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MASS AND ENERGY TRANSFER IN
MULTICOMPONENT SYSTEMS

R. KRISHNA+{ and G. L. STANDART ¥
Department of Chemical Engineering

University of Manchester Institute of Science and Technology

Sackville Street, Manchester M60 10D, England

In this paper, which is essentially an interpretative review, we develop the theory of multicomponent mass
transfer using the Bird, Stewart and Lightfoot approach to binary mass transfer as a consistent basis.
Methods of solving the coupled diffusion equations are discussed and procedures for estimating interphase
mass transfer coefficients considered. The developedformalisms are appliedto a few examplesin the areas of
distillation, condensation and extraction to demonstrate the importance of considering coupled diffusion

effects in multicomponent transfers.
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I. INTRODUCTION

Traditionally Fourier and Fick’s laws have been used to describe the molecular
transport processes of heat and mass. Fourier’s law in the form

Q=—k VT (1)

is strictly valid for conduction of heat in an isotropic medium of uniform chemical
composition and Fick’s law

J;=—c@;fo (2)

is valid for isothermal, isobaric processes in an isotropic medium to the approximation
of independent diffusion, i.e. each component in the mixture transfers independently
and does not interact with other diffusing or non-diffusing species in the mixture. The
approximation of independent diffusion can be strictly substantiated in three cases: (i)
for binary diffusion, (ii) for diffusion of dilute species in a large excess of one of the
components and (iii) for the case in which all the diffusion coefficients of all the
components in the mixture can be regarded as equal.
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Chemical engineers frequently have to deal with concentrated systems involving
diffusion of several substances of widely differing properties, often with simultaneous
heat transfer. This means that at each point in space and at each moment in time
concentration gradients of several substances may exist together with a temperature
gradient. Conventional approaches to the problem assume that the diffusive flux of
each component depends on the gradient of its own composition and the heat flux only
on the temperature gradient. As pointed out above this is strictly correct for certain
special cases and in the general case we may expect the simplification of independent
transfers to break down.

Unfortunately most experimental research works in the past have been limited to
binary systems, although many, if not most, systems of practical interest are
multicomponent (here we define a multicomponent system as one in which the number
of components, n £ 3). The following questions naturally spring to mind:

(i) does the presence of three or more components in the system introduce additional
complications unforseen from binary experiments alone ?,

(ii) if the answer to (i) is in the affirmative, how can the problem of multicomponent
mass transport be tackled systematically? and

(iii) do the transport processes of mass and heat interact with each other in normal
chemical engineering operations?

Though the first question has been in the minds of chemical engineers for a long time
(Walter and Sherwood in 1941 raised doubts about the equalities of component
efficiencies in multicomponent distillation), it is only during the last decade or so that
almost complete answers to all three questions have become available, at least for non-
reacting fluid systems.

In this review we consider correct formulations, and solutions, to the problem of
intra- and interphase transfer of mass and energy in multicomponent fluid mixtures,
limiting ourselves to systems in the absence of radiation and magnetic force fields.

Though fluid mixtures are treated exclusively in this review, the majority of the
formalism presented here is applicable to solid phases as well. In most of the cases, the
literature citations correspond to the more lucid reference rather than the historical
“first’.

In keeping with traditional chemical engineering literature (e.g. Bird, Stewart and
Lightfoot, 19601 ), the discussion of multicomponent transport phenomena is based on
a continuum model for matter. In this model matter is assumed to be distributed
continuously through space with the exception of surfaces of discontinuity (e.g. phase
interfaces). The advantages of the continuum description over the more fundamental
particulate (or molecular) model is that a general physical description is obtainable
independent of choice of molecular models, of structures and interaction mechanisms
and of assumptions of ideal solutions, etc. etc. The derivations of the general physical
laws using continuum mechanics are much simpler and the derived relations of more
general applicability. There is however a price to be paid for this simplicity and
generality. Information is lost in a continuum picture anc though the correct form of the
constitutive relations are obtained, the coefficients in such equations have to be
determined experimentally. The continuum approach is also called the phenomen-

T Future references to this text will be abbreviated as BSL.
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ological approach, since it describes the gross, observable, phenomena in nature. For a
brilliant and detailed discussion on the foundations of continuum mechanics, the reader
is referred to the treatise by Truesdell and Toupin (1960). The molecular or
‘microscopic’ approach is well summarized in Chapman and Cowling (1970) and
Hirschfelder, Curtiss and Bird (1954).

1I. ISOTHERMAL DIFFUSION IN n-COMPONENT MIXTURES

Consider the process of diffusion in a fluid mixture made up of # electrically neutral
chemical constituents. If u, represents the velocity of the ith species with respect to
stationary (laboratory fixed) coordinate axcs, the molar flux of that species denoting
the number of moles passing through unit area per unit time is given by

N, =cn, i=12,...n 3)

The mixture total molar flux is obtained by summing equation (3) over the n species:

n n
N=ZN=2Zcu= cXxu, (4)
In defining the constituent and mixture total fluxes, we have used molar units because
of their convenience in most chemical engineering calculations; the reader will find
discussions in terms of mass units easy to parallel.

Now the flux of species i, N,, refers to a stationary coordinate frame of reference
whereas the intrinsic process of diffusion refers to the movement of a particular
constituent relative to the mixture. The reference velocity of the mixture may be defined
in various ways (BSL, De Groot and Mazur, 1962; Lightfoot and Cussler, 1965;
Slattery, 1972); here we use the molar average velocity:

u= iélx,'u,' = N,/C (5)

In many applications involving intra- and inter-phase mass transfer, the use of the molar
average velocity is both simple and convenient.

We may therefore consider the molar diffiusion flux defined with respect to the molar
average velocity

Ji = ci {ui - u)s i = 1)2""’1 (6)

to provide a correct portrayal of the diffusion of species i through the mixture.

In view of equations (3)-(6), we may write the ‘total’ fluxes N, in terms of a purely
diffusive part (with respect to the molar average reference velocity) and a convective
contribution due 1o the motion of the mixture as a whole,

N;=J +cu=1J+xN, i=12,...n N
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The n diffusion fluxes J; are not all independent for on summing (6) we find in view of
equation {5) that

2)=0 (8)

Now, the solution to any problem in multicomponent diffusion consists in
determining the compositions and fluxes at every position in space and at every moment
in time. This information is obtained by the solution of the differential equations
describing the rate of change of concentration of species i in the mixture—the equations
of continuity of species i (see BSL and Slattery, 1972 for derivations):

de; oc;
—+4+V-{cu)=—+4+V - N;,=0, i=1,2,..n 9)
ot ot

Summing (9) over all the n constituent species, we obtain the differential equation
expressing the conservation of total moles of mixture:

% v my=- 47 N=0 (10)
S s cny = —— . =
ot ot

With definitions (3)+6), the differential equations of continuity {(9) may also be
written as

dx; Ox;
c_x_xgc[iﬂ,w] ==V -3, =12, .n (11)
dt ot

where d/dt is the material derivative following the molar average mixture velocity.
Since the mole fractions add to unity:

Zx1.= 1 (]2)

and the molar diffusion fluxes J; sum to zero (cf. equation (8)), only n—1 of the
equations (11) are independent and in order to solve them we need to relate the diffusion
fluxes to the compositions x; and/or the composition gradients ¥ x; in the system. Such
relations are called constitutive relations for they describe the intrinsic diffusion
behaviour of the particular system and material.

We now take up the problem of deciding what form these constitutive relations may
take.
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II.1 CONSTITUTIVE RELATIONS FOR MULTICOMPONENT
DIFFUSION

II.1.a Generalized Fick'’s Law Formulation

Constitutive relations for diffusion in two-component systems are widely discussed in
the literature (e.g. BSL). Thus for diffusion in a mixture made up of species 1 and 2, the
diffusion flux of species 1 is most commonly written as a linear function of the
composition gradient of component 1 as

J=—¢ 9uV x (13)

which is Fick’s law of diffusion. We may write an analogous expression for the
component 2 diffusion flux:

J2 == @n v X7 (14)

but in view of equations (8) and (12) we see that the two binary diffusion coefficients
are identical

D= Du (15)

Thus for a two-component system there is only one independent diffusion flux J,,
only one independent composition gradient V Xx,, only one independent diffusion
coefficient &, and only one independent constitutive relationship (13).

The diffusion coefficient £),, depends, in general, on the temperature, pressure and
composition of the system but not on the composition gradient. This linear flux—
composition gradient dependence has been found to hold even under extreme
conditions (Laurence, 1966).

The situation with regard to an n-component system is more complex for now we
have n—/ independent compositions, n—/ independent composition gradients and
n—1 independent diffusion fluxes.

As a naive extension of the binary relation {13) we may first consider writing each
diffusion flux as being proportional to its own composition composition gradient driving
force, thus:

J=—c % ¥V x, i=12,...n (16)

where @, is some characteristic diffusion coefficient of species 7/ in the mixture.
Summing (16) over the » species, we find in view of equation (8)

cfél@fo,-=0 (17)

Since the n composition gradients sum to zero (cf. equation (12)):

2V x=0 (18)
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we may eliminate the nth gradient in equation (17) to obtain
n=1
< 'El ( @i_@n)vxf=0 (19)

Now, the n—1 composition gradients in (19) may all be varied independently and
provided none of the n—1 independent species are infinitely dilute, the only solution
possible to (19) is that all characteristic diffusion coefficients are identical (Toor and
Armold, 1965), i.e.

P, =4,, i=12,...n~1 (20)

Equation (20) requires each species in the n-component mixture to have equal
facility for transfer irrespective of its molecular size and nature. We may expect such a
simple result to be true when all the species making up the mixture are of similar nature
and the solution is thermodynamically ideal. It has been found experimentally, for
example, that diffusion in the ternary mixture toluene—chlorobenzene-bromobenzene
is described adequately by one characteristic diffusion coefficient {( Burchard and Toor,
1962).

For any constituent present in such low concentrations that not onlyx; = Qbut also
V x;22 0, 9, will not necessarily be equal to @,,,e.£.in the diffusion of a number of very
dilute solutes through a solvent, each solute diffuses independently with its own
(binary) diffusivity with respect to the solvent 9 ,,.

For the general case of diffusion in non-ideal mixtures made up of components of
differing size and nature present in significant concentrations we would not expect the
simple resuit (20). We must therefore abandon the simple flux—driving force postulate
(16) in the general case and be prepared to consider more general linear constitutive
relations of the form

a—1
Jf=_ck§1kavxlo i= 1!2""’1-_1 (21)

in which we postulate that each flux is engendered by the composition gradients of all
the independent species in the system, n—1 in number. Equations (21) represent the
generalized Fick’s law for multicomponent systems. The coefficients D, of which
there are (n—1)? in number, are called multicomponent diffusion coefficients.

Since mole fractions are directly measurable, the D, may be considered practical in
the sense that they can be obtained from experimental measurements. No thermo-
dynamic information concerning the nen-ideality of the solution is required for their
determination and none is required later when these coefficients are used to solve
practical diffusion problems.

With a different choice of the mixture reference velocity, a different set of
multicomponent diffusion coefficients is obtained. Methods for transforming one set of
coefficients to another set are available in the literature (Lightfoot and Cussler, 1965;
Toor, 1962).

The actual values of the D, in (21) also depend on the choice of the reference species
n. In some cases the choice of the nth species is obvious: (i) an inert “‘solvent” through
which the various “solute” components diffuse, (ii) a neutral mixture of the reacting
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species, etc. It is usual to label as solvent 1 in such cases the component in whose
transfer we are not interested specifically. In many cases, as in the distillation of a
mixture of hydrocarbons, the choice of the nth species has to be arbitrary.

In the interests of compactness and ease of manipulation, we shall find it convenient
to represent the constitutive relations (21) in n—1 dimensional matrix notation as

J)=—¢[D](V x) (22)

where (J) is a column matrix of diffusion fluxes: J,,J,...J,_;; [D] is a square matrix
of diffusion coefficients, D, (i,k = 1,2,...n—1), ( ¥V x)is a column matrix of
composition gradients: V¥V x,, V x,,...V Xx,_,.

Equation (22)is the matrix analogue of the binary rate relation (13); we shall indeed
discover that many multicomponent mass transfer relations can be written as matrix
analogues of corresponding relations for two-component systems.

The constitutive relations (21), or (22), have been written down purely as formal
linear generalizations of the binary Fick’s law relationship (13). One might question
whether composition gradients are the proper driving forces for diffusion, The theory of
the Thermodynamics of Irreversible Proccesses (TIP) provides an answer to this
question and at the same time gives a more fundamental basis for the treatment of
multicomponent transport phenomena.

II.1.b Irreversible Thermodynamics of Diffusion

The purpose of the study of TIP, discussed in such texts as De Groot and Mazur
(1962), Fitts (1962) and Haase (1969), is to extend classical thermodynamics to
include systems in which irreversible (non-equilibrium) processes are taking place.
Such an extension is made possible by assuming that for systems “not too far”’ from
equilibrium the postulate of ““local eequilibrium” applies:

‘Departures from local equilibrium are sufficiently small that all thermodynamic
state quantities may be defined locally by the same relations as for systems at
equilibrium’. Actually it may be shown that this assumption of local equilibrium
follows from the assumption of a linear relation between the fluxes and driving forces
(Truesdell, 1969).

With the help of this postulate, one is able to obtain an explicit expression for o, the
rate of entropy production per unit volume due to various irreversible processes taking
place within the system. For isothermal, isobaric processes in the absence of external
force fields, the rate of entropy production due to diffusion is given by

1 1
= ——3 L i J— T, =
v T2 v (Vw0 (23)

The second law of thermodynamics requires ¢ to be positive definite.
o is seen to be a sum of scalar, or dot, products of two quantities; one of these is the
diffusion flux and the other, the chemical potential gradient, may be interpreted as the

“driving force” for diffusion. At equilibrium both the fluxes and the forces vanish
simultaneously giving
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c=0 | equilibrium | (24)

The chemical potential gradient arises in the theory of TIP as the proper driving force
for diffusion. This is not surprising because the condition for diffusion equilibria is that
the chemical potentials be equal in each phase and departures from equilibrium must be
measured as deviations from such an equality.

We note that the n diffusion fluxes in (23) are not all independent due to the
constraint (8). Further, at constant temperature (7') and pressure (p), the chemical
potential gradients are related by the Gibbs-Duhem equation

ExiV =0 (25)

Equations (8) and (25) may be used to write o in terms of independent fluxes J; and
independent modified driving forces Y, as

o="E3 - Y, =QF - 20 (26)

where the n—1 independent modified driving forces Y, are given by
Y=~ AV pdT i= 12,01 27)
The linear transformation coefficients A, are found to be

Ay =8y + x/x, Lk=12,...n—1 (28)

The simplest and entirely adequate constitutive relation between these independent
fluxes J; and driving forces Y, is

@=L (Y) (29)

The transport coefficients L, (i,k = 1,2,...n—1) are called phenomenological or
Cnsager coefficients; they may be considered ‘fundamental’ inasmuch as they use
driving forces arising from a fundamental thermodynamic theory. The second law of
thermodynamics places some restrictions on the values these Onsager coefficients may
take; these restrictions are derived below.

Combination of equations (26) and (29) gives

o=)[L]- (V=0 (30)

Now the matrix of phenomenological coefficients may be split into its symmetric and
anti-symmetric parts, i.e.

[L]1=[L], + [L] (31
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Substitution of equation (31) into equation (30) and use of the property that a
positive definite quadratic with an anti-symmetric matrix of coefficients vanishes
indentically gives (De Groot and Mazur, 1962)

o=Y)[LL- (Y)20 (32)

The anti-symmetric part of the matrix [L] does not contribute to the rate of entropy
production due to diffusion.

A sufficient condition for the entropy production rate o to be positive definite is that
the determinant of the symmetrized matrix of coefficients, [L],, be positive definite
which requires that

detlL. | =0 (33)

and that the principal cofactors be all positive. This implies that the diagonal elements
are all positive

L,=0, i=12,.n—1 (34)

whereas the off-diagonal elements must satisfy conditions of the form
L,','ka— % (Lik + Lk,:)z ; O, l‘.k = 1,2,...71_1 (35)

and so on.
For a three-component system, for example, the restrictions on the Onsager
coefficients are (Kirkaldy, 1970):

L,=20;L,=0,L, Ly, —% (L, + Lzl)2 =0 (36)

This much information is obtained from TIP theory from only two postulates: local
equilibrium and linear constitutive relations. Another assumption of TIP is that the
matrix {L] is symmetric, i.e.

