in the inter-

section sites are considered equal to the jump rates of

molecules located within the channels. Simulations have

been carried out taking the pair interaction factors

f = 1,1.5,2 and 2.5. The results for the normalized M–
S diffusivity are presented as open symbols in Fig. 4c.

Each of 20 CH4 molecules located within the straight

or zig-zag channels ‘‘sees’’ only two neighbours. On

the other hand each of the four CH4 molecule located

at the intersections, sees four neighbouring molecules.

The weighted-average coordination number for CH4 dif-

fusion in the MFI topology is (20 · 2 + 4 · 4)/24 = 2.33.
The continuous solid lines in Fig. 4c represent calcula-
tions using Eq. (9), taking z = 2.1, a ‘‘best fit’’ value

for the coordination number. The reason for the devia-

tion from the calculated value of 2.33 is that the jump

frequency along the zig-zag channels are lower than that
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ations of –Di with the Reed–Ehrlich model, Eq. (9). The self-diffusivity
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along the straight channels, resulting in a slightly lower

connectivity in practice. In the KMC study of Coppens

et al. [23] for the MFI topology, using a lattice with six

sites, a coordination number of 2.67 was obtained. If the

molecules can be located only at the intersections of

MFI, as is the case, for example, with 2-methylhexane
[17], we would expect a coordination number of 4.

KMC simulations of the self-diffusivities in the (a)

square, (b) cubic, and (c) MFI topologies are shown

by the open symbols in Fig. 4d–f. The continuous solid

lines in Fig. 4d–f were obtained from calculations using

the following formula for self-diffusion

Di;self ¼
1

1

–Di
þ hi

–Dii

ð18Þ

where –Dii is the self-exchange coefficient that arises

naturally in the M–S formulation for tracer diffusion

of a labelled species in an environment of unlabelled

species [5]. The parameter –Dii=–Di can be taken as a

measure of correlation effects. The lower the value of
–Dii=–Di, the stronger the influence of correlations. A

very large value of –Dii=–Di signifies weak correlations

between molecular jumps. The –Dii=–Di is also occu-
pancy dependent and this dependence can be generally

described by

–Dii

–Di
¼ a1 expð�a2hiÞ þ a3 expð�a4hiÞ ð19Þ

following the work of Skoulidas et al. [5]. For the KMC

simulations only the first member on the right-hand side

of Eq. (19) is required and the parameters a1 and a2 were

chosen for the three topologies as (a) 2.5, 1, (b) 5, 1 and
(c) 0.7, 1.2 based on the information given in Table 2 of

Skoulidas et al. [5]. The good agreement between Eq.

(18) and the KMC simulations for a variety of values

of the interaction parameter for all three topologies im-

plies that the self-exchange coefficient is not influenced

by the chosen value for f. This is a useful simplification

to the description of diffusion in mixtures, in which –Dii

plays a crucial role [5].
4. MD simulated occupancy dependencies in various

topologies

We now apply the Reed–Ehrlich model to describe

the observed loading dependence of MD simulated dif-

fusivities –Di reported by Skoulidas and Sholl [6,7] and

Chempath et al. [24] for various molecules in five differ-

ent zeolite topologies (MFI, ISV, ITE, MTW and

FAU). In Fig. 5a and b the MD simulated –Di values

(open symbols) in MFI are compared with the calcula-
tions following Eq. (9), shown with continuous solid

lines, in which the interaction parameter f is chosen to
‘‘fit’’ the MD data on –Di. The zero-loading diffusivities

and saturation capacities are as specified in Table 1.

Based on the KMC simulation results for CH4 in

MFI, we choose z = 2.1 as the coordination number.

For CF4, –Di appears to follow the strong confinement

behaviour and a choice of f = 1 is able to describe this
scenario approximately. A more thorough analysis

unravels an inflection in the loading dependence [25] at

H = 12. For both Ar and Ne, a value of f = 1.7 is suc-

cessful in reproducing the MD simulated results. For

CH4, SF6 and Xe it is necessary to take the interaction

parameter f to be occupancy dependent: f = a5 exp(a6h),
where the chosen values of a5 and a6 are specified in

Table 1. It is interesting to note that both the maximum
for Xe and the inflection behaviour of SF6 are captured

by the Reed–Ehrlich model. In practice the value of f

can be estimated from the Eact � H information as pre-

sented in Fig. 1b.