[L] = [L]; L), = [0] (37)

Equation (37) expresses the Onsager Reciprocal Relations (ORR), which may be
looked upon as the third postulate of TIP, for postulates they are, subject to
experimental confirmation or disproof.

The ORR have been the subject of many journal papers receiving support and also
criticism, notably from Coleman and Truesde!l (1960) and Truesdell (1969). All the
available experimental evidence in multicomponent diffusion and other phenomena
seem to verify the ORR and such verifications are continuing to appear in the literature.
Miller (1960, 1969, 1974) has conveniently summarized the experimental evidence in
support of the ORR, which appear to be generally valid for coupled transport processes.
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From an engineer’s view point, the ORR represent a saving in experimental labour,
as they reduce the number of coefficients to be determined from (n—1)* to n (n—1)/2.
For a ternary mixture the reduction is from 4 to 3; for a quaternary mixture the
reduction is from 9 to 6 etc. Alternatively, if all the transport coefficients are
determined, the ORR may be used as a consistency test on the experimental data.

The chemical potentials are not directly accessible by measurement and therefore
before one may apply the ORR or any of the other second law restrictions, it is
important to be able to relate the L, coefficients to the measurable D, coefficients. To
do so we proceed as follows (De Groot and Mazur, 1962).

Under isothermal, isobaric conditions, the chemical potential gradients may be
expressed in terms of the composition gradients as

n—1 a[l.,

V o = E

Z e ¥ i=102,..n—1 (38)

The matrix of chemical potential-composition derivatives [0u/0x] may be further
expressed in terms of the activity coefficients, 7y,, in the mixture as follows:

-—'u—=RT Y’x=RT[- + 7]:

Xx; alny,-]_ RT
dx; dx; [ ox; dx; v

8; +
[ v xj alnxj

X; X;
ij=12..n=1 (39)

where we have defined a matrix of thermodynamic factors, [['], with elements given by

i al i
I, =8+
xj alnx_,

R ji=12,..n—1 (40)
We may therefore re-write equation (38) in the form
V,u,-=——k): Tu V x, i=1,2,..n—1 (41)
or more compactly in matrix notation as

=

1
(Vw=RT — [(Vx) (42)
X
ry 11 1
where 53 represents a diagonal matrix with elements — — = — .
4 xi % Xy

Combination of equations (27), (29), (38) and (42) gives
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@) = — IL] 4] [9p/ox} (V x)/T

——RELIMA] & MV (43)
X

Comparison of equations (22) and (43) shows the inter-relationship between the matrix
of Fick’s law diffusion coefficients and the matrix of Onsager coefficients,

1 |
c |D] =T (L] [4] [op/dx] = R [L] [A4] ;.1 (T (44)

The symmetry requirement for the [L] matrix may therefore be translated into
restrictions on the coefficients D, (Kirkaldy, 1970; Yao, 1966). It is important to note
that the matrix [D] will not in general be symmetric. Application of the ORR therefore
reduces the number of independent elements D, from (n—1) to n(n—1)/2.

Now from thermodynamic stability considerations it can be shown that the
determinant of the matrix [du/0x] is positive definite (Haase, 1969). The determinant
of the linear transformation matrix [4] may also be verified as being positive definite
(cf. equation (28)). The determinant of the matrix of Onsager coefficients is positive
definite from the second law requirement (cf. equations (33) and (37)). It can be seen
from equation (44) that the matrix [D] is the product of three matrices whose
determinants are all positive definite. It follows directly from matrix theory that the
eigenvalues of [D] must be real and positive (Kirkaldy, 1970); the eigenvalues of [D]
being the roots of the determinantal equation

det I[D)—D T, 1 =0 (45)
. For an n-component system, equation (45) reduces to an n—1I th order polynomial in

12, giving n—1 eigenvalues: D, D,,...D,_,. For a ternary system, the two roots D, and
D, can be found explicitly from

b, = Put Du)x(Dy — D) v/1+ 4 DyyDyy/(Dyy — D)’
12 =
’ 2

(46)

The condition for real and positive eigenvalues D, and bz for a ternary system can
therefore be expressed as (Kirkaldy, 1970; Yao, 1966):

D,+ D, >0 (47)
DnDzz —D;D; >0 (48)
(Dn - Dzz)z +4 D12D21 >0 (49)

Itis interesting to note that thermodynamic stability considerations do not require the
diagonal elements D,; and Dy, to be individually positive. If recourse is made to the
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kinetic theory of gases, it can be shown that the main coefficients are individually
positive, i.e.

Dy > 0; Dy, >0 (50)

All available information on experimental measurements on D, suggests the general
validity of requirement (50).

The cross coefficients D, (i#k) can be of either sign; indeed it is possible to alter the
sign of these cross-coefficients by altering the numbering of the components.

The theory of TIP therefore provides some very useful information on the structure of
the matrix of practical diffusion coefficients [D].

IL l.¢ Generalized Maxwell-Stefan Formulation for Diffusion

In the Onsager formulation of the constitutive relations, the diffusion fluxes are
related to the chemical potential gradients by linear relations (29). As an alternative to
this formulation, the chemical potential gradients may be written as linear functions of
the diffusion fluxes, or equivalently the diffusion velocities, as (see Standart, Taylor,
and Krishna, 1979 for derivation)

1 . x (U — w;)
—— =% Ak F
RT vk k=1 Dl‘k

k=1

i=12,...n (51)

which is the generalized Maxwell-Stefan formulation of the constitutive relations for n-
component diffusion (Lightfoot, Cussler and Rettig, 1962; Slattery, 1972). The
coefficients Dy are the generalized Maxwell-Stefan diffusion coefficients and these
coefficients exhibit the symmetry property (Truesdell, 1969)

D,=D, Lk=12,...n (52)
i#k

equivalent to the ORR. There are therefore # (n—1)/2 of these coefficients char-
acterizing multicomponent diffusion. The D; are undefined.

If we multiply both sides of equations (51) by x; we may rewrite the generalized
Maxwell-Stefan equations, in view of equations (3)+7), as

1 'n):. xN; — xN;
—— x =
RT “VHT ST D,

k71

=% = i=12,..n—1 (53)

where only n—1 equations are written because of the restriction (25).
If we define a matrix [B] with elements given by
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X; n X
B,=—+ =, j=12,..n"1 (54)
D, =Dy
ki
1 1
BU= =X T ) i\j = 1929"'n_1 (55)
D; D, i

we may rewrite equations (53) in a cormpact matrix notation, in view of equations (8)
and (42), as

c[f1( vx)=—[B] () (56)

where all matrices are of dimension n—1.

Comparison of equation (56) with (43) zives the inter-relationship between the
matrix of Onsager coefficients [L] and the generalized Maxwell-Stefan diffusion
coefficients. Thus we have

c r 1 ¢ r 1
[L] = }—[B]" — 't =R {4l — Bl (57)
4 X

It may be easily verified by use of relation (57) that the symmetry requirement for the
generalized Maxwell-Stefan diffusion coefficients, equation (52), is consistent with the
ORR, equation (37).

Unlike the Fickian D, the values of the Maxwell-Stefan diffusion coefficients £}, do
not depend on the arbitrary labelling of the nth component. The coefficient D,
essentially reflects the i-k pair collision phenomena and may be closely related to the
molecular processes within the fluid phase. For mixtures of ideal gases, the Maxwell-
Stefan diffusion coefficients £), reduce to the binary molecular diffusion coefficient @ ,;,
in the gas phase, i.e.

Dik = gyfb l,k = 1,2,...?1 (58)
i#=k

For ideal gas mixtures the &, are esentially composition independent and the
generalized Maxwell-Stefan diffusion equations {53) simplify to

- yiJk _.VkJ; . o
—é}_—c 2., ) i=12,..n—1 (59)

n ,'N - N,‘
EJ’ K Wk

k=1 ‘1
i c @ylk

Vy =

where we use y; to denote gas phase mole fractions; the matrix of thermodynamic
factors reduces to the identity matrix for ideal fluid mixtures. Equations (59) may also
be written equivalently in n—/ dimensional matrix notation as (cf. equation
(56))

c(Vy)=—I[BlQ) (60)
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where the elements of the matrix |B] are given by equations (54) and (55) with the
binary duffusion coefficient &, replacing D, and the mole fractions y; replacing x..

For non-ideal liquid mixtures the L), cannot normally be identified with the diffusion
coefficient of the binary pair @,,. Both the D, and the 2 _, are functions of
composition in addition to being dependent on temperature. The variation of the D,
with composition is theoretically predictable for a binary system (Vignes, 1966) and
may be estimated from the infinite dilution values. The prediction of the B, for a
multicomponent system is a subject of current research interest ( Cullinan, 1966-19735;
Cussler, 1976).

Since the Maxwell-Stefan diffusion coefficients £, are amenable to simple molecular
interpretation and theoretical prediction, the generalized Maxwell-Stefan equations
(53), (56) are indeed convenient formulations. Further, comparison of equation (56)
with (22) shows

[D]=[B)" [T] (61)
which provides a general method for predicting the elements of the Fick’s law diffusion
coefficients. '

For ideal gas mixtures, equation (61) simplifies to

[D,] = {B]"' (62)
and therefore the elements D, can be estimated from information on the diffusion

coefficients of the binary pairs, &,,,. For aternary system, the matrix inversion in (62)
can be carried out explicitly and the four elements of the matrix [D,] are obtained as

Din= @ys 01 Doy + (1 —»1) @,12)/S (63)

D=y, D55 (D, — D)8 (64)

Doy =y Dyis (23— 9,18 (65)

D= Dy (2 Dy + (1 —3,) D,5)/S 67)
where

S=y Doy +y Dz +y; Do (67)

The diffusion coefficients of the binary pairs & ,; can be estimated from the kinetic
theory of gases (Chapman and Cowling, 1970; Hirschfelder, Curtis and Bird, 1954) to
a reasonable degree of accuracy particularly for non-polar molecules. The matrix of
diffusion coefficients may therefore be calculated using (62). It may be verified from
equations (63)(67) thatif &,,= @,3= D, = %, then the matrix of diffusion
coefficients degenerates to a scalar times the identity matrix, i.e.

7

D= @, I, | special | (68)

Y
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It is interesting now to compare the above result (68) with (20) and the discussions
following it. ‘

For liquid mixtures, the calculation of the elements D, from (6 1) requires complete
information on the Maxwell-Stefan diffusivities D, and the activity coefficients ¥y, in
solution. Since the prediction methods for the D, are still under development,
experimental measurements of the matrix [D,] are necessary in most cases. Measure-
ment techniques are discussed by Cussler (1976) and Dunlop er al (1972).

III. SOLUTION TO PROBLEMS IN ISOTHERMAL MULTICOMPONENT
DIFFUSION

The solution to a problem involving diffusion, under isothermal conditions, in an
n-component mixture consists in solving the differential equations of continuity (11)
together with the appropriate constitutive relations for the diffusion fluxes J;, discussed
in the previous section. The method of solution to be used in each case depends on
whether the diffusion occurs in the gaseous or liquid phase, whether the diffusion can be
considered uni-dimensional or not and whether or not steady-state, or at least qguasi
steady-state conditions hold. This is because for certain simplified situations, exact
analytic solutions for the composition profiles and fluxes are possible. We first consider
the problem of steady-state one dimensional diffusion in mixtures of ideal gases at
constant temperature and total pressure.

II1.1. Steady-State Unidimensional Diffusion in Ideal Gas Mixtures

Consider diffusion in an ideal gas mixture with #» components. Under essentially
isothermal, isobaric conditions, the total molar density of the gas mixture ¢ may be
considered constant. Let us further assume that diffusion takes place under steady-state
conditions and that the compositions at either end of the diffusion path, z, are known
and independent of time. Thus we have the boundary conditions:

atz =0,y = yo, i=1,2,...n (69)

atz =6y.Vr'=,Vi5,

Now, for steady-state unidimensional diffusion, the equations of continuity (9)
simplify to

dn; .
— =0, i=12,...n (70)
dz .

. The equation of continuity for the total mixture (10) also simplifies to

dN,

dz
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Thus the constituent and mixture total fluxes N, and N, are z-invariant. From a
practical point of view it is important to determine the total fluxes N,, given
compositions at either end of the diffusion path, equation (69). There are n total fluxes
N; to determine, for the mixture total flux N, is then simply given by equation (4).

Now, for ideal gas mixtures the most convenient representation of the constitutive
equations is the Maxwell-Stefan formulation (59). There are only n—1 of these
relations which are independent. Clearly the determination of n fluxes &V, requires a
further relationship. This relationship—termed the ‘determinancy condition’—may be
written in the general format:

2 VN, =0 (72)
For example if conditions of equimolar counter-diffusion are specified, then we have
v,=1, i=1,2,...n (73)

On the other hand if we have diffusion of n— I species through a stagnant (inert) nth
component, then

N, =0 (74)
and therefore the parameters v, in (72) are given as

v, =0, i=12,,.,..n—1 (715)
and

v, =1 (76)

In problems involving diffusion with heterogeneous catalytic reactions, the par-

ameters v; are determined by the stoichiometry of the reaction. The determinancy
condition in most practical cases may therefore be written in the form (72).

In proceeding with the solution of the n—1I equations (59) subject to (72), it is
convenient to define a dimensioniess distance along the diffusion path:

n=z/% a7)
and ‘transfer’ coefficients’, # ;, of the binary pairs i—k as
‘.A'k=c U\,vx'k/‘ss Lk = 1,29"'n (78)
#k

With these definitions the equations (59) may be written as

d i n i - i [} - ;
Y =% YNy — iV _ ¢ e =yl ’ i=12,..n—1 (19)
dn ik o A
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We therefore seek a solution for the n total fluxes N, from equations (79) and (72),
with the boundary conditions

at 'T =0,y = Yo, . (80)
i=1,2,...n

atn =1,y = yas,

For ideal gas mixtures the binary diffusion coefficients 2, are virtually
composition independent and therefore the mass transfer coefficients £, in (79) are
independent of the parameter 7. The diffusion fluxes J; vary along the diffusion path
even though the N, are n-invariant.

For a two-component system, the composition profiles are obtained as (BSL)

e —1

Ji = Y= ;’Tl@ld—ylﬂ) (81)

with the diffusion flux of component 1 given by

)
Jo = 4126‘,__ (10 — »10) (82)

1
The diffusion flux of component 2 is simply (cf. equation (8))
Jzo = — JlO (83)

The factor ¢ in equations (81) and (82) is a dimensionless mass transfer rate factor
(BSL) given as

¢=(N,+N) £, (84)
For equimolér counter-diffusion in the binary systems, N, = 0, and we have
N=Jg=Js= ‘12()“0"'}’16) (85)

and for diffusion of species 1 through stagnant 2 (N, = 0), we have the total flux of 1
given by

Jio P V1o — Y15)

N, = = 4. ) 86
T l=y et —1 (1 = y10) (86)
which is more usually written as -
1 _—
N, = fjln —22 87)

1=y
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Analytic solutions to (79) for the three-component case for various determinancy
conditions are available in the literature (Benedict and Boas, 1951; Cichellietal, 1951;
Gilliland, 1937; Hsu and Bird, 1960; Johns and De Gance, 1975; Keyes and Pigford,
1957; Toor, 1957). Krishna and Standart (1976b) obtained a general solution to the
n-component case using matrix analysis. Their resuits are of general applicability and
presented in convenient form. We follow their development below.

The following parameters are defined:

(i) a matrix [®] of dimensionless mass transfer rate factors with elements given by

N N - ~1 88
D, 7 +k=l 7 i=12,..n (88)
i ey ik :
1 1 ..
AT o e (89)
i in i ! .

(ii) a column matrix (f) with elements
&= — Ndw i=12,.n—1 ' (90)

(iil) a square matrix [98,] with elements given by

QW—£~+£'A’ i=12,..n—1 | £29
m k#i [l .
1 1 . .
'%oﬁz_ye'o[z— - ] ’ i=12,...n—1 , (92)
i {'1’» i=f

With above definitions, the equations (79) may be written in n—I1 dimensional
matrix notation as

d(y)
dn

=1 () + (& | (93)
with the diffusion fluxes J;, given by (cf. equation (60))

d
Vo) = — [Bo]™ din) n=0 (94)

Basically the solution procedure consists in solving (93) to obtain the composition
profiles which may be used to evaluate the composition gradient at 7 = 0 and then
combined with (94) to yield the diffusion fluxes J .

The solution of the linear matrix differential equation (93) with the boundary



18:51 10 Septenber 2008

Downl oaded By: [University of California, Berkeley] At:

220 R. KRISHNA AND G. L. STANDART

conditions (80) is straightforward (Amundson, 1966; Krishna and Standart, 1976b)
and yields the composition profiles in n—1 dimensional matrix notation as

0=y =lexpl®ln~ TI, texol®1— T, ' Ga—y) (95

which is seen to be the exact matrix analogue of equation (81). The composition
gradient at the position 7 = 0 can be obtained as

d
) =0 =[@Yexp[®] ~ T, |7 (vs = »0) (96)
dn -

and therefore the diffusion fluxes J,, can be expressed in view of equation (94) as
o) = [l [@exp[®] — T, V™' (o~ ys) o7

It is convenient to define a matrix of ‘mass transfer coefficients’, [k3], by

o) = [3] o — y3) (98)
so that
(k9] = [B,]" [E] (99)

where we further define a matrix of correction factors
[E] = [®] fexp [®] — FI, } (100)

The mass transfer coefficients defined in (98) are functions of the total rates of
transfer V;; we emphasize this fact by using a superscript black dot on the transfer
coefficients kﬁy. The definitive discussion of transfer processes at high mass transfer
rates for binary systems is given in BSL. The above relations represent the extension to
the general n-component case.

It may be verified from equations (88), (89) and (100) that for vanishing rates of
transfer (N; — 0), the matrix of correction factors [£] reduces to the identity matrix and
when this happens the matrix of ‘finite flux’ mass transfer coefficients [k J] reduces to
[Bo]™', which may therefore be defined as the matrix of ‘zero flux’ mass transfer
coefficients. Thus taking

[kol = [HBo]™ (101)

allows calculation of the matrix of ‘zero flux’ transfer coefficients.

The formal calculation of the total fluxes &V, from a knowledge of the diffusion fluxes
J;, may be carried out as follows. We multiply equations (7) by v; and sum over the n
species to obtain, in view of (8) and (72),



18:51 10 Septenber 2008

Downl oaded By: [University of California, Berkeley] At:

MASS AND ENERGY TRANSFER 221
n—1
% (v~ i) o

N=—-"—"F——— (102),
]El Video

and therefore n—1 total fluxes N; may be obtained from the n—1 diffusion fluxes J;,
from the relation

N; ='§ (8 — yio Ad) Jios i=12,..n—-1 | (103)

with the nth flux N, determined from (cf. equation (72))

n=1l V;
N =-% 2 N (104)
k=1 v, . .

The parameters A, in (103) are given by (cf. equation (102))

A== vAEvive  k=12,...n"1 . (105)

Equations (98), {103) and (104) represent the formal solution to the problem under
consideration. The calculation of the total fluxes ¥; is not truly explicit and involves a
trial and error procedure. Convergence is assured if the following iteration procedure is
adopted (Krishna and Standart, 1976b):

STEPI Calculate the matrix of zero flux mass transfer coefficients, [ko], from (91),
(92) and (101),

STEP I1 Assume for the first iteration that the matrix of correction factors [E] is
given by the identity matrix. Calculate the first approximation to the matrix of ‘finite
flux’ mass transfer coefficients [£J], from (99).

STEPIII Determine the diffusion fluxesJy, from (98) and calculate the 7 total fluxes
N; from equations (103)-(105),

STEP IV With this estimate of the fluxes N, obtain the elements of [®] and
calculate the elements of the matrix of correction factors from (100). The de-
termination of | Z] requires the use of Sylvester’s theorem (Amundson, 1966). Explicit
expressions for [E] for the ternary mixture for the equimolar counter diffusion case (73)
and the stagnant nth component case (74) are given by Krishna and Standart (1976b).

STEP V With the new estimate of the matrix [Z] the ‘finite flux’ coefficients [k §]
may be reevaluated and the steps II1-V repeated till convergence is obtained on each
individual N,.

The steady-state analysis considered above forms the basis of the ‘film’ model for the
estimation of multicomponent mass transfer coefficients.
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IIT.2. Steady-State Unidimensional Diffusion in Non-Ideal Liquid Mixtures

For non-ideal liquid mixtures the generalized Maxwell-Stefan diffusion coefficients
D, are not independent of composition. Further, there is a complication due to the
thermodynamic non-ideality of the mixture, reflected by the elements of the matrix of
thermodynamic factors [I']. Strictly speaking, therefore, a general analytic solution for
steady-state diffusion in liquid mixtures is not possible. Krishna (1976a) has suggested
the following extension of the ideal gas phase analysis to liquid mixtures.

(i) Obtain suitably averaged vaiues of the generalized Maxwell-Stefan diffusion
coefficients D, over the range of compositions x4 t0 x;s.

(ii) Calculate transfer coefficients 4, from

£y = (¢ Dy)u/d, Lk=12,...n (106)
(iii) The elements of [8,] are estimated using equations (91) and (92} using x; in
place of the gas phase mole fractions y;.
(iv)} The elements of the matrix of thermodynamic factors [I'] are calculated from
equation (40) at a suitable mean composition between x,, and x;;.
(v) The matrix of ‘zero flux’ mass transfer coefficients [k,] is obtained from
[kol = [Bo]™ [T} (107)
{vi) A modified matrix of dimeﬁsionless rate factors [@] is defined as

[0] = [T [@] (108)

The diffusion fluxes J,, are then obtained from the equation (98) with the matrix of
“finite flux’ mass transfer coefficients, [kJ], given by

[k8] = [ko] [©] fexp [O] — T, )’ (109)

The calculation of the total fluxes &, is then carried out exactly as for the ideal gas

" case considered earlier.

For further applications of the above matrix methods of solution to the Maxwell-
Stefan equations, see Krishna (1976a,e,f; 1977a).

II1.3 General Method of Solution to Multicomponeni Diffusion. Linearized
Theory of Toor (1964) and Stewart and Prober (1964)

On introducing the generalized Fick’s law formulation (21) into the continuity relations
(11) we obtain n—1 independent differential equations

dx:’ n—1
e Fi_g. [cz D,kvx,gl . i=12,..n—1 (110)
dt k=1
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Equations (110) represent a set of n—1! coupled partial differential equations; the
coupling arises due to the presence of the cross coefficients D, (i#k) in the matrix of
practical diffusion coefficients. The elements of the matrix [] are dependent on
composition. For ideal gas mixtures, they are calculable with the aid of the Maxwell-
Stefan equations (cf. equation (62)) from the binary diffusion coefficients ¢/ ,,;. For the
general case of non-ideal fluid mixtures the elements of [D] have to be evaluated
experimentally; as discussed earlier prediction methods for [D,] are still under
development.

Toor (1964) and Stewart and Prober (1964) independently put forward a general
method of solution to equations (110) which essentially consists in assuming that
¢ [D] can be considered a constant matrix in the diffusion process. With this
assumption equations (110) reduce to

dx,- _uilD 5 =12 1 .
dt _k=l fkv Xy I = 1,4,...1 ( )

which can be represented conveniently in #—1 dimensional matrix notation as

d(x o(x

%EQ-F—u-(Vx):[D]VZ(x) (112)
The matrix differential equation (112) can be uncoupled by a similarity trans-

formation (Amundson, 1966; Toor, 1964). The uncoupling procedure is as follows.
For the matrix of coefficients [D], a modal matrix [P] can be found such that

b, .
D,

(P (D) [P] = D, (113)

bn—l

where D,, D,,...D,_, are the eigenvalues of the matrix [D]. The requirement of the

second law of thermodynamics, o = 0, ensures that the D, are all real and positive

numbers and form a complete set even if there are repeated roots (Cullinan, 1965).
On premultiplying equation (112) by [P]™! we obtain

3 .
-g:—)+u~va)= B, 7@ (114)

where we define pseudo-compositions, X;, by

@ =[P (%) (115)
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Equation (22) may also be premultiplied by [P]™! to yield
dH=-¢ rf)_, (V%) (116)
where the pseudo-diffusion fluxes j,- are given by
&=t @ (117)

Examination of equations (114) and (116) shows that the similarity transformation
reduces the original set of n—J coupled differential equations (111) to a series of
n—1 uncoupled equations (114) in pseudo-compositions,

-

Ox;
ot

+u - VE=D,V% i=12,...n"1 (118)

with pseudo-diffusion fluxes given by a set of n—17 uncoupled constitutive relations
J,=—¢D, vz i=12,.n—1 (119)

The pseudo variables behave as though they were each the corresponding variables
of a binary mixture with the diffusion coefficient D,. Therefore if the initial and
boundary conditions can also be transformed to these pseudo compositions and fluxes
by the same transformation and if free convection is not involved, the diagonalized
equations represent a series of independent binary type problems, n—1 in number. If
free or forced convection is involved, we must use the non-linear equation (118), where
the molar average velocity u must be found from the solution giving the total mixture
flux N,. The problem is relatively simple if mechanical equilibrium may be assumed. If
however the equations of motion of the fluid must also be taken into account, the
diffusion equations must be solved in terms of the mass average velocity and an
iteration employed to find the molar average velocity (Stewart and Prober, 1964). Note
that the (molar average) velocity u in equation (118} is not affected by the
diagonalization transformation. Solutions to binary diffusion problems are available
for a wide range of initial and boundary conditions (BSL; Crank, 1975) and therefore
the solutions to each of the n—1 diffusion problems in pseudo-compositions can be
written down straightaway. All such solutions would be in terms of pseudo-
compositions and pseudo-fluxes. In order to recover the solution to the original problem
in terms of real variables, it only remains to apply the inverse transformations:

(x) = [P] (%) (120)
and
@ =[P @ (121)

The assumption of a constant matrix of diffusion coefficients therefore allows a host
of solutions to multicomponent diffusion problems to be obtained quite simply; the
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theory of Toor and Stewart and Prober is also referred to as the linearized theory of
multicomponent mass transfer because the set of non-linear differential equations
(110) is linearized to give the set (111). One might expect the results of the linearized
theory to be close to ‘exact’ solutions for small changes in concentration but the few
experimental results which are available (Arnold and Toor, 1967) indicate that the
errors caused by the assumption of constant ¢ [D] are not serious even for moderate
changes in concentration.

The application of the linearized theory will be illustrated by considering a few
typical diffusion problems.

II1.4. EXAMPLES ILLUSTRATING THE LINEARIZED THEORY OF
MULTICOMPONENT MASS TRANSFER

IIT.4. Restricted Diffusion in an Ideal Three-Component Gas Mixture

Here we consider the analysis of the well-known Loschmidt experiment for a three
component gaseous system (Arnold and Toor, 1967). This example is of practical use
in the measurement of multicomponent diffusion coefficients.

Two identical cylindrical compartments, each of length /, are filled with ternary gas
mixtures of different compositions and joined end to end at time zero. Composition
profiles for the diffusing species are to be determined; the measurement of such profiles
may be used to calculate the elements of [D,].

At constant temperature and pressure inside the diffusion cell, the mixture density ¢
remains constant and the molar average velocity # vanishes everywhere corresponding
to the requirement of equimolar counter diffusion:

N=cu=0 (122)

Equation (112) therefore simplifies to

% = [D] %)— (123)
with the initial and boundary conditions given by

120, 0<z<!l, (=0

t=20,—-1<z<0, =@ (124)

t>0, z==| % =0

The first stepin the application of the uncoupling of (123) is the diagonalization of the
matrix [D}. For a ternary system the eigenvalues D, and I}, are given by equation (46)
and the modal matrix [P] is found to be given by
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1 _ D, 1 D, — Dy,
Dz - Dn DZl
1 = D, 1 (125)
Dlz D, — Dy

=
Il
___b’
|
5
fl

When D, and D,, are negligibly small, f), — D, and ﬁ, — D,,. For this case the
modal matrix [P], and therefore [P]™', simplify to unit matrices and the equations (123)
are not coupled. When this simplification does not hold, we must solve (123) by
uncoupling them using the similarity transformation.

Multiplying (123) by [P]™' we transform the original problem into a set of two
uncoupled equations

ay'\" ~ 82}'3"
—_— Di N y — 1 ,2 1 26
o oz : (126)

The initial and boundary conditicns are also transformed as
t=0, 0<z<l jp,=7y%, i=1,2
t=0, —I<z<0, y,=y7, i=1,2 (127)

t>0, z==x1[ 0dyfox =0, i=1,2
The solution to equations (126) subject to (127) may be written down straight-
forwardly as the solution to the corresponding binary diffusion problem is available

(Amold and Toor, 1967; Crank, 1975). Thus the pseudo composition profiles may be
written as '

B:—ia=fD.t2) 5t — 53, i=1.2 . (128)

where the pseudo-functions _}; are given by

FDys)=% |12~ [i o T | bt}] =12
(D t,z Tz sin ] exp I o ; , I s

m
(129)
withm =n + 4,
Equation (128) in matrix notation is
~ ”~_ r_A " Pt
G-5)="0, 6" =5 (130)

where rf_] is a diagonal matrix with elements f , and £, given by {129).
To obtain the composition profiles in terms of the original variables in (123) we
premultiply (130) by [P] to obtain
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=) =1/10" =) (131)
where the solution matrix [ /'] is given by
=121 7, e (132)

Examination of equations (113) and (132) shows that the matrices [ /] and [D] are
closely related for they are diagonalized by the same similarity transformation, i.e. they
have the same modal matrix [P]. [ /] may be evaluated in general by utilizing {(132).

From equations (128)~(132) it is clear that the matrix [ '] is the same analytic
function of [D] as f; is of D,, i.e.

[f1= FD] (133)

Sylvester’s theorem (Amundson, 1966; Toor, 1964) enables us to evaluate [ f] in
terms of the matrix [D] and its eigenvalues D, by use of the formula

Wip1-b, 1
,Ilj {ﬁ, - f)r}

AIDR== ;D) (134)

The use of (134) for evaluating [ /] avoids the necessity of evaluating [P]. Explicitly for
a ternary system we have

D,, D, . M 0
_D2
Dy, 0 1

_ .. Dy
(/1= £.(D)) D —-D +
1 2
l:D,, D,j oo
- D,
. . |D, D 0 1
+ oDy — zf) 5 = (135)
2 1

Once [ f]is evaluated from (132) or (135), the composition profiles can be calculated
from equation (131).

IIT.4.b Multicomponent ‘Film’ Model for Finite Mass Transfer Rates

Let us consider steady-state uni-dimensional diffusion in a non-reacting #n-component
fluid mixture at constant temperature. It is assumed that the compositions at the two
ends of the diffusion path- a ‘film’ of thickness §—are known and these remain fixed
during the duration of the transfer process. It is required to determine the composition
profiles and the constituent total molar fluxes N, We are in fact considering an
alternative approach to the problem considered in sections III.1 and II1.2. Here we
consider the general case of a non-ideal fluid mixture.
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Using the linearized theory approximation, i.e. ¢ [D] remains constant along the
diffusion path, the equations of continuity (112) reduce to

d(x) d¥(x)
u =D 136
4z (D] 17 (136)
where u is the molar average mixture velocity given by
u=NJec (137)

From equations (70) and (71) we see that the constituent and total mixture fluxes are
z-invariant. It will be assumed that the determinancy condition (72) is available and
that the parameters v; are specified.

In proceeding with the solution of (136) we premultiply by [P]™' to obtain a series of
n—1I equations

dx; . d*%;
u = D,
dz

, i=12,..n—1 (138)

atz=0, % =3, (139)

The solution to the corresponding binary diffusion problem is available (see BSL and
also compare with equations (81)+84)) and therefore the solution to the n— I pseudo
diffusion problems can be written down simply. Thus the pseudo composition profiles
are given by

'{'f —iio =f:|'(’bi) {5&,‘5 - -il'O }s P= 1’2""”_1 (140)
where
n 5] i _1
f4D) = M’ i=1.2,...n—1 ) (141)
expy; — 1

in which the following parameters have been defined in addition to (77):
(i) pseudo-mass transfer rate factors

v, =NJk, i=12, . .n—1 ' . (142)
(ii) pseudo-‘zero flux’ mass transfer coefficients

ki=eDss,  i=12,.n—1 (143)

where f),- represents the ith eigenvalue of [D].
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Equations (140), (141) give the composition profiles in terms of pseudo-variables;
the original composition profiles can be recovered by applying the inverse [P]
transformation to obtain

(x =x0) = [ f] (x5 — Xo) (144)

where the solution matrix [ f | can be obtained from (132) or (135).