Zeolite ISV (ITQ-7) has an intersecting channel struc-

ture and the MD simulated loading dependence of –Di for

CH4, CF4, Ar and SF6 show similar trends as for MFI;

see Fig. 5c. The continuous solid lines in Fig. 5c repre-
sent the calculations using the Reed–Ehrlich model,

Eq. (9) in which we take z = 2.1, assuming the same con-

nectivity as for MFI.

The topology of ITE (ITQ-3) consists of cages inter-

connected to one another through narrow windows. The

loading dependence of –Di of CH4, Ar and Ne all show a

pronounced maximum (see Fig. 5d), suggesting a sub-

stantial decrease in the energy barrier for diffusion with
increased loading and this is captured in the Reed–Ehrl-

ich model by a larger f value than for the MFI and ISV

topologies. For 3D inter-connected cage structures we

should expect the same connectivity as for a cubic lattice

and therefore we take z = 6.

Zeolite MTW (ZSM-12) consists of 1D channels and

the MD simulations of –Di show a sharp reduction with

increased loading; see the open symbols in Fig. 5e. For
the 1D topology of MTW each molecule has two neigh-

bours and therefore we take z = 2 in the Reed–Ehrlich

model, along with the parameters specified in Table 1.

Eq. (9) is capable of portraying the strong reduction in
–Di with increased loading.

Fig. 5f shows the MD simulation results of Chempath

et al. [24] for –Di of n-alkanes of 1, 2, 3 and 4 carbon

atoms in FAU. FAU consists of a 3D network of cages
interconnected to one another by large windows; there-

fore we take the coordination number z = 6. For all the

linear alkanes of 1, 2, 3 and 4 C atoms the loading

dependence of –Di corresponds to the strong confinement

scenario. The Reed–Ehrlich model with f = 1 captures

these loading dependencies.

Skoulidas and Sholl [6,7] and Chempath et al. [24]

have also reported data on the self-diffusivities Di,self

for the various molecules in the five zeolite topologies.

Using Eq. (18) we back calculated the values of –Dii=–Di
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Fig. 5. Loading dependencies for M–S diffusivity –Di of various molecules in: (a), (b) MFI; (c) ISV; (d) ITE, (e) MTW and (f) FAU. The open symbols

represent data from MD simulations of Skoulidas and Sholl [6,7] and Chempath et al. [24]. The continuous solid lines are from calculations using

Eqs. (6) and (9), respectively, with the parameter values as specified in Table 1.
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values and these are shown by open symbols in Fig. 6a

and b for a few typical molecule-zeolite combinations.

Fig. 6a shows the –Dii=–Di values for various molecules

in MFI at 298K. We note that –Dii=–Di decreases with
increasing loading, suggesting that correlation effects be-

come stronger at higher loadings. This is to be expected

because with increasing loading the chance of finding

vacant sites is reduced and many jumps are unsuccessful

with the result a molecule will necessarily have to return

to its original position [26]. We also note that the higher

the saturation capacity, the smaller the value of –Dii=–Di.

Put another way, the larger the number of adsorption
sites in the zeolite, the stronger are the correlation

effects.

In Fig. 6b the –Dii=–Di values for CH4 are shown for

five different zeolite topologies: MFI, ISV, ITE, MTW

and FAU. The hierarchy of –Dii=–Di is mainly dictated

by the connectivity, i.e. the coordination number, z.

FAU consisting of cage structures with large windows

offers the highest connectivity and highest –Dii=–Di. For
ITE, which consists of cages connected with narrow

windows, –Dii=–Di decreases very sharply with increased

occupancy. The poorest connectivity, and consequently

the smallest –Dii=–Di is offered by the 1D channel structure

of MTW. Interestingly, –Dii=–Di for MTW increases with
increased occupancy. For intersecting channel structures

of MFI and ISV the –Dii=–Di values lie between those for

cages (FAU, ITE) and 1D channels (MTW). The contin-

uous lines in Fig. 6a and b represent ‘‘fits’’ of the MD
simulated –Dii=–Di with the empirical model given by

Eq. (19), with the constants a1, a2, a3 and a4 as reported

in Table 1.