The pseudo diffusion fluxes J; vary from z = 0 to z = §; the fluxes atz = 0 being given
by

- - dX; ~ dx; _
Jo=—cD, =—k,— ) , i=12,..n—1 (145)
dz 2=0 dn | »=0

The composition gradients may be evaluated from (140}, (141) to give

- !f,/i

Jo=ki———— (%o — %) i=12,..n~1 (146)
exp¢,» -1

The factor ¢/ (expy; — 1) shows the effect of finite mass transfer rates (V,# 0) on the

transfer coefficient k£ ;. We may therefore define pseudo-‘finite flux’ mass transfer
coefficients & ¥ by

A'_ j,- o wi s
k ®=— — =k, , i=1,2,...n—1 (147)
X0 — Xig expy; — 1

In the limiting case of zero net mass transfer rate (N, — 0), we have ¢, — 0 and
therefore

limit e 7 .
fi,i“LOk$=ki, i=12,..n-1 (148)

The transfer coefficient ; may therefore be interpreted as the limiting value of the
mass transfer coefficient obtained under vanishingly small net rate of mass transfer.
This zero flux coefficient & ; requires correction for finite transfer rates and the
correction factor to be used in {,/(expy; — 1). When there is a net transfer of material
out of the phase under consideration {e.g. condensation of a vapour mixture), the ¥’s
are negative and the correction factors are greater than unity; there is an increase in the
mass transfer coefficients due to finite transfer rates. On the other hand when material is
transferred into the phase under consideration (e.g. evaporation into a gaseous stream),
the rate factors i; are positive, the correction factors are less than unity and the effect of
the finite transfer rates is to decrease the mass transfer coefficients.

We may therefore multiply the matrix equation giving the pse-.do-diffusion fluxes:

Jo) = & % Ro %) (149)

by {P] to give the actual diffusion fluxes
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o) = [£*] (xo — x5) (150)
where the matrix of finite flux mass transfer coefficients is given by
[
[k®]1=1P] &% [P (151)

and may also be obtained by use of Sylvester’s theorem, equation (134). For a ternary
system we have [k®] given explicitly as

[D]—‘ﬁz .rl-' ] +IG.I[D]ﬂf). '7_1 ]

[k®&® l of 2" 2
DI - D, D, — D,

(151a)

The total fluxes N; are calculated from these diffusion fluxes J;, by use of equations
(103)H105) with the y,, being replaced by x,. Since the calculation of the matrix of
finite flux coefficients [k *®] requires prior knowledge of the mixture total flux, it is clear
that a trial and error procedure is involved. A stable iteration procedure is as follows:

STEPI. Calculate the elements of the matrix of diffusion coefficients [D]. Since the
elements of [D] are dependent on composition, this matrix must be estimated at some
mean composition between x;, and x,s. The eigenvalues D, of [D] are obtained and the
pseudo-‘zero flux’ mass transfer coefficients £ ; calculated from equations (143).

STEP II. The correction factors y,/(expy, — 1) are all assumed to be unity

STEP III. The pseudo-finite flux mass transfer coefficients £® are calculated from
equations (147) and the matrix of finite flux coefficients [k ®] calculated from (151) or
from Sylvester’s theorem (e.g. (151a)).

STEP IV. The diffusion fluxesJ, are then calculated from (150) and the total fluxes
N; determined from (103)-(105). ,

STEP V. With this estimate of NV, the correction factors ;/(expy; — 1) may be re-
evaluated and the steps II1-V repeated till convergence is obtained on the net mixture
flux N..

For the case of equimolar counter diffusion (N, = 0}, the above procedure simplifies
considerably because the correction factors do reduce to unity and therefore the finite
flux coeflicients equal the zero flux coefficients (cf. equation (148)).

It is important to appreciate the difference between the ‘film’ model for multi-
component mass transfer considered above and that developed in Sections II1.1 and
IIL1.2. The linearized theory film model assumes ¢ [D] is constant and is therefore an
approximation even for ideal gas mixtures. The procedure developed by Krishna and
Standart (1976b), discussed in III.1, is exact for ideal gas mixtures. For liquid
mixtures, the procedure of Krishna (1976a), discussed in IIL.2, represents an
approximation in which the Maxwell-Stefan diffusion coefficients are assumed to be
constant over the diffusion path. This approximate procedure is to be preferred when
complete thermodynamic information on the activity coefficients v, is available
together with information on the £),. When only experimental information on the matrix
[D] is available for liquid mixtures, then the linearized theory approach is to be
preferred because it does not require additional thermodynamic information.

An important difference between the linearized theory approach, and the Krishna
and Standart matrix solution is that in the former approach, only the net mixture flux N,
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appears in the flux corrections whereas in the latter method each individual flux offers
its own intrinsic correction (cf. equation (100)).

HI.4.c Multicomponent Penetration Model for Finite Mass Transfer Rates

Consider multicomponent diffusion in a one-dimensional semi-infinite fluid system.
The system is initially of uniform composition (x..} and at time ¢ = 0, the interfacial
composition is instantaneously changed to a value (x,) and maintained at this value for
all time ¢ > . With the assumption that ¢ [D] remains constant during the diffusion
process, the variations of the fluid compositions are described by the matrix differential
equation (cf. equation (112))

2
0,
with the boundary conditions
=0, z>0, (x)=(x.)
t>0, 2=0, (x)=(x) (153)

t>0, 2=, (x)=(x.)

The solution to the corresponding binary diffusion problem is available (BSL) and
therefore once the equation (152) is uncoupled by premultiplication with [P]~!, the
solution to the set of pseudo-binary problems can be written down. The uncoupling
procedure is exactly as described in the previous examples.

The diffusion flux at any instant of time is therefore given by
Jo=k®Ro— %), i=12,..n—1 (154)

where the pseudo-‘finite flux’ (instantaneous) mass transfer coefficients are given by
(BSL; Stewart and Prober, 1964)

¥
}

o=k, [1+erf{\/ql—;}]_lexP - .

i=1.2,...n—1 (155)
with erf the error function and with the pseudo-‘zero flux’ mass transfer coefficients
obtained from

- D~

k,=c¢ [—] , i=1,.2,...n—1 (156)

i

The dimensionless rate factors ¥, in (155) are given by

Y.=Nyk, i=1.2,..n—1 (157)
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Equation (151) or (151a) may be used to calculate the matrix of finite flux mass
transfer coefficients, [k®].

Equation (156) gives the instantaneous value of the pseudo-zero flux mass transfer
coefficients; the averaged value over the interval of time O to ¢ is obtained as
2 ¢ (Dy/mt)". For a comparison of the film and penetration theory predictions for
multicomponent mass transfer see Krishna (1978a, 1978b).

IV. TURBULENT DIFFUSION

For turbulent flow condtions the differential equations of continuity apply in their time
averaged form. Thus we have (BSL)

dx,: ax,‘
=¢ —+cuw-Vx,=—V -J—V -], =1,2,...n—1 (158)
dt ot

where the composition x; and the velocity u are considered to represent time averaged
values. J, is the diffusion flux due to molecular processes and J; represents the turbulent
diffusion flux. We may extend the discussion on molecular diffusional transport to the
turbulent case by writing the following constitutive relation for the turbulent diffusion
flux (cf. equation (22))

J)=—c[DT(V x) (159)

where [D'] is the matrix of turbulent eddy diffusivities (Toor, 1960; Stewart, 1973).

“If transfer takes place entirely by turbulent mixing, as assumed for example in mixing
length theories, then the I); are independent of molecular diffusivities (Toor, 1960).
This condition is approximately realized in binary systems where experiment and
theory indicate that the effect of the molecular Schmidt number on the turbulent
diffusivity is not large. It seems reasonable at least as a first approximation to assume
that the same condition holds in a multicomponent system. If it is further assumed that
the magnitude of the mixture flux N, has no effect on the turbulent diffusivities (which is
equivalent to assuming that the velocity u = N /c is negligible compared to the turbulent
core velocity so that its effect on the turbulence level can be neglected) then the I} are
fixed by the system hydrodynamics and are independent of the number of species
present. With these assumptions there can be no turbulent diffusional interactions
between species and the matrix [D'] must degenerate to a scalar times the identity
matrix,

r

[D]=D" 1, (160)

On combining equations (158)—~(160) and using equation (22) we obtain

d(x)
ot

which equation can be diagonalized by assuming c [D] is constant along the diffusion

Fu-Vx=v g (qp] + or r:’_] BRAES) (161)
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path (Standart and Krishna, 1979; Stewart, 1973). Note that ¥ can, and does, vary
along the diffusion path and vanishes at the interface.

As the level of turbulence increases, the coupling becomes weaker and for
completely turbulent conditions the right hand side of {161 ) reduces to a diagonal form.
So in general we may expect multicomponent diffusional coupling to be less significant
in turbulent flow. von Behren et ¢l (1972) undertook an experimental study of ternary
mass transfer in turbulent flow; their theoretical analysis is plagued by a conceptual
error as pointed out by Stewart (1973).

V. ISOTHERMAL MASS TRANSFER AT A PHASE BOUNDARY

-So far we have considered molecular and turbulent #-component diffusion within a

single fluid phase and discussed methods for calculation of composition profiles and
fluxes. In most separation processes, and in may other practical situations where mass
transfer is important, transport of material from one phase to another is involved. In
most practical situations, the flow is turbulent and the flow field is inadequately
specified; both molecular and turbulent eddy diffusion are involved. A complete
theoretical analysis is not possible and one has to rely on empirical and semi-empirical
methods for predicting the transfer rates. Excellent discussions on interphase mass
transfer in binary systems are available in the literature (e.g. BSL; Sherwood, Pigford
and Wilke, 1975); here we consider the formalisms associated with multicomponent
mass transfer across phase boundaries.

V. 1. Total Fluxes, Diffusion Fluxes

Consider a two fluid—fluid phase system; let ‘y’ denote the lighter phase and ‘x’ the
heavier phase. It is easy to show by a material balance that if &, is the normal
constituent material in a given phase at the interface and with respect to it,

N=N=N, =12, .11 (162)

The only assumptions required are that no surface reaction is occurring and there are no
constituent adsorptions at the interface. The commen flux may be called a phase
invariant (Standart, 1964).

If we further assume that (i) the average state of each phase can be characterised by
bulk properties (denoted by subscript b), (ii) that the transport rates in the interfacial
region in directions tangent to the interface are negligible compared to the normal
interphase transport rates and (iii) under unsteady state conditions, the rate of
accumulation in the interfacial region is negligible compared to the normal interphase
transport rate (or at least that the average rate of accumulation is negligible), we can
show that

N, =N,= N3, =12, ..n (163)

While assumption (i) is generally justifiable, assumption (ii) applies best when the
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interfacial region is a thin zone near the phase boundary with the bulk phases well mixed
as is implied in many theories of mass transfer (e.g. film, penetration and boundary
layer theories). Assumption (iii) is satisfied for many quasistationary processes and if
the thin zone assumption is satisfied, it will be a good approximation even in many
unstationary cases.

The mixture molar transport flux, N,, given by

R
N,=3% N, (164)
=
is also a phase invariant.
Just as in the treatment of intraphase diffusion, it is convenient to define diffusion
fluxes with respect to the total mixture flux V,. If we consider the ‘x” phase explicitly we
may write the diffusion flux in that phase as

J=N—-x;NN=N,—x;N, i=12,...n (165)

We see that while the total fluxes N, are phase invariants the diffusion fluxes J; are
not; indeed due to the variation of the compositions x; from the buik phase to the
interface, they vary within the phase from the bulk to the interface. In processing
operations the bulk phase compositions are measurable and of interest and therefore it
is usually the bulk diffusion fluxes,

=N —xp N, i=12,..n (166)

which are useful from a computational point of view. We may write relations parallel to
(165) and (166) for the ‘y’ phase.

V.2 Interphase Mass Transport Rate Relations, Multicomponent Mass
Transfer Coefficients

In the discussions on intraphase diffusion, the constitutive relations for the diffusion
fluxes J; were obtained by postulating linear relations between the diffusion fluxes and
the composition gradients (cf. equation (21)). These constitutive relations describe the
diffusion characteristics locally. The theory of TIP was used to show that chemical
potential gradients are more ‘fundamental’ measures of the driving forces for diffusion.
In extending the treatment of intraphase diffusion to interphase mass transfer across
phase boundaries, we must consider differences in the chemical potentials

AV w= lu'fl — ‘u".‘b, i= 1,2,...?1 (167)

~ between the interface (subscript I) and the bulk fluid phase to represent the proper

driving forces for interphase mass transport. As in intraphase diffusion, it is convenient
for many practical problems to adopt more ‘practical’ driving forces such as partial
pressure differences (Ap), concentration differences (Ac), humidity differences {AY)
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etc. Here we adopt composition (mole fraction) differences as practical driving forces;
these driving forces are simple to use in many practical separation processes such as
distillation, absorption, condensation, extraction etc. Thus we use for phase ‘x’ the
driving forces '

Ax, = Xy — Xy i=12,...n (168)

where we consider transfer from the y to the x phase as positive.
Now, for interphase mass transfer in two-component systems it is usual to define the
binary mass transfer coefficient, k£%,,;, by

Sis =f9§mAx1 (169)

where the superscript black dot @ on the mass transfer coefficient reminds us that
interphase transfer coefficients defined in terms of composition differences depend in
general on the rates of transfer N, The subscript b on the mass transfer coefficient
emphasises the fact that the transfer coefficient has been defined in terms of the bulk
diffusion flux Ji,. If the interfacial diffusion fluxes are considered then we have
correspondingly

Jii =N, — x,(N, +N2)=é:112 1 (170)

The finite flux mass transfer coefficients £%,,, and £%;,, are not equal in general
except for vanishing rates of transfer. The determination of these finite flux coefficeints
from the zero flux coefficients requires the use of various simplified hydrodynamic
models for mass transfer (film, penetration theories) and is discussed at length in BSL.

For the general n-component case, there are n—/ independent composition
difference driving forces since

r Ax;=0 (171)

i=1

and also n—1 independent diffusion fluxes as for the analogous y phase relations. As an
extension of the binary rate relation (169) we must consider writing the constitutive
relations

n—=1
'I'\;'b = k‘::l k:b,‘kAx,a 1= 1,2,...n_l (172)
or in matrix notation

(3) = [k%] (Ax) (173)

The mass transfer characteristics of a particular phase are described by a matrix of
mass transfer coefficients of dimension n—1 X n—1. It is important to appreciate that
the actual magnitudes of the elements k:b,-j depend on (i) the (arbitrary) numbering of
the constituents in the mixture, (ii) the magnitudes and directions of the fluxes V, at the
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position under consideration and therefore on the magnitudes and signs of the driving
forces Ax; and {iii) on the (basically arbitrary) choice of using bulk or interfacial
diffusion fluxes.

In the limit of vanishing transfer rates (N; — 0) the matrix of finite flux mass transfer
coefficients equals the matrix of zero flux mass transfer coefficients. Thus

limit
N, =0, [k%] =kl (174)
i=12,...n

which serves to define the zero flux coefficients &,,,;, which are the same for the bulk and
interface.

V.3 Estimation of Multicomponent Mass Transfer Coefficients

Most experimental research works in the past tended to concentrate on two-component
systems and empirical correlations for the binary mass transfer coefficient are available
for various system geometries and hydrodynamics (see for example Sherwood, Pigford
and Wilke, 1975). Such correlations are typically of the form

hoyd 7 e
Ll (R bl_—_"—] 175
c Yy @ (Re) Le Qx(-,- ( )

where d is some characteristic dimension in the mass transfer equipment; ﬁx,-j is the zero
flux binary mass transfer coefficient for the pair i; 9,; is the zero flux diffusion
coefficient in the ‘x” phase for the pair i~j; @, b and ¢ are experimentally determined
‘constants’. The coefficient £,; calculated from such correlations needs to be corrected
for finite transfer rates before use in design equations. The film theory correction for
finite transfer rates is given in equation (82) while the penetration model correction is
given in (155).

Since binary mass transfer experimental data are available in the literature it is
desirable to be able to predict the matrix [£%,] from binary transport data alone. Such
predictions are possible for multicomponent gas phase transport; for multicomponent
liquid phase transport, it is essential to have measured liquid phase multicomponent
diffusion data ([D,]).

With the linearized theory of multicomponent mass transfer, the procedure for
calculating the matrix [k%,] is as follows (Toor, 1964; Stewart and Prober, 1964):

STEP 1. For conditions prevailing at any position in the mass transfer equipment, it
is assumed that the compositions in the bulk fluid phase, x;,, and at the interface, x,;, are
known. The matrix of diffusion coefficients [ D] is estimated at some mean composition
between x;, and x;;. For ideal gas mixtures the matrix [D] can be estimated from the
diffusion coefficients of the binary pairs @,,,. For liquid mixtures it may be necessary
to determine [D] by experimental measurement.

STEP II. The eigenvalues of D; of [D] are calculated. As has been seen in sections
II1.3 and IIL.4, once the governing differential equations are uncoupled by pre-
multiplication with [P]™, each pseudo-species behaves as though it were in a binary
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mixture with a characteristic diffusion coefficient ﬁ,v. Substitution of D; in place of
9 ;in mass transfer correlations of the type in equation (175) would therefore yield the
pseudo-‘zero flux’ mass transfer coefficients, k.

STEPIII. The pseudo ‘zero flux’ mass transfer coefficients need to be corrected for
finite mass transfer rates. Corrections may proceed by use of the film or penetration
theories as discussed in II1.4 b and IIL.4.c. The pseudo ‘finite flux’ mass transfer
coefficients £ § are thus obtained.

STEP IV. The matrix [k%,] is then obtained by use of (151) or (151a).

Analternative procedure for estimating [k $] from binary transport data alone is using
the Krishna and Standart matrix method for solution to the Maxwell-Stefan equations,
discussed in IIL. 1. Their procedure is particularly applicable to gas phase transport and
does not make the assumption of a constant matrix of diffusion coefficients. The outline
of the procedure is as follows:

STEP 1. From the knowledge of the binary diffusion coefficients &, of the
constituent binary pairs in the multicomponent mixture, calculate the corresponding
mass transfer coefficients k,; from the correlation of type (175).

STEP 1. Calculate the elements of the matrix [B,} from equations (91) and (92),
using the bulk phase compesitions y,,.

STEP III. The matrix of ‘zero flux’ mass transfer coefficients [&,,] is obtained from
inversion of [B,] (cf. equation (101)).

STEP IV. The matrix of ‘zero flux’ mass transfer coefficients is corrected for finite
rates of transfer by post multiplication with the matrix of correction factors, [Z],
calculated as outlined in II1.1,

Calculations of [k%,] must be carried out for local conditions prevailing in the
apparatus; it is generally not permissible to assume that these mass transfer coefficients
are constant over the entire contracting equipment.

Now, once the matrix [k $,] has been estimated we are in a position to calculate the
n—1 diffusion fluxes in the phase ‘x’, J;, from equation (173). There still remains the
problem of determining the » total fluxes N, from a knowledge of these diffusion fluxes;
this problem has been termed the ‘bootstrap’ problem (Krishna and Standart, 1976¢).

V.4. The Bootstrap Problem and Solution

As discussed in III.1 the solution to the bootstrap problem requires an additional
determinancy condition. It is usually possible to write this condition in the form given
by equation (72). The bootstrap solution is therefore given by equations (103)-(105),
where in general the bulk fluid phase compositions x;, replace the y. It is useful and
convenient to represent equations {103) in the compact n—/ dimensional matrix
notation as

V) = [B13) (176)

where the elements of the ‘bootstrap solution matrix’, [*], are given by

B = 8y — xi Ap Lk=12,...n—1 (177)
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with the element A, given by relations analogous to (105). The #th flux N, is obtained
from equation (104),
Combination of equations (173) and (176) gives

(V) = [B"] [k%] (Ax) (178)

We may re-write equation (178) in terms of a matrix of ‘total’ mass transfer
coefficients, [W,], as

(V) = [W.] (Ax) (179)
so that
(W] = [B] [k%] (180)

The bootstrap solution for the °y’ phase may be written down in a manner analogous
to the above relations.

V.5. ‘Total’ vs. ‘Diffusive’ Mass Transfer Coefficients

The intrinsic mass transfer characteristics of a particular phase are correctly portrayed
by the transfer coefficients [k®,] defined in terms of the diffusive fluxes J,. The ‘total’
transfer coefficients [ W] defined in (179) include not only the proper diffusive mass
transfer processes but also convective transports which depend on the overall system
conditions and constraints as well as the driving forces. As we have stated it is the
‘diffusive’ coefficients [k ®,] which are capable of being predicted from binary transport
data. It is only when conditions of equimolar counter-transfer prevail (zero convective
transport, N, = () that the *total’ transport coefficients [ W] are useful because for this
case they are identical with the ‘diffusive’ transport coefficients (for this case [5*]
reduces to the identity matrix).

VI. INTERACTION PHENOMENA IN MULTICOMPONENT MASS
TRANSFER

The possibility of coupling between species transfers in systems of three or more
components distinguish multicomponent systems from simpler two-component
systems. This coupling arises due to the presence of cross coefficients in the matrices of
diffusion coefficients and mass transfer coefficients. Thus if we consider a ternary gas
mixture we see that the elements D, ; and D, of the matrix [D, ] are given by equations
(64) and (65). When the diffusion coefficients of the binary pairs making up the ternary
mixture are not all equal, i.e. @ylz ol /Bt @D ;23 then the cross coefficients D,,; and
D,,, will be non-zero. The larger the differences between the transfer facilities of the
constituent binary pairs, the larger will be the magnitudes of these cross coefficients.
The signs of D, and D,,, will depend on the numbering of the species. Thus if we
choose the system numbering such that the diffusion coefficient of the binary pair
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1-2, 9,,,, is the smallest, then both D,,; and D,,, will be positive. Coupling effects in
ternary gas transport will be large when D,,, is a significant proportion of D,,; and D,,,
is a significant proportion of D ,,. For liquid mixtures the thermodynamic non-ideality
of the mixture also contributes to non-zero cross coefficients. If we again consider a
ternary mixture, equation (61) shows that the cross coefficient D,,, will be given by

D =FIIDl3(x1D23 + (1 —x) Byy) + T'ypx Dy (Dy; — Dyy)
x12 x1Dy; + x,D,3 + X355,

(181)

We see therefore that the thermodynamic factors [, given by equation (40), also
contribute to D,; (77%7). The large cross coefficients possible in non-ideal liquid
mixtures is exemplified by the system polystyrene (1)}-cyclohexane (2)}-toluene (3) for
which Cussler and Lightfoot (1965) measured | D, ,,/D, ;| > 1 in certain concentration
regions.

Coupling effects are weaker in systems with combined molecular and turbulent eddy
transport, as explained in section I'V. For mass transfer across phase boundaries where
combined modes of transport prevail, we may therefore expect slightly diminished
coupling from purely molecular transport mechanism. The extent by which coupling
effects are diminished are reflected in the mass transfer correlations of the form (175)
where we see that k,; < 9 ,;'™.

Consider the matrix of zero flux coefficients [k, ] for a three-component mixture. We
might expect the cross-coefficient &,,,,, for example, to be proportional to the difference
between the transfer coefficients of the binary pairs 1-3 and 1-2, i.e.

Kz & £ 03 = e (182)
and similarly for &,,,, we have
kot & £ea3 = Ay (183)

It is therefore possible to choose the system numbering such that the elements of [k,
are all positive (the main coefficients k,; will be positive in most practicai cases,
whatever the system numbering).

The presence of non-zero cross-coefficients k:bl-,— (i#%j) imparts to the multi-
component system transfer characteristics which set it apart from binary systems; we
shall illustrate these characteristics by considering the simplest case of a multi-
component system—a temary mixture. The rate relations (172) may be written
explicitly as

iy = kS Bxy + k%12 Ax, (184)
Too = k%21 Ax, + k% Ax, (185)

In proceeding with the discussions it is convenient to define the following ratios of the
elements of [k%,]:
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k.(bll k:blZ k:b2l
Y="—"T"":Q;,=%; O, = 186
:bzz * k:b“ “ k:bZZ ( )
Further, we define the ratio of driving forces for components 1 and 2,
Ax,
o= (187)
Ax,

With these definitions the rate relations (184) and (185) may be written as
Py =Y k% (1 + Qp/a) Ax, (188)
By = k%0 (1 + Q, a) Ax, \189)
Consider equation {(188). If the system operating conditions are such that
a=—8, (190)
then we see from (188) that we must necessarily have
Fpy=0  |Ax, 0! (191)

without the vanishing of the driving force Ax,; a mass transfer barrier may be said to
exist for component 1.
For the range of values of a given by

—,<a<0 (192)
we must have (cf. equation (188))
J Ax, <0 (193)

i.e. the species | transfers in a direction opposite to that dictated by its intrinsic driving
force Ax); this phenomenon may be termed reverse mass transfer.

Anocther interesting behaviour is observed for component 1 when its driving force
vanishes, i.e. Ax, = 0; for this case

Sin = k%2 Ax; # 0 |Ax, =0 (194)

This phenomenon of transfer of a component in the absence of its intrinsic driving force
may be termed osmotic mass transfer.

The three phenomena described above may be called interaction phenomena. Toor
(1957) discussed the three phenomena in detail in the context of ternary gas diffusion;
here we have presented a generalized analysis. Since binary mass transfer coefficients
£ %1, are always expected to be positive and non-zero, it is easy to see from equation
(169) that such interaction phenomena cannot be observed for a binary system.
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At first sight it might appear that the second law of thermodynamics is violated for
reverse mass transfer to occur. This is not so. One process may depart from equilibrium
in such a sense as to consume entropy provided it is coupled to another process which
produces entropy even faster. This is of course the basic principle of any pump, whether
it moves water uphill or moves heat towards a higher temperature region (Wei, 1966).
For the second law requirement, o > 0, to hold it is allowable for o; to be < 0,
corresponding to reverse diffusion for 1, provided o, and o3, due to species 2 and 3
diffusion, be such that the overall entropy production rate is positive (o, + o, +
o; > 0).

Duncan and Toor (1962) experimentally detected the three interaction phenomena
for diffusicn in the gaseous system: nitrogen (1)~hydrogen (2)-carbon dioxide (3)in a
two-bulb diffusion cell. Their experimental results also confirm the applicability of the
Maxwell-Stefan diffusion equations; this conclusion was also reached by Carty and
Schrodt (1975), Bres and Hatzfeld (1977) and Hesse and Hugo (1972).

The ratio of driving forces @ plays an important role in enhancing diffusional
interaction effects in multicomponent mass transfer. Thus a small cross-coefficient
k%,,, may be linked to a large Ax;, to result in large interaction effects.

VII. APPROXIMATE TREATMENTS OF MULTICOMPONENT
MASS TRANSFER

The basic difficulty with the full treatment of multicomponent mass transfer arises due
to the coupling between the species transfers, i.¢. dependence of the flux of species { on
the driving forces of species (j#1); this is in contrast to a simple two-component system
in which the flux of a species is dependent only on its own driving force. This coupling
effect, quantified by the presence of cross diffusion and mass transfer coefficients,
complicates the solution of the differential equations governing the diffusion process
and we have to resort to uncoupling procedures or attempt a brute-force numerical
solution. The simplicity of the binary mass transfer formulations (equations (13),
(169)) coupled with the relative abundance of binary experimental work and
correlations and the extreme paucity of even ternary mass transfer data have prompted
many authors in the past to try to mode/ multicomponent mass transfer as pseudo-
binaries. This “force-fit” has been attempted in two ways: (i) by use of a ‘modified’
driving force or by (ii) by defining various ‘effective’ diffusion coefficients. We consider
these in turn.

Toor (1957) attempted to model ternary gas diffusion by a approximate method
which involved the definition of a ‘generalized’ driving force. His approximate
relationship, representing an approximate solution to the Maxwell-Stefan diffusion
equations, displays the correct characteristics of temary diffusion, i.e. it is successful in
accounting for the three interaction phenomena discussed in section VI. The Toor
(1957) approximate method is limited in its applicability to ternary systems and the
procedure for generalization to the multicomponent case is not obvious. Toor’s paper in
1957 represented the first concerted attack on the problem of multicomponent diffusion
and served to kindle interest in this area and lead to the development of the linearized
theory of multicomponent mass transfer in 1964, We will not consider this approximate
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method any further as neither its author nor others have used it recently because of the
availability of more general and less complicated procedures. Other approaches based
on modified driving forces (Konstantinov and Nikolaev, 1964; Shporin and Nikolaev,
1968; Shporin, Konstantinov and Nikolaev, 1968; Telyakov and Nikolaev, 1968) are
based on an incorrect generalization of binary mass transfer driving forces and so donot
warrant further discussion.

All effective diffusion coefficient approaches for gaseous mixtures start with the
Maxwell-Stefan diffusion equations (59), modified to fit flux equations of the general
form

Ni =—-cC @i.elf V}’. + aiViNu (195)

There are three basic choices for «;, giving three basic definitions for the effective
diffusion coefficient &,

(1) Here we take a; = 1 and force fit the Maxwell-Stefan equations (59) into the form
of (195) to obtain the effective diffusivity as (Hsu and Bird, 1960; Shain, 1961; Wilke,
1950)

N =y El N;
gi.eﬂ‘= "y ! " N (196)
i b}
N";E! g Y j;El 9.
[ial] i Ji y

When all the diffusion coefficients & ; are approximately equal to one another
{ =@ ), equation (196) simplifies to give

Py =9 | (197)

for all species (cf. equation (20) and discussion following it).

When component 1 diffuses through a mixture of stagnant gases (N, ¥ 0,
N,=0,N,=0,...N, = 0), the effective diffusion coefficient is obtained from equation
(196) as

1 —_
e (198)
Vi
27

Another case when (196) simplifies considerably is when we encounter diffusion of
trace amounts of 1,2,...n—1 in a large excess of species n (y, = 0, y, = 0, y, =
0....y,— = 0y, = 1); for this case

@f.elf = Qin i=1.2,...n—1 (199)

For the three limiting cases above, the effective diffusion coefficient, given by
equations (197), (198) and (199), is a system property; it may be used in place of the
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binary diffusivity in mass transfer correlations to give the effective coefficient for
transfer of that particular species in the multicomponent mixture. The basic definition
(196) shows that for the general case the effective diffusion coefficient must be a
function of the rates of transfer N, and average compositions not always known in
advance of solving the problem.

(ii) The second basic definition of the effective diffusivity is obtained by taking a; =0
and force fitting the Maxwell-Stefan equations (59) into the form (195) to obtain
(Kubota, Yamanaka and Dalla Lana, 1969) the following expression for the effective
diffusion coefficient:

| ¥ [ Vi N-]
—— =% = |1 - (200)
D; o i @ij y; N;

The definition (200) is convenient when the flux ratios are known in advance, as is
the case when we have diffusion controlled chemical reactions taking place on catalyst
surfaces; the flux ratios in this case are fixed by the stoichiometry of the reaction.

(iif) The third possibility is to assume that the effective diffusion coefficient defined
by (198) is valid in general for all diffusing species (Wilke, 1950):

A (201)
. ¥
j§l @

Pl Ul

Clearly the above definition is exact for the diffusion of a single species through a
mixture of stagnant gases. For other cases the relation (201) can only be considered
approximate, having as its only virtue the fact that the calculation is based on system
properties.

The primary advantage of the effective diffusivity definitions is their simplicity as
their use permits the adaptation of binary mass transfer correlations, say of type (175),
by replacing the binary diffusivity with the &, .

The primary disadvantage of the use of @, is that these parameters are not, in
general, system properties except for the limiting cases noted above. Further, they
depend on the magnitude of the fluxes not always known in advance.

Generally in multicomponent systems, effective diffusivities do not have the physical
significance of a diffusion coefficient since they may assume values ranging from minus
to plus infinity (Toor and Sebulsky, 1961). The effective average diffusivity over a
diffusion path is zero at a diffusion barrier, negative in the region of reverse diffusion
and has a singularity at the osmotic diffusion point. Care must therefore be taken in
drawing analogies between this quantity and a binary diffusion coefficient. Only when
the effective diffusivity is positive, bounded and not a strong function of composition or
fluxes is it possible to draw useful analogies.