Now that both loading dependences of –Di and –Dii=–Di

have been quantified, the self-diffusivity Di,self can be cal-

culated using Eq. (18). These calculations, shown by the

continuous solid lines in Fig. 7a–f for various molecules

in the five zeolite topologies. The agreement with the
MD simulations is excellent in all the cases.
5. Prediction of diffusivities in mixtures

For n-component diffusion, the M–S equations can

be written [4,5,24]

�q
hi

RT
rli ¼

Xn
j¼1
j 6¼i

HjNi � HiNj

Hi;satHj;sat–Dij

þ Ni

Hi;sat–Di
; i ¼ 1; 2; . . . ; n ð20Þ



Table 1

Zero-loading diffusivities, saturation capacities, interaction parameters and self-exchange coefficients for various molecules in various zeolite topologies

Zeolite Component Diffusion data Reed–Ehrlich parameters

–Dið0Þ –Dii=–Di ¼ a1 expð�a2hÞ þ a3 expð�a4hÞ z f = a5exp(�a6h)

Hi,sat a1 a2 a3 a4 a5 a6

MFI; 298K CH4 22.6 1.5 0.5 1.45 2.1 1.9 �0.3
CF4 16.0 0.467 0.736 1.36 2.1 1.0 0.0

Ar 26.95 1.32 0.5 2.0 2.1 1.7 0.0

Ne 34.2 2.74 0.4 �0.5 2.1 1.7 0.0

Xe 17.7 0.23 0.6 1.2 2.1 2.3 �0.5
SF6 12.0 0.053 0.95 1.2 2.1 0.8 �1.0

ISV; 298K CH4 53.5 4.06 0.024 �5.7 0.19 7.3 2.1 3.0 5.0

CF4 14.06 1.43 0.592 1.3 2.1 1.7 0.0

Ar 56.06 3.19 0.028 �5.0 0.19 5 2.1 1.0 1.0

SF6 9.81 0.64 1.3 2.0 2.1 1.9 �0.7

ITE; 298K CH4 56.3 0.166 2.0 6.0 6 8.0 4.0

Ar 44.2 0.23 1.0 1.5 6 4.0 2.0

Ne 129.1 1.6 0.25 �2.5 6 2.0 3.0

MTW; 298K CH4 39.35 6.24 0.127 �4.01 �0.124 �3.06 2 0.1 1.0

CF4 4.36 6.36 0.738 �0.0923 �0.737 �0.0789 2 1.8 0.0

Ar 12.45 5.49 0.03 60 0.025 �3.5 2 0.5 �0.2

FAU; 300K CH4 117.6 3.48 0.57 0.5 6 1.0 0.0

CF4 54.4 1.36 1.0 3 0.12 �2 6 1.0 0.0

C2 H6 66.4 2.17 0.78 0.0 6 1.0 0.0

C3 H8 52.8 1.39 3.0 5.0 0.12 �3 6 1.0 0.0

nC4 H10 42.4 0.93 1.8 0.5 6 1.0 0.0

The data in this table is extracted from the MD and GCMC simulations of Skoulidas and coworkers [5–7] and Chempath et al. [24]. The data for Xe in MFI corresponds to that obtained with the

force field of Pickett [34]. The saturation capacity HI,sat has the units of molecules per unit cell. The zero-loading M–S diffusivities –Dið0Þ have the units of 10�8m2s�1. The other parameters a1, a2, a3,
a4, a5 and a6 are dimensionless.
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Fig. 7. Loading dependencies for self-diffusivity –Di;self of various molecules in: (a), (b) MFI; (c) ISV; (d) ITE; (e) MTW and (f) FAU. The open

symbols represent data from MD simulations of Skoulidas and Sholl [6,7] and Chempath et al. [24]. The continuous solid lines are from calculations

using Eqs. (6), (9), (18) and (19), with the parameter values as specified in Table 1.
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The important advantage of the M–S formulation is

that the M–S diffusivities –Di in the mixture can be esti-

mated from the Reed–Ehrlich development provided

we identify h in Eq. (9) with the total fractional occu-
pancy in the mixture
h1 þ h2 þ 
 
 
 hn ¼
H1

H1;sat

þ H2

H2;sat

þ 
 
 
 Hn

Hn;sat
ð21Þ

Also, the exchange coefficients –Dij, reflecting i–j cor-

relations, can be estimated from the self-exchange
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coefficients –Dii using the following interpolation scheme

developed earlier [5,24]