For liquid mixtures, effective diffusion coefficients may be defined using the
generalized Maxwell-Stefan equations (Lightfoot and Scattergood, 1965); comments
similar to above would apply here as well.
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We have so far seen the difficulties associated with the definitions of the effective
diffusion coefficient for species / in the mixture. Using experimental data on
multicomponent mass transfer, we may of course calculate pseudo-binary mass
transfer coefficients, k,;, for each of the independent transferring species using the
definition

B=kqAx, i=12,.n-1 (202)
We shall now show that these pseudo-binary coefficients l‘c,,- are unsuitable as

correlation or design parameters; we take the case of a ternary mixture for this purpose.
Comparison of equation (202) with (188) and (189) shows that

ko =Y k%, (1 + Q. /a) (203)
ke = k%2 (1 + Qya) (204)

The pseudo-binary mass transfer coefficient for the third component is dependent
and is given, in view of equations (8), (171) and (202), as

_ aic,d + l}xz 205
3 .+ 1 (205)

It is clear from equations (203) and (204) that the coefficients l;fx, depend directly on
the ratio of driving forces «; this ratio changes with the operating conditions and the
phase equilibrium behaviour of the multicomponent system. It is possible in a given
separation column for the ratio a to suffer large changes in both magnitude and sign; the
pseudo-binary coefficients kx, would therefore also suffer large changes in magnitude,
and p0551bly in sign, under conditions in which the hydrodynamics of the particular
phase ‘x’ remained relatively constant. It would therefore be difficult, nay impossible,
to obtain generally applicable correlations for the k,,, in ‘terms of system hy-
drodynamics, physical and transport properties. These comments are reinforced
below.

Under conditions of mass transfer barrier for 1 (cf. equation (191)) we have

k,=0 (206)
and for operating conditions satisfying (192) we must have

k, <0 (207)
while at the osmotic mass transfer point (equation (194))

ky—+ = (208)

Equations (206)—(208) show that the coefficients k., can assume zero or negative
values or become unbounded under conditions involving little or no change in the phase
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hydrodynamics and system physical properties. Clearly such behaviour would defy
correlation of the traditional kind (e.g. Chilton-Colburn j-factor correlation). A similar
conclusion can be drawn for component 2. The pseudo-binary mass transfer coefficient
for component 3, k,;, will assume values intermediate between those of components 1
and 2 when & has a positive value. When « is negative, &,;, assumes a value outside the
range between k., and k,,. When @ = -1, k,; is unbounded

ky— + o (209)

The conclusion regarding the unsuitability of the k; for describing ternary transport
behaviour may be applied to systems of more than three components with even more
conviction.

VIII. SIMULTANEOUS MASS AND ENERGY TRANSFER

Many processes such as distillation, condensation and evaporation involve simul-
taneous transfer of mass and energy across fluid—fluid interfaces. The presence of a
temperature gradient in a multicomponent system introduces two additional com-
plications: (i} variations in physical, thermodynamic and transport properties due to
differences in temperature and (ii) large temperature gradients may give rise to material
fluxes (thermal diffusion). The property variations due to temperature differences are
taken care of quite simply by introducing temperature dependent property functions or
by use of suitably averaged properties, as is commonly done; the basic mass transfer
analysis remains essentially unchanged. The second complication arising out of
‘coupling’ between mass and energy transfer may have more important ramifications.

The interactions between thermal and mass fluxes have long been recognized. Much
effort has been devoted to the study of thermal diffusion and many excellent reviews are
available on the subject (Grew and Ibbs, 1962; Grew, 1569). Its practical application
has been highlighted by the successful application of a thermal diffusion process to the
separation of isotopes (Glasstone, 1958). Strong coupling effects may also be found in
other physical processes involving steep temperature gradients, such as those involved
in ablation cooling during rocket re-entry and in zone metal refining. The inverse
Dufour effect, production of a heat flux due to concentration gradients, has received
little attention in the literature, partly due to difficulties in experimentation (see,
however, Green, 1968),

The diagonalization procedure of Toor and Stewart and Prober may be used to
obtain the temperatures and composition profiles for coupled diffusion and heat
conduction within a single fluid phase (DeLancey, 1967; DeLancey and Chiang, 1968;
DeLancey and Chiang, 1970; DeLancey, 1972). Experimental evidence obtained at
the University of Manchester for non-isothermal distillation (Tavana, 1973) and for
non-isothermal absorption (Danesh, 1973; Onal, 1974) has shown that interphase
thermo-transfer effects are at most small for most chemical engineering operations of
practical interest. We therefore exclude possibilities of coupling between heat and mass
transfer in the treatment below.
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VIIL.1. Energy Fluxes, Temperature Driving Forces, Heat Transfer Coefficients

For transfer within a single fluid phase, the differentiat energy balance provides the
additional physical law necessary to determine the temperature profiles. This balance
relation may be written in various forms (BSL; Slattery, 1972). Two useful forms of the
equation, assuming mechanical equilibrium, are:

0 i C,-ﬁ,‘ "
{f='t b [q+ z EN.-] (210)
and
d(cC ;- 5]
_(0#7=_v.q_v.(ccpru)—lzzlJ,,.vH,. @11)

q is the conductive heat flux and is adequately represented by Fourier’s law
q=—kVT (212)

where kis the thermal conductivity of the fluid mixture. q plays a role analogous to the
diffusion fluxes J; for mass transfer. In addition to the purely conductive heat flux q
there is a contribution due to the enthalpies of the transferring species and the total
energy flux is given by

E=gq +ii=lﬁfN,~ (213)

E plays a role in energy transfer analogous to the total molar fluxes N; for mass
transfer. Thus under steady-state conditions, the total energy flux E is invariant along
the transfer path (cf. equation (210)).

We shall illustrate the procedure for obtaining the temperature profiles and heat
fluxes by considering a simple example: steady-state unidirectional heat and
n-component mass transfer in the gaseous phase. It is assumed that the temperatures
(and compositions) of either end of the transfer path, of thickness &, are known and
remain constant during the transfer process. Thus the boundary conditions are:

atz=0, T=T, (214)
ﬂtZ=8, T=T5

with analogous boundary conditions for compositions, equation (69). The determin-
ation of the composition profiles and molar total diffusive fluxes has been considered in
I11.1; with suitably averaged temperature properties the mass transfer analysis would
remain unchanged. We therefore consider the z-invariant fluxes N; to be known for the
purposes of the ensuing analysis.

In proceeding to obtain the temperature profiles, it is convenient to define the
following parameters:

(i) a dimensionless distance within the film
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n=z/~8 (215)

* (ii) ‘zero flux’ heat transfer coefficient in the gaseous phase
h, = k/6 (216)

With a suitably averaged value for the mixture thermal conductivity, the coefficient 4,
may be considered constant along 7.
(iii) dimensionless heat transfer rate factor

:'él Cﬁ'M
£ = _;y

(217)

where C7,; is the molar heat capacity of the species 7 in the gaseous phase. Again, with
suitably temperature averaged values, the factor € can be considered to be n-invariant.

If the gaseous phase is considered to be an ideal mixture and if the reference state for
calculation of the enthalpies is chosen as pure gas at the temperature 7, then we have

H)=C,(T—Ty) (218)

and equation (210) simplifies to
dT
E=—-h,—— + he (T — T;) = E, = E; = constant (219)
n

Equation (219) may be integrated for the boundary conditions (214) to give the
temperature profiles as

T—T, e"—1
T—T, e—1

(220)
The conductive heat flux g} may be obtained by differentiating (220) to give

E
= —h—— =h G Ty) (221)

The total flux E may be obtained as
E=E,=E,=q;+3% NC(T,~ Ty (222)
The above steady-state analysis forms the basis of the film theory estimation of the
heat transfer coefficient under conditions of finite mass transfer rates. Thus if we define

a finite flux heat transfer coefficient £ by

gb = hS (To — T) (223)
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we see that the finite flux coefficient /9 is related to the zero flux value &, by

(224)

The factor €/(expe — 1) gives the effect of finite mass transfer rates on the heat
transfer coefficient 4,. This correction arises due to the alteration of the temperature
profiles due to convective enthalpy transfers. In the limit of vanishing mass transfer
rates (N, — 0), the temperature profiles are linear:

T—1T,
——=pn |N -0 (225)
T,—T,

When there is net movement of mass from z = Q to z = §, then & is positive and the
factor e/(expe — 1) is less than unity; the finite flux heat transfer coefficient #$ < &,. On
the other hand if there is net movement of mass from z = & toz = 0, the correction factor
is greater than unity and 49 > &,.

The mass transfer corrections for other transfer models (penetration and boundary
layer theories) is discussed in BSL for the case of two-component systems; extensions
of the analyses to the general n-component case is straightforward as demonstrated
above for the film theory case.

Let us now consider interphase energy transfer. With assumptions parallel to those
in V.1, it can be shown that an energy balance at the interface between two fluid phases
shows that the normal components of the energy flux E,

Ei=E'=E'=E,=E (226)

are phase invariants. In most applications of chemical engineering interest we neglect
the terms in the normal energy flux expressing the rate of transfer of kinetic energy and
the rate of doing work by the surface frictional stresses. With this simplification, the
invariant energy flux may be written, for phase ‘x’,

E =g+ 2 AN, (227)

with a parallel relation for phase ‘y’.

In practical situations transfer between phases takes place by combined molecular
and turbulent eddy mechanisms. It is common in practice to define heat transfer
coefficiens which reflect the combined facility for transfer offered by the phase under
consideration. Thus we may write for the bulk conductive fluxes

G=h%(T,—T) (228)

The finite flux coefficient 4%, may be obtained from the zero flux coefficient &, by
use of hydrodynamic mass transfer models. The zero flux coefficient is to be estimated
from heat transfer correlations for the particular equipment and operating conditions.
The film theory corrrection described above is adequate for most practical cases.
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IX. ADDITION OF PHASE RESISTANCES FOR NON-ISOTHERMAL
MULTICOMPONENT MASS TRANSFER

In the preceeding analysis we have considered methods for estimating mass and heat
transfer coefficients in either phase during heat and mass transfer. In the calculation of
the transfer rates, it was assumed that the interfacial compositions and temperatures
were known. In practice each of the contiguous fluid phases will offer resistance to the
transfer process and so may the interface itself, in some cases. It is useful to define, and
calculate, overall mass and heat transfer coefficients which depict the overall resistance
to transfer offered by the fluid-fluid system; the overall resistance will determine the
system behaviour. Addition of mass transfer resistances for binary systems is discussed
widely in the literature (BSL; Sherwood, Pigford and Wilke, 1975); here we consider
extensions of conventional treatments to the multicomponent case {Krishna and
Standart, 1976¢, Toor, 1964). The interfacial resistance is ignored in the present
analysis.

We consider a vapour-liquid system with n components in either phase and
maintained at constant pressure. If we assume phase equilibrium at the interface itself,
there are n—1 intensive interfacial state conditions, corresponding to the thermo-
dynamic degrees of freedom, to be determined. It is convenient to choose the n—1 mole
fractions x;, as the independent state variables. The interfacial temperature and the n—1
interfacial vapour compositions y;; will be determined by the vapour-liquid equilibrium
relationship.

If the vapour-liquid equilibrium relationship is linearized over the range of
compositions in passing from the bulk (b) to the interfacial (J) conditions we can write
at the interface for isobaric conditions

O = M] (x)) + (b) (229)
where [M] is the matrix of equilibrium constants with elements
M; = dy¥/ox, ij=12,..n—1 (230)

and is diagonal only for thermodynamically ideal mixtures. (b) is a column matrix of
‘intercepts’. For evaluation of M, see Krishna (1979b).

If we wish to combine mass transfer driving forces and resistances of each phase, we
must require that at least one phase be saturated; this is necessary for eliminating the
partial driving force for that phase. The assumption concerning saturation is implicit in
conventional approaches to the binary transport problem and will be used here for the
multicomponent case. Here we assume that the liquid phase is saturated; this allows us
to calculate the composition of the vapour which would be in equilibrium with the bulk
liquid phase as

0*) = [M] (x,) + (b) (231)

If we adopt the sign convention that transfer of species 7 from the vapour to the liquid
phase is considered positive, we may write the bulk diffusion flux in the vapour phase as
(cf. equation (173))
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)= [k:,,] 7% J’I_) (232)

where [k$,] is the n—1 X n—1I square matrix of (partial) vapour phase mass transfer
coefficients. The calculation of the total fluxes N, which are phase invariant, requires
an additional determinancy condition as discussed in V.4. If the determinancy in the
vapour phase is described in terms of a bootstrap solution matrix [#’], we may write the
total fluxes as

M= [B1R=B1KS] 0 —y) = W1 (0 —¥) (233)

where we have used the matrix of total transfer coefficients in the vapour phase, [W)],
defined by

[W,] = 18] [k 3] (234)

As an alternative to (232) we may define a matrix of overall vapour phase mass
transfer coefficients using

(3) = [KSul (05 — »*) (235)

and the total fluxes being obtained in terms of an overail matrix of total mass transfer
coefficients

(N) = [Wo,] s — ¥%) (236)
where
[Wo] = [B] [K3l (237)

The bulk diffusion fluxes in the liquid phase may be written as
) = [k%] (e, — x3) _ | (238)
with the total fluxes given by
V) = [W,] (x; — x) (239)

where the total transfer coefficients in the liquid phase are obtained in terms of the
bootstrap solution for the liquid phase

[W.] =B (K% (240)
From equation (236) the overall vapour phase driving force can be written as

O —¥¥) =[] (V) (241)
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and from equation (233) we have
0 =) = IW,]” (V) (242)
The partial driving forces in the liquid phase are obtained from (239) as
O = x,) = [W]™ () (243)

Premultiplication of both sides of equation (242) by [M] yields in view of equations
(229) and (231)

0 —y*) = [M] [W.]"" (N) (244)

Since the n—1 total fluxes N, (= N} = N}) are all independent we may combine
equations (241), (242) and (244) to give the addition of resistances ‘formula’ for
multicomponent systems:

(oI =W, + [M] [W,]" (245)

which is the proper matrix generalization of the classical addition of resistances for
binary mass transfer (Krishna and Standart, 1976¢).

For the special case of equimolar counter transfer the bootstrap solution matrices in
either phase reduce to identity matrices and equation (245) reduces to

(KDl ™" = (&SI + M1 [A%] (246)

which is the relation obtained earlier by Toor {1964).

It is clear from equation (245) that the requirement that the overall matrix [W,,] be
diagonal is very stringent; it requires that the matrices[k%;], [8”], [k%,], [B*] and
[M] be severally diagonal. The general conclusion to be drawn here is that the
multicomponent interphase mass transfer must always be described by non-diagonal
matrices of transfer coefficients.

It is also difficult for a multicomponent system to state whether one or other phase
‘controls’ the transfer behaviour. For non-ideal mixtures the element M could
dramatically change magnitude and possibly sign in the same column with slightly
varying intensive properties. The mass transfer control could then shift from one phase
to the other.

Turning now to the heat transfer analysis, we have the partial heat transfer
coefficients in the vapour and liquid phases:

gy =h% (T, — 1)), g3 =h% (T, — T},) . (247)
and we may also define an overall heat transfer coefficient in the vépour phase by

gy = h?)y,, (T, — T),), but such a coefficient has no practical utility, except in the
absence of mass transfer.
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X. PRACTICAL APPLICATIONS IN SEPARATION PROCESSES

We now consider applications of the formalisms developed so far to some practical
separation processes.

X.1 MULTICOMPONENT DISTILLATION IN A TRAY COLUMN

Distillation of multicomponent mixtures in tray columns is an operation widespread in
the process industries. Most experimental research work on distillation reported in the
literature has been concerned with simple two component systems, whereas most
practical systems have at least three components. As we have seen in this review the
transfer characteristics of systems with three or more species are quite different from
that exhibited by binary systems; in particular it is possible for a multicomponent
system to experience the three interaction phenomena described in Section VI. We
consider here the simple example of determining the Murphree point efficiencies for
distillation of a ternary mixture in a tray column, The liquid on the tray is assumed to be
well mixed and the vapour is assumed to be in plug flow through the dispersion on the
tray. Our treatment here essentially follows Toor (1964a).

For anarrow vertical section in the foam on the tray, the component material balance
may be written as

dG,
72_ = — N’,'(lgﬁ/-" l"_‘ 1,2,3 (248)

Here G;is the molar flow rate of the species i in the vapour phase; Z is the distance along
the vertical direction; &, is the molar flux of species 7, considered positive for transfer
from the bt vapour to the bulk liquid phase; a is the interfacial area per unit volume of
dispersion; A, is the element of tray area for the vertical slice under consideration.

The molar flow rate of the vapour mixture may be obtained on summing (248) over
the three species and we obtain

dG,

— =N .ol (249)

The differential material balance may also be written in terms of the bulk vapour
phase mole fractions y;, (= G./G,) and we obtain in view of equation (166)

dyi
a7z

G, =—Padn =123 (250)

Since only two of the equations (250) are independent we may re-write (250)
conveniently in 2-dimensional matrix notation as

dvy _ R aV
dg G

(251)
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where we denote V as the total volume of dispersion in the vertical section and & is the
fractional height of dispersion on the tray.

Let x,, denote the bulk liquid composition in the section and y* denote the
composition of the vapour in equilibrium with the bulk liquid compositions x,,. Since
the liquid is assumed to be well mixed vertically, the compositions x,, and y*will be
constant along the vertical slice. Using overall vapour phase composition driving forces
and overall matrix of transfer coefficients, the constitutive relations for the bulk
diffusion fluxes J}, take the form of equation (235). Introducing these rate relations in
equation (251) we obtain

doy) _ [K%lav
e - TR @52

It is convenient to define a matrix of overall number of vapour phase transfer units,

K% @
INTU, ] = [% (253)

Since most mass transfer correlations predict that the vapour phase mass transfer
coefficients to vary with G,>%, we may expect the elements of the matrix [NTU,, | to vary
weakly with the hydrodynamics. Another advantage of the definition (252) is that the
matrix [NTU,,] includes the usually unknown interfacial area a.

If we assume that the elements of the matrix [NTU,,] remain constant along the
vertical section, we may integrate the differential equation

s _

praial A L by (254

for the boundary conditions
at & =0, (0} = 0odes (AY) = (Ay)e = ()e — O%) (255)
até =1, () = ()i; (Ay) = (Ay) = ). — (V%)
to obtain
(Ap), = expl—[NTUy ]} (Ay)s (256)
It is convenient for future discussions to define the matrix [G] as
[G] = exp{—[NTU,,|} (257)
and so the equation (256) may be written explicitly for the components 1 and 2 as

Ay, = Gulyie + GRAyx (258)
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Ay, = GulAyie + GnlAye

Now, the Murphree point efficiency for component { is given by
By =200 =03 (260)
Y — Vi
If we define  as the ratio of driving forces

Ayg — Ywe — ¥}
Ay yue— %

a= (261)

we may write the component efficiencies for components 1 and 2 in view of equations
(258) and (259) as

Ep =1-Gu — Gula (262)
EOyZ =1—=Gn—Gua (263)
with the component 3 efficiency given by

=aE0y, + Eoﬂ

264
a+1 ( )

Qvl

Since the cross coefficients of [k$,] will be generally non-zero, the coefficients
G, and G, will also be non-zero. Examination of equations (262){264) shows that
the efficiencies of the three components 1,2 and 3 will all be unequal. This is in contrast
to a binary system which is characterised by only one efficiency, equal for both com-
ponents in the mixture. The above equations also show that the component efficiency
values for a ternary mixture will depend on the ratio of driving forces a.

Let us assume that the component numbering has been chosen such that the ¢ross-

- coefficients K o°y,,,2 and X o'y,,n are positive; it has been shown in section VI that for this

purpose we need to choose the numbering such that the transfer facility for component |
in 2 is smallest (cf. equations (182) and (183)). With this choice of numbering, the
elements G|, and G, will be negative (cf. equation (257)). The main coefficients G,,
and G,, will have the same sign as the main elements K§,,;, and K§,,,; and will
therefore be always positive.

When o assumes a large and positive value, we see from equation (263) that the
component 2 efficiency E;,, may assume values exceeding unity. On the other hand,
when a assumes a large but negative value, equation (262) shows that E,,, may assume
negative values. When a = —1, the component 3 efficiency, E,,; — 2. It must be
remembered that for a binary system, the component values of the point efficiencies
always lie between 0 and 1. The bizarre behaviour exhibited by the ternary system,
typical of multicomponent systems, is due to diffusional interaction phenomena. The
Murphree point efficiency for a multi-component system would therefore defy simple
correlation with the system hydrodynamics and transport properties (cf. discussion on
the unsuitability of the &,; in section VIL).
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For highly non-ideal mixtures, the differences in the component efficiencies will be
large, such differences increasing with large magnitudes of a. On the other hand for
mixtures made up of similar components (e.g. close boiling hydrocarbon mixtures) the
diffusional interaction effects will be small and the component efficiencies will be close
to one another. These conclusions are confirmed by available experimental evidence
(Cermak, 1970; Chernykh, Malyusov and Mafeev, 1971; Diener and Gerster, 1968;
Free and Hutchison, 1960; Gelbin, 1965; Goldberg, Serafimov, Boyarchuk and L’vov,
1968; Haselden and Thorogood, 1964; Hutchison and Lusis, 1968; Konstantinov and
Nikolaev, 1964; Martinez, 1975; Miskin, Ozalp and Ellis, 1972; Nord, 1946; Shporin
and Nikolaev, 1968; Vertuzaev, Lyskov and Ganenok, 1971; Vogelpohl, 1972, 1979;
Young and Weber, 1972).

In order to demonstrate the magnitude of the interaction effects possible during
distillation of non-ideal mixtures, we have presented in Table | some experimental data
obtained at the University of Manchester by Martinez (1975) and Sreedhar (1975) for
distillation of ethanol (1)}tert butanol (2)~water (3) in a 3-inch diameter sieve tray
column. The experimental conditions were maintained such that the assumption of
perfectly mixed liquid on the tray was valid. For the system studied, the transfer

TABLE 1

Typical Experimental Results for Distillation of ethanol (1 }~fert butanol (2)}-water (3) in a
3-inch diameter Sieve Tray Column—Murphree Efficiencies for Individual Components.
Measurements made by Martinez (prefixed M) and Sreedhar (S) under identical hydrodynamic
conditions for each run.

Run No. a EO},,- E"oyz Eoyj
SI11A 0.2304 0.0699 0.6779 0.5638
M5 0.2080 0.0578 0.7137 0.6010
M7 0.4264 0.2039 0.7766 0.6058
M22 0.8489 0.5671 0.7098 0.6443
S11C 19.17 0.6491 2.0019 0.7162
M3 3.9 0.6169 1.3577 0.6848
M6 11.2 0.6455 1.2058 0.6506
M9 1.7 0.5144 2.9244 0.7092
M34 9.1 0.4463 1.0491 0.5050
M41 324 0.4433 1.5861 0.4780
M47 85.7 0.4605 5.2700 0.5170
M49 1.1289 0.5331 1.0735 0.7865
M40 - —7.65 0.4811 0.1853 0.5256
M46 —26.8 0.3546 —2.94 0.4800
M12 —60.8 0.4790 —1.2888 0.5095

M1 —-237 0.6509 -279 0.7202
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coefficient of ethanol in fert butanol is the smallest of the values of the three binary pairs
in both the liquid and vapour phases. The coefficients G2 and G, will there be
negative. The values of the component efficiencies E; listed in Table 1 will be seen to
be explainable in terms of equations (262)-(264), thus confirming the mass transfer
formulations developed here (see Krishna et al, 1977d).

Further experimental confirmation of the importance of diffusional interactions in
multicomponent distillation is obtained from the experimental work reported by
Vogelpohl (1979) for the system acetone—methanol-water and methanol-isopropanol-
water.

From a practical point of view, the overall transfer coefficient matrix [K{,;] can be
calculated from information on the partial transfer coefficients as outlined in section
IX. and the overall number of vapour phase transfer units calculated from equation
(253). This provides a method of predicting the component efficiencies E,; which
information is required for design purposes.

The design engineer who assumes equal efficiencies may suffer a severe ein-
barassment as a result of neglecting cross (or coupling) effects as this may lead to a
severe underdesign as shown in an interesting theoretical study made by Toor and

Burchard (1960). For systems under complete vapour phase mass transfer control,

equations were developed based on the generalized driving force pseudo-binary
approach, mentioned earlier in section VI, for the effects of diffusional interactions
among the components on their respective plate efficiency. A design calculation was
made for the separation of methanol from isopropanol and water. For the hypothetical
case in which the binary efficiencies were assumed to be 409, consideration of
interactions gave a column requiring 117 plates compared with 84 plates for the case
where diffusional interactions are negligible.

X.2 Multicomponent Distillation in Continuous Contact Equipment

For distillation of multicomponent mixtures in continuous columns (packed or wetted-
wall), the treatinent is essentially the same as considered in X.1. Thus the differential
equation describing the composition variations along the height of the column (£
representing the fractional height) may be derived as

d(s)
— =~ INTU,] (55 = 5% (265)
dg
where now [NTU,, ], the matrix of overall vapour phase number of transfer units, is
given by

©
_ [KSslaAZ (266)

INTU,| =

!

where & is the interfacial area per unit ‘packed’ volume; 4 is the cross sectional area of
the column; Z is the total height of the column. (y*), the equilibrium vapour
compositions, vary along the column height.
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The integrations of equation (265) must be carried out in a stepwise manner either to
obtain the separation achievable in a given column or to find the height required for a
given separation.

More conventionally, we may define the number of transfer units for each of the
species in the mixture by

NTU,, = f e = 267
TU,, = Tt i=12,...n (267)

and therefore the heights of transfer units, characterizing the separation capability of
the column, will be given as

HTU,, = Z/NTU,, i=12,..n (268)

For distillation of non-ideal multicomponent mixtures the pseudo-binary heights of
transfer units, HTUOJ,, will be all unequal (this_conclusion is analogous to the
conclusion reached for the Murphree efficiencies EOH) On the other hand for ideal
mixtures made up of species of similar nature the HTUO_” will be close to one another.
Available experimental data confirm these conclusions (Free and Hutchison, 1960;
Hutchison and Lusis, 1968; Qureshi and Smith, 1358; Rahman, 1975; Salomo, 1976).

Experiments were carried out at the University of Manchester for distillation of the
system ethanol (1 )-tert butanol (2)-water (3) in a 2-inch diameter wetted-wall column
with a test section of height 1 m. The pseudo-binary number of transfer units NT Uy,ifor
the three species were calculated using equation (267). Some typical values, obtained
by Rahman (1975) and Salomo (1976), are shown in Table 2. The dependence of the
pseudo-binary NTUOy, on the ratio of driving forces «, given by

TABLE 2
Typical Experimental Results for Distillation of ethanol (1)—tert butanol (2)-water (3) in a
2-inch diameter Wetted-Wall Column—Pseudo-Binary Numbers of Transfer Units for
Individual Components. Measurements made by Rahman (prefixed R) and Salomo (prefixed S)
under almost identical hydrodynamic conditions for each run.

Run No. a NTU,,, NTUy, NTUqs

S1 0.4494 1.054 0.825 0.899
S17 0.2251 1.161 0.830 0.894
S18 0.2571 1.283 0.924 0.993
R3 0.2504 1.642 0.712 0.922
R4 0.4676 1.579 0.553 0.926
RI1 0.2668 1.435 0.567 0.774
S20 1.7088 0.644 0.901 0.727

Ré6 1.4719 0.419 1.243 0.719
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a= (Ym B .VT)5=0 (269)
07 }’?)5=0
can be explained if we consider that for a differential section the following relations hold
NTU,,, = NTU,,,, + NTU,,,/a (270)
NTUy, = NTUy,y, + NTU,,y, @ (271)
. aNTU,, + NTU,
NTUy; = b W (272)
a+ 1

(these relations are analogous to equations (262)-(264)).

The pseudo-binary numbers of transfer units NTU,,, or equivalently the pseudo-
binary heights of transfer units HTU,,;, show odd driving force dependencies and are
therefore unsuitable for use as correlation parameters. An analogous conclusion was
reached for the pseudo-binary mass transfer coefficients (section VII). The correct
representation of the mass transfer behaviour during multicomponent distillation is
obtained by use of the matrices of transfer coefficients, [k%,], [k%,] and the matrix of
overall number of transport units [NTU,,].

Sandall and Dribicka (1979) give further experimental evidence of the validity of the
mass transfer model discussed here.

X.2 Thermal Effects in Distillation

The assumption of equimolar counter-transfer, N, = 0, is implicit in most chemical
engineering textbook calculations of the interfacial rates of transfer during distillation.
The basis of this assumption is the fact that the molar heats of vaporization of most
chemical compounds are very close to one another and for distillation under adiabatic
conditions of say methanol-water, the condensaticn of one mole of water vapour results
in the evaporation of one mole of methanol. Since we have at our disposal the correct
formalisms for the treatment of non-isothermal mass transport processes, we shall
consider the validity of the assumption of equimolar counter transfer for multi-
component distillation; the treatment here is due to Krishna and Standart (1976d).

Consider any local position in a distillation equipment. Thus we have a vapour phase
in contact with a liquid phase; heat and mass are transferred across the interface. We
assume adiabatic conditions, justifiable in most practical cases. A material and energy
balance at the interface leads to the requirement of continuity of mass, equation (163),
and energy, equation (226). Writing the material fluxes in either phase in terms of the
diffusive and convective contributions (cf. equation (166) we have

Ny=Jp +yalN, =T + xpN, 1=1,2,...n—1 (273)

where only the n—1! independent relations are considered. The appropriate rate
relations for the diffusion fluxes are
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@) =Tk 0n = 1) (B3) = [k%] (x; = x5) (274)
where we have adopted the convention that transfer from the vapour to the liquid phase

is positive.
The energy balance at the interface may be expressed as

E=g+ 3% HiN=g;+Z HiN, (275)
or
Gi—g=3% H,— Hy)N, (276)

If we define the differences in the partial molar enthalpies in the vapour and liquid
phases as A,

N=H)—H3 i=12,...n 277
and also define the parameters
A, = é] Vi A= r_)’él XA (278)
we may write equation (276) in view of equations {273) as
G-B="5 0=\ IN=F A AT+ AN, (279)
The conductive heat fluxes in (279) are given by the rate relations
4= 1% (T, = Tk =% (T = T) (280)
If we assume that equilibrium prevails at the interface, there are n—/ of interfacial
intensive state conditions (x;, y;» T;) which have to be determined. The n—1 relations

which allow this determination are obtained from equations (273) and (279) as

n—1|
E(}\k_)\ )'pk}b
o= _ a5 — g5 &= i
N =— b b _ qu gy +=! X ) i=1.2,...n—1 (281)
Xip — Viv y y

with a similar expression in terms of A . and J;,. Once the unknown interfacial
parameters have been determined from (281) and the equilibrium relationship at the
interface, the interfacial mass transfer rates may be obtained from equations (273) and
(281) as
n—1 ! Aq
N=(1—Aps) 3 — yx‘bkél ATty Xt ,

ki y

i=1,2,...n—1 (282)
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where we have defined the parameters
Ac=M— NN Ag =gy — g} (283)

Equations (282), (283) allow the calculation of the interfacial transfer rates without
making the assumption of equimolar counter-transfer. We may write (282) in compact
n—1 dimensional matrix notation as

A
V) =[] (5) + () Tq (284)

where the elements of the ‘bootstrap’ solution matrix [$*] are given by
Brlk = aik _yibAb l',k = 1529"'"_1 (285)

An expression analogous to (284} may be written for the liquid phase. It is interesting to
compare equations (177) and (285) which show the generality of the bootstrap solution
analysis considered in V.4,

The requirement of equimolar counter-transfer,

N =0 (286)
will be met if the following two conditions are satisfied:

; (i) Ag =0 (287)
an

(i) A=A, i=1.2,..n—1 (288)

The difference between the conductive heat fluxes in the liquid and vapour phases
can only vanish if these fluxes fortuitously cancel each other; we cannot expect (287) to
represent a general, even common, result. The parameters A,, defined by equation
{277), correspond roughly to molar heats of vaporization; their values will be close to
one another but not identical. Let us now consider the consequences of small
differences between the A, values. For purposes of illustration we take the example of a
ternary mixture and assume that as an approximation (287) holds. Further, we take the
following values for the parameters A;:

A=01; A, =01 (289)

allowing (typically) only 10% differences between the A;. The net mixture flux &, is
obtained from equation {281) as

N,=01F, + 0.1 (290)
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For a ternary system the diffusion fluxes J|, and J3, are both independent and may
differ by an order of magnitude. It is conceivable that we may have

P =3P (291)

and therefore from (290} we have the net mixture flux

N, =067, (292)
leading to
N =F,+yuNi=(1+06y,) A (293)

If the composition y,, is typically 0.33, it is easy to check from equations (286) and
(293) that the assumption of equimolar counter-transfer would result in a 20% error in
the calculation of N,. Thus small 10% differences in A, may be enhanced in
multicomponent systems. Such effects are not present to such a dramatic extent in
binary systems because for this case we must necessarily have

o == Js (294)

and there will be no enhancement of the differences in molar latent heats of
vaporization. For binary systems (286) represents a fair approximation and this
explains its widespread usage. However, for systems of three or more species large
deviations from (286) may be experienced, thus firmly underlining the fundamental
differences between the transport characteristics of binary and multicomponent
systems. Further calculations on the effects of unequal molar heats of vaporization are
given by Krishna (1977f),

X4 Condensation of Vapour Mixtures

Condensation of vapour mixtures is an operation of great significance in the process
industries. The term vapour mixture covers a wide range of situations. One limit of this
range is one in which all components have boiling points above the maximum coolant
temperature; in this case the mixture can be totally condensed. The other limit is a
mixture in which at least one component in the initial vapour stream has a boiling point
lower than the minimum coolant temperature and is negligibly soluble in the liquid
condensate formed by the remaining components and hence cannot be condensed at all.
Anintermediate case of some importance is typified by a mixture of light hydrocarbons,
in which the lightest members often cannot be condensed as pure components by the
heavier components. In each of the three cases, the vapour mixture may form a partially
or totally immiscible condensate.