Hj;sat–Dij ¼ ½Hj;sat–Dii�Hi=ðHiþHjÞ½Hi;sat–Djj�Hj=ðHiþHjÞ

¼ Hi;sat–Dji ð22Þ

We shall verify the predictive capability of the M–S

formulation to describe the loading dependence of self-

and transport diffusivities in binary mixtures by consid-

ering several examples below.

From Eq. (20) the following expressions can be de-

rived for the self-diffusivities of the individual compo-

nents in a binary mixture [5,27]

D1;self ¼
1

1

–D1
þ h1
–D11

þ h2
–D12

; D2;self ¼
1

1

–D2
þ h1
–D21

þ h2
–D22

ð23Þ
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Fig. 8. Comparison of self-diffusivities of CH4 and Xe in MFI at 300K from

(23). The pure component parameter values are specified in Table 1.
Jost et al. [28] have published MD simulations for the

self-diffusivities in mixtures of CH4 (1) and Xenon (2) in

MFI at 300K for total loadings H = 4,8,12 and 16 mol-

ecules per unit cell; their data are presented as open sym-

bols in Fig. 8. The calculations following Eqs. (23) and

(22) with the pure component parameter values specified
in Table 1 are shown by the continuous solid lines. The

agreement between the calculations and the MD simula-

tions is remarkably good, especially in view of the fact

that all the necessary input parameters have been ob-

tained from pure component data from a different and

independent source [6,7].

Snurr et al. [29] have also reported self-diffusivities in

binary mixtures of CH4/CF4 diffusion in FAU at 300K
for (a) various mixture compositions at a constant total

loading H = 16 molecules per unit cell, and (b) 50–50

mixture at different mixture loadings; see Fig. 9. These

MD simulated self-diffusivities are in very good agree-

ment with the calculations following Eqs. (23) and (22)
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Fig. 9. Comparison of MD simulations (symbols) of Snurr et al. [29] for self-diffusivities in a mixture of CH4 and CF4 in FAU at 300K with

estimations (continuous solid lines) using Eqs. (22) and (23). The pure component parameter values are specified in Table 1.
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with the pure component parameter values specified in

Table 1.
Skoulidas et al. [5] have reported MD simulations of

Onsager matrix of diffusivities [K], defined by
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ðNÞ ¼ �q½Hsat�½K� 1
RT

ðrlÞ ð24Þ

in binary mixtures of CH4 and CF4 in MFI at 298K;

these simulation results are shown by the open symbols
in Fig. 10. The elements of [K] can be related to the M–S
diffusivities –Di and –Dij by

K11 K12

K21 K22

� �
¼

1

–D1
þ h2
–D12

� h1
–D12

� h2
–D21

1

–D2
þ h1
–D21

2
664

3
775

�1

h1 0

0 h2

� �

ð25Þ
From the pure component data for z, f, and –Dii=–Di for

CH4 and CF4 as specified in Table 1, along with Eqs. (6),

(9), (19), (22) and (25) the elements of [K] can be esti-
mated; these are shown by the continuous solid lines

in Fig. 10. The agreement with the MD simulated values

is excellent for the entire range of mixture loadings and
mixture compositions. This lends credence to the Reed–

Ehrlich model (9) for describing the loading dependence

of the M–S diffusivity.

Skoulidas et al. [30] have reported experimental data

for the selectivity for permeation of 50–50 mixtures of

CH4 and CF4 across a MFI membrane at 298K for dif-

ferent upstream pressures and with pressure drop main-

tained at 138 kPa; see the open circle symbols in Fig. 11.
Numerical integration of the M–S equations (20), taking

due account of the loading dependence of the –Di and –Dij
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Fig. 11. Selectivity for permeation of 50–50 mixtures of CH4/CF4
across an MFI membrane at 298K as a function of various upstream

total pressures. The pressure drop across the membrane is maintained

at 138kPa in all experiments reported by Skoulidas et al. [30]. The

experimental data (open circles) are compared with the predictions of

the M–S formulation (continuous lines), with two different scenarios

for estimation of the binary exchange coefficient –Dij. The numerical

details of the membrane permeation calculations are given in refs

[4,31]. The predictions of Skoulidas et al. [30] based on fits of the

binary Onsager matrix obtained from their MD simulations are shown

by the open square symbols.
allows calculation of the CH4/CF4 permeation selectiv-

ity (defined here as the ratio of the permeation fluxes);

these are shown with the continuous solid lines in Fig.

11. Numerical aspects of the calculation of the mem-

brane permeation fluxes are described by Krishna and

Baur [4,31]. In these calculations the pure component
isotherm parameters are taken to be the dual site Lang-

muir parameters as given in Ref. [7]. The mixture loa-

dings are determined using the ideal adsorbed solution

theory [32], verified in earlier work for this mixture [5].

The good agreement between the calculations and

experimental data is remarkable when we consider that

only pure component data (specified in Table 1) is used

in these calculations. The correct estimation of the bin-
ary exchange coefficient –Dij using Eq. (22), taking proper

account of the loading dependence of the self-exchange

coefficients –Dii using Eq. (19) is a key factor determining

mixture permeation selectivity. Correlations tend to

slow down the more mobile CH4 and speed up the more

sluggish CF4, lowering the permeation selectivity when

compared to the values on the basis of independent dif-

fusion of the molecules. Such correlation effects are
strongly loading dependent as evidenced by the informa-

tion presented in Fig. 6a. In order to demonstrate the

importance of correlation effects we have also performed

calculations taking –Dij to be infinite, leading to negligi-

ble correlations; see the continuous dashed lines in

Fig. 11. Ignoring correlation effects anticipates a signif-

icantly higher permeation selectivity, completely at var-

iance with experimental data.
Skoulidas et al. [30] also present their own calcula-

tions of the permeation selectivity using fits of (1) the

elements of the binary Onsager matrix with 21 constants

and (2) fits of the binary adsorption equilibrium using

16 constants; these are shown by the square symbols

in Fig. 11. The calculations of Skoulidas et al. [30] are

significantly worse than our own predictions using the

Reed–Ehrlich model based on only pure component
data and far fewer constants. One possible reason the

poor predictions of the calculations of Skoulidas et al.

[30] is that the loading dependence of correlation effects

are not properly described by their fits of mixture

transport.
6. Conclusions

The quasi-chemical theory of Reed and Ehrlich [14]

describing the occupancy dependence of the M–S diffu-

sivity –Di, developed for a square lattice with interacting

adatoms, has been generalized to a lattice topology with

arbitrary coordination number z. Eq. (9) is the key result

wherein the factor f quantifies the reduction in the en-

ergy barrier for diffusion with increased occupancy.
Eq. (9) simplifies to the strong confinement scenario,

Eq. (3), for the special case with f = 1. KMC simulations



R. Krishna et al. / Microporous and Mesoporous Materials 76 (2004) 233–246 245
with square, cubic and MFI lattice topologies, with

specified values of f, are used to verify Eq. (9). The vari-

ety of occupancy dependencies of –Di determined by MD

simulations [6,7,24] for a variety of molecules in five dif-

ferent zeolite topologies MFI, ISV, ITE, MTW and

FAU can be ‘‘modeled’’ by appropriate choice of the
interaction factor f and the coordination number z.

For describing the variation of the self-diffusivity Di,self

with loading, we need to additionally have information

on the magnitude of the correlation effects, quantified

by –Dii=–Di.

Correlation effects are of essential importance in

describing diffusion in mixtures. The M–S formulation

provides a method for estimation of self- and transport
diffusivities in mixtures from pure component data. This

predictive capability has also been demonstrated in this

work for various mixtures in MFI and FAU.

The Reed–Ehrlich analytic expression for describing

the loading dependence of the M–S diffusivity is partic-

ularly convenient for engineering calculations of fluxes

of multicomponent mixtures in membranes, adsorbers

and catalytic reactors. The crucial Reed–Ehrlich para-
meter f can be estimated from MD simulations or tran-

sition state theory calculations [33].
Acknowledgment

RK, DP and RB acknowledge two grants Program-

masubsidie and TOP subsidie from the Netherlands
Foundation for Fundamental Research (CW-NWO)

for development of novel concepts in reactive

separations.
References

[1] D.M. Ruthven, Principles of Adsorption and Adsorption Proc-

esses, John Wiley, New York, 1984.

[2] J. Kärger, D.M. Ruthven, Diffusion in zeolites and other

microporous solids, John Wiley, New York, 1992.

[3] F.J. Keil, R. Krishna, M.O. Coppens, Modeling of diffusion in

zeolites, Rev. Chem. Eng. 16 (2000) 71–197.

[4] R. Krishna, R. Baur, Modelling issues in zeolite based separation

processes, Seperat. Purif. Technol. 33 (2003) 213–254.

[5] A.I. Skoulidas, D.S. Sholl, R. Krishna, Correlation effects in

diffusion of CH4/CF4 mixtures in MFI zeolite. A study linking

MD simulations with the Maxwell–Stefan formulation, Langmuir

19 (2003) 7977–7988.

[6] A.I. Skoulidas, D.S. Sholl, Transport diffusivities of CH4, CF4,

He, Ne, Ar, Xe, and SF6 in silicalite from atomistic simulations, J.

Phys. Chem. B 106 (2002) 5058–5067.

[7] A.I. Skoulidas, D.S. Sholl, Molecular dynamics simulations of

self, corrected, and transport diffusivities of light gases in four

silica zeolites to assess influences of pore shape and connectivity, J.

Phys. Chem. A 107 (2003) 10132–10141.

[8] S.Y. Bhide, S. Yashonath, Dependence of the self-diffusion

coefficient on the sorbate concentration: a two-dimensional lattice
gas model with and without confinement, J. Chem. Phys. 111

(1999) 1658–1667.

[9] S.Y. Bhide, S. Yashonath, Types of dependence of self-diffusivity

on sorbate concentration in parameter space: a two-dimensional

lattice gas study, J. Phys. Chem. B 104 (2000) 2607–2612.

[10] A.A. Tarasenko, L. Jastrabik, C. Uebing, Diffusion of interacting

adsorbates on a square lattice, Langmuir 15 (1999) 5883–5892.

[11] F. Nieto, A.A. Tarasenko, C. Uebing, Adsorption and diffusion

of repulsively interacting particles on a triangular lattice, Phys.

Chem. Chem. Phys. 2 (2000) 3453–3459.

[12] A.I. Skoulidas, D.S. Sholl, Direct tests of the Darken approxi-

mation for molecular diffusion in zeolites using equilibrium

molecular dynamics, J. Phys. Chem. B 105 (2001) 3151–3154.

[13] T.Q. Gardner, A.I. Flores, R.D. Noble, J.L. Falconer, Transient

measurements of adsorption and diffusion in H-ZSM-5 mem-

branes, AIChE J. 48 (2002) 1155–1167.

[14] D.A. Reed, G. Ehrlich, Surface diffusion, atomic jump rates and

thermodynamics, Surf. Sci. 102 (1981) 588–609.

[15] S.M. Auerbach, Theory and simulation of jump dynamics,

diffusion and phase equilibrium in nanopores, Int. Rev. Phys.

Chem. 19 (2000) 155–198.

[16] M.O. Coppens, A.T. Bell, A.K. Chakraborty, Dynamic Monte

Carlo and mean-field study of the effect of strong adsorption sites

on self-diffusion in zeolites, Chem. Eng. Sci. 54 (1999) 3455–3463.

[17] D. Paschek, R. Krishna, Monte Carlo simulations of self- and

transport-diffusivities of 2-methylhexane in silicalite, Phys. Chem.

Chem. Phys. 2 (2000) 2389–2394.

[18] D. Paschek, R. Krishna, Diffusion of binary mixtures in zeolites:

kinetic Monte Carlo versus molecular dynamics simulations,

Langmuir 17 (2001) 247–254.

[19] D. Paschek, R. Krishna, Kinetic Monte Carlo simulations of

transport diffusivities of binary mixtures in zeolites, Phys. Chem.

Chem. Phys. 3 (2001) 3185–3191.

[20] D. Paschek, R. Krishna, Inter-relation between self- and jump-

diffusivities in zeolites, Chem. Phys. Lett. 333 (2001) 278–

284.

[21] D.A. Reed, G. Ehrlich, Surface diffusivity and the time correlation

of concentration fluctuations, Surf. Sci. 105 (1981) 603–628.

[22] S.J. Goodbody, K. Watanabe, D. MacGowan, J.P.R.B. Walton,

N. Quirke, Molecular Simulation of Methane and Butane in

Silicalite, J. Chem. Soc. Faraday Trans. 87 (1991) 1951–1958.

[23] M.O. Coppens, A.T. Bell, A.K. Chakraborty, Effect of topology

and molecular occupancy on self-diffusion in lattice models of

zeolites—Monte Carlo simulations, Chem. Eng. Sci. 53 (1998)

2053–2061.

[24] S. Chempath, R. Krishna, R.Q. Snurr, Nonequilibrium MD

simulations of diffusion of binary mixtures containing short n-

alkanes in faujasite, J. Phys. Chem. B 108 (2004) 13481–13491.

[25] R. Krishna, J.M. van Baten, D. Dubbeldam, On the inflection in

the concentration dependence of the Maxwell-Stefan diffusivity of

CF4 in MFI zeolite, J. Phys. Chem. B 108 (2004) 14820–14822.

[26] J. Kärger, S. Vasenkov, S.M. Auerbach, Diffusion in zeolites

(Chapter 10), in: S.M. Auerbach, K.A. Carrado, P.K. Dutta

(Eds.), Handbook of Zeolite Science and Technology, Marcel

Dekker, New York, 2003, pp. 341–422.

[27] R. Krishna, D. Paschek, Self-diffusivities in multicomponent

mixtures in zeolites, Phys. Chem. Chem. Phys. 4 (2002) 1891–

1898.

[28] S. Jost, N.K. Bar, S. Fritzsche, R. Haberlandt, J. Kärger,

Diffusion of a mixture of methane and xenon in silicalite: a

molecular dynamics study and pulsed field gradient nuclear

magnetic resonance experiments, J. Phys. Chem. B 102 (1998)

6375–6381.

[29] R.Q. Snurr, A. Gupta, M.J. Sanborn, Molecular modeling of

multicomponent diffusion in zeolites, in: P.T. Cummings, P.R.

Westmoreland, B. Carnahan (Eds.), First International Confer-

ence on Foundations of Molecular Modeling and Simulation,



246 R. Krishna et al. / Microporous and Mesoporous Materials 76 (2004) 233–246
AIChE Symposium Series No. 325, vol. 97, AIChE, New York,

pp. 309–312.

[30] A.I. Skoulidas, T.C. Bowen, C.M. Doelling, J.L. Falconer, R.D.

Noble, D.S. Sholl, Comparing atomistic simulations and

experimental measurements for CH4/CF4 mixture permeation

through silicalite membranes, J. Membr. Sci. 227 (2003) 123–

136.

[31] R. Krishna, R. Baur, Diffusion, adsorption and reaction in

zeolites: modelling and numerical issues. Available from <http://

ct-cr4.chem.uva.nl/zeolite/>, 2003.
[32] A.L. Myers, J.M. Prausnitz, Thermodynamics of mixed gas

adsorption, AIChE J. 11 (1965) 121–130.

[33] C. Tunca, D.M. Ford, A transition-state theory approach to

adsorbate dynamics at arbitrary loadings, J. Chem. Phys. 111

(1999) 2751–2760.

[34] S.D. Pickett, A.K. Nowak, J.M. Thomas, B.K. Peterson, J.F.P.

Swift, A.K. Cheetham, C.J.J. Denouden, B. Smit, M.F.M. Post,

Mobility of adsorbed species in zeolites—a molecular-dynamics

simulation of xenon in silicalite, J. Phys. Chem. 94 (1990) 1233–

1236.

http://ct-cr4.chem.uva.nl/zeolite/
http://ct-cr4.chem.uva.nl/zeolite/

	Modeling the occupancy dependence of diffusivities in zeolites
	Introduction
	KMC simulation methodology
	KMC simulation results
	MD simulated occupancy dependencies in various topologies
	Prediction of diffusivities in mixtures
	Conclusions
	Acknowledgment
	References