The process of condensation involves simultaneous transfer of mass and energy
between the condensing vapour and liquid streams. The heat lost by the vapour to the
condensing liquid is further removed by the coolant across the tube wall. At any local
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position in the condenser, vertical or horizontal, the energy balance at the vapour—
liquid interface will be given formally by equations (275)280).

If we neglect subcooling of the liquid condensate, the conductive heat flux in the
condensed liquid film, g}, will also equal the heat flux through the wall of the condenser
and carried away by the coolant on the other side of the wall. Thus we may write

% =q" = h(T; — T) (295)

where h, is the heat transfer coefficient incorporating the resistances of the condensed
liquid film, wall and coolant.

The finite flux heat transfer coefficient in the vapour phase & :,, is related to the zero
flux heat transfer coefficient 4, by (cf. equation (224))

(296)

with £ given by equation (217). The zero flux coefficient may be obtained from a
J-factor correlation of the type

h, A
Ge}

(Pr)* = a (Re) (297)

Ju

If we further assume that the vapour phase is an ideal mixture, the energy balance
relation at the interface may be written in the final ‘working’ form as

¢
Yot — 1

" =ho (T, —T)=h

(T, =T+ £ CN.(T, —T)+ X AH,N,

cef
e —1

=k (T — T) + Z, AHN, (298)

where AH,; is the molar heat of vaporization of species i. Thus, given the conditions in
the bulk vapour and coolant streams at any position in the condenser, the interfacial
parameters (T}, x;, v;) must satisfy the energy balance relation (298) as well as the
material balance relations (273) with the rate relations (274). If we assume equilibrium
at the interface, there will be n—17 unknown interfacial parameters to determine. The
estimation of the mass transfer coefficient matrices [k $,] and [k %] and the calculation
of the transfer rates N, have been considered in section V. Basically a simple trial and
error procedure is involved at every stage in the calculations. These interfacial transfer
rate calculations have to be combined with the overall material and energy balances
along the condenser length to obtain the working design equations.

When the vapour phase contains two or three components, the general analysis
simplifies considerably; we consider three simple cases below.
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X.4.a Condensation of a Single Vapour in the Presence of an Inert Gas

The vapour species (1) has to diffuse through the inert gaseous species (2) to the
vapour-liquid interface before it can condense and release its heat to the coolant. The
total rate of transfer of species 2, ¥, = 0 and the rate of transfer of the vapour species 1
is given by equation (86) or alternatively by (87). The interfacial vapour composition
¥\ is given by

yu =P (T)/p, (299)

where p (T) is the vapour pressure of 1 at the temperature of the interface T; p, is the
total pressure prevailing in the condenser. There is thus only one (n—1=2—1=1)
interfacial paramater, namely the temperature 7, to determine. The calculation
procedure at any position is: (i) assume 77, (ii) calculate y,, from (299), (iii) estimate A,
and #,,, fromj, (=jp)correlations, (iv) calculate N, from (87), (v) from a knowledgé
of the coolant temperature 7, at the position under consideration, check that (298) is
satisfied. If the balance of energy is not satisfied, a new value of T} is assumed and steps
(ii) to (v) repeated till convergence is obtained,

X.4.b Condensation of a Binary Vapour Mixture

Most design procedures for the condensation of a binary vapour mixture follow the
classic analyses of Ackermann (1937) and Colburn and Drew (1937) which employ a
‘film’ model for the description of the transfer processes in the vapour phase. Strictly
speaking, the calculation of the rates of mass transfer requires the knowledge of the
mass transfer coefficient £, in the liquid phase. This requirement is circumvented in
the Colburn and Drew analysis by assuming that the composition of the condensed
liquid at the interface, x ;, is determined by the relative rates of condensation of species
l and 2, i.e.

Xy =NJ/N,=1—xy =1 N,)/N, (300)

From equation (170) it is clear that for (300) to hold it is implied that
Jy=0, £4%:,=0 (301)

which would apply if the condensate film near the interface would be completely
‘unmixed’ with no diffusive transfer.

The composition of the vapour at the interface in equilibrium with the liquid is given
by

_nh x1 P (Ty) .
p. ’

yu=1—yy (302)

Yu
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The molar rate of condensation of species i can be calculated from -

5 . - . N
N=T = fo eIy Xy (303)
ylb/xll (1 _ylb/xll) Xy

oy

or'equivalent]y using -~ . -

1_
NsémmmT;Mﬂ;M=ﬁLM g (304)

= Yw/Xu *u

Asin X.4.a, there is one unknown interfacial parameter to determine; this parameter
is conveniently chosen as the interfacial temperature T, The trial and error procedure

-to be used at each interval in the condenser is as follows: (i) assume interface tempera-

ture T, (ii) calculate x,; and y,; from equilibrium data at system total pressure p,; (iii)
calculate N,, N, from (303) or (304) in which the zero flux coefficient £, is estimated
from an appropriate j, correlation, {iv) check the energy balance relation (298). If the
balance is satisfied we proceed to the next increment and the solution of overall material
and energy balances; if the balance is not satisfied another temperature T is assumed
and the steps (ii)—(iv) repeated till convergence is obtained on 7. A Newton-Raphson
procedure is appropriate for the iteration on 7;.

Xdc Condensatz'on of a Binary Vapour Mixture in the Presence of an Inert Gas

The analysns of this case’ 1s compllcated due tothe fact that the vapour phase isaternary
mixture and as has been noted in this review, there are possibilities of diffusional
interactions in the s vapour phase. Krishna and Panchal (1977b) developed a general-
ized Ackermann—Collburn and Drew type analysis for this case, based on multi-
component ‘film’ model of Krishna and Standart (1976a), discussed in I1I.1 and V.3.
We summarize the analysis here.

For the case under consideration we have

N, =0 (305)

The transfer rates in the vapour phasé N, and N, are given by eduaiion {233) where
the elements of the bootstrap solution matrix, [8*], are given by (cf. equatlons (75),(76)
and (177))

B = 8 + yius/Van, k=12 ' ' ' .' R © (306)

o

The matrix of finite flux mass transfer coefficiénts [k %] is obtained from equations
(99) and (100).

There are two independent interfacial parameters to be determined. The two
independent relations which determine these are the energy balance relation (298) and
the material balance relationships at the interface (273). We may, as in X.4.b, again
circumvent the need to calculate the liquid phase mass transfer coefficient by assuming
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that the interfacial liquid composition is determined by the relative rates of con-
densation of the two species, i.e. assume that (300) holds for this case.

It is convenient to choose the interfacial temperature T, and the liquid composition
x,; as the independent parameters to be determined. The best procedure for obtaining
their values is touse a 2-dimensional Newton-Raphson iteration technique to search for
values of 7, and x,; which satisfy the relations (298) and (300).

The computational results of Krishna and Panchal (1977b) show that for rich vapour
mixtures made up of species of widely different molecular sizes, diffusional interactions
would have a significant influence on the design.

Krishna et al (1976g) have developed a design procedure for condensation of a
general n-component mixture. They considered a sample design problem for con-
densation of a 6-component hydrocarbon mixture and showed that neglect of vapour
phase interactions might lead to severe underdesign.

There is a great shortage of experimental data on mass transfer in multicomponent
vapour (+ inert gas) liquid systems. Most of the published works deal with absorption
(or condensation or evaporation) or a single species in the presence of an inert non-
transferring component. A set of ternary mass transfer experiments were carried out by
Toor and Sebulsky (1961) and Modine (1963) in a wetted-wall column and alsc in a
packed column. These authors measured the simultaneous rates of transfer between a
vapour—gas mixture containing acetone (1 }-benzene (2 }-nitrogen (3) or helium (3) and
a binary liquid mixture of acetone and benzene. The vapour and liquid streams were in
cocurrent flow for the wetted-wall column and counter-current for the packed column.
Their experimental results show that diffusional interaction effects were significant in
the vapour phase especially for the runs with helium as carrier gas. The theoretical
model used by Toor and Sebulsky and Modine to explain their results were based on the
generalized driving force approach of Toor (1957). More recently, Krishna (1979a)
used the wetted-wall column experimental data of Modine {1963) to test the
applicability of the Krishna and Standart (1976b) multicomponent film model and also
the linearized theory of Toor and Stewart and Prober. The tests showed that both these
mass transfer models which take proper account of diffusional interactions were
successful in predicting the behaviour of the experimental system. On the other hand, a
binary type model neglecting diffusional interactions was completely unsuccessful in
this regard. The procedure for estimating multicomponent mass transfer coefficients
described in section V.3 is therefore confirmed at least for systems with well-defined
hydrodynamics (no surface tension or rippling phenomena).

X.5 Multicomponent Gas Absorption

The absorption of one soluble component from an inert (stagnant) carrier gas stream
has been considered widely in the literature. When one soluble component is absorbed
from a mixture of stagnant gases, the procedure using an effective diffusivity, defined by
equation (198), is both simple and convenient. If two or more gases are being
absorbed from an inert gas stream, the problem is much more complex and necessitates
the use of the formalisms considered in this review. Fundamentally, the mass transfer
analysis is the same as considered in X.4 for condensation of vapour mixtures. The
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procedure simplifies considerably for extremely lean vapour mixtures for which
pseudo-binary approaches neglecting diffusional interactions will be adequate.

The calculations of Tamir and Taitel (1973} on multicomponent gas absorption give
an indication of the magnitude of the interaction effects to be expected.

X.6 Ternary Mass Transfer in Liquid-Liquid Extraction

In even the simplest case of liquid extraction we must have a ternary system though
most experimental extraction research work have been concerned with the case of two
immiscible solvents with only one solute transferring between them. In most practical
applications the solvent will have a finite miscibility in the extract phase and therefore,
strictly speaking, we would have ternary mass transfer in either phase. In order to
understand the effects of interaction in ternary extraction we consider a batch
extraction experiment in the system 1-2-3 as depicted in Figure 1.

single phase

region

two phase region

FIGURE 1. Interaction effects in ternary extraction
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Leta and b represent the initial conditions of the two immiscible phases. The mixture
composition is denoted by M in the figure. Let cd represent the tie line passing through
the mixture composition M. During equilibration of the unsaturated phases the
conditions of the two phases should change from a to ¢ and from b to d respectively. The
trajectory during this equilibration process is easily shown to be (Standart et al, 1975) .

dx, _ Ji

(307},
dx2 JZb
in either fluid phase.
If we assume a primitive mass transfer theory and use uncoupled mass transfer
relations:

Jo =& Ax; =4 (xp —xy),  i=12 (308)

(Note that the mass transfer coefficient £ must be identical for both components 1 and
2 (Toor and Amold, 1967)), we get

dx, “Ax1 =(xlb_xll)

dx, £Ax; (X2 — Xy)

(309)

Equation (309) shows that the tangent to the trajectory must cut binodal curve at the
interfacial state {¢ or d). Experimental work with the system 1-acetone, 2-glycerol,
3-water (Standart et al, 1975) have shown that the tangent in one phase can miss the
binodal curve entirely and the actual equilibration paths are highly curvilinear as shown
in Figure 1. Such curvilinear paths can only be explained if one takes diffusional
interactions into account.

Cullinan and Ram (1976) give further experimental support of the interacting mass
transfer model for the system acetone—glycerol-water.

X.7 Miscellaneous Applications

In addition to the above examples of the applications of multicomponent mass transfer
theory there are various other processes in which coupled multicomponent diffusion
may play a role. These are briefly mentioned below with the appropriate entry points
into the relevant literature.

By far the most dramatic effects of coupled multicomponent diffusion are likely to be
found in reacting systems but unfortunately this area has not been sufficiently well
explored. The theory of coupled multicomponent diffusion with reaction (homo-
geneous or heterogeneous) is covered by DeLancey and Chiang (1970b), DeLancey
(1974), Hesse (1972-1977), Hudson (1967), Parkin (1968), Toor (1965). Ex-
perimental data are however scarce.

The calculations of Krishna (1977c) and Schneider (1978) show that the phe-
nomena of multicomponent diffusion in porous media, where we have the combined
processes of molecular and Knudsen diffusion of gaseous mixtures, may lead to
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important effects which have interesting consequences in deterginingthze effectiveness
and selectivities of catalytic reactions.

The necess1ty of considering couplmg effects in mu}tlcomponent axial dispersion is
emphasnzed by Cullinan (1973) and S1gmund (1976). Multicomponent dispersion in
chemically reacting systems is considered by De Gance and Johns (1974, 1975).

The importance of coupled multlcomponent diffusion in metallic systems has
received a lot of attention from Kirkaldy and his co-workers and is summarized in the
review of Kirkaldy (1970). Cooper (1975) gives a very good review of the 1mportance
of multicomponent diffusion in glasses.

The increasingly important area of membrane technology affords other important
applications of multicomponent diffusion theories (Cussler 1976 Knshna, 19780)
Cussler summarizes the expérimental work in this aréa.

Some unusual examples involving coupled diffusion include:

1) diffusion of pulmonary gases in lungs (Gibbs et al, 1973)

" '2) accelerating the uptake of monofliurophosphate by hydroxyapatite (Breuer and
Cussler, 1975)

"3) solvent assisted dyeing (Butcher and Cussler, 19'72)

4) drying of food liquids {Chandrasekaran and ng, 1972)

NOTATION

a. interfacial area per unit volume of packed section

a interfacial area per unit: volume ‘of dlspersmn on tray

A cross secuonal area of column or tube

Ay element of tray area- - '

[{40] matrix with elements given by equation (28)

1)) column matrix on intercépts =

[B] matrix of inverted diffusion coefficients given by (54) and (55) .:. -
| ] matrix of mverted mass transfer coefficients given by (91) and (92)
c} .:; .molar den81ty of flu1d mlxture

C molar heat capacity 'of species 7

C, mean molar heat capacity of fluid mixture

d characteristic length of condmt or apparatus or contactor’

[D]-' -,.matrlx of practlcal dlffusmn coeff‘ cnents

D; ith eigenvalue of matrix [D]

Dy -.generalized Maxwell-Stefan clilfu‘siori coefficient’

P diffusicn’ coefficient in the binary pair i-k
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D et effective diffusion coefficient of species 7 in fnulticompoﬁént mixture
E total energy flux
l‘i'oy, Murphree point vapour efficiency of species /
[/ ‘~olution’ matrix for multicomponent diffusion problénis:
f,. solution function for pseudo-composition profiles -
G, molar flow rate of species / - ‘
G, molar flow rate of fluid mixture
| 61 matrix defined by equation (257)
h heat transfer coefficient i
ho heat transfer coefficient including resistances of condensate, wall and
coolant
H, partial molar enthalpy of species { in fluid mixture
AH, molar heat of vaporization of species i

HTU,, pseudo-binary height of transfer unit for species /

T [ indentity matrix with elements 0 .
I Ju J-factors
J L .molar diffusion flux of species i relative to.molar average velocity
J turbulent diffusion flux
Kr thermal conductivity of fluid mixture
£ mass transfer coefficient of the binary' pair -k
k] matrix of multicomponent mass transfer coefficients
I'é, mass transfer coefficients of pseudo-species”
k; pseudo-binary mass transfer coefficient defined by equation (202)
Kol overall matrix of mass transfer coefficients
! " length of diffusion path in Loschmidt apparatus
IL] matrix of Onsager coefficients
[(M] matrix of equilibrium constants
n number of constituents in mixture
N; total molar flux of species { in stationary reference frame
N, total molar flux of mixture in stationary reference frame.

[NTU]  matrix of numbers of transfer units
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NT Uy pseudo-binary number of transfer units for species ¢

D, total system pressure
P vapour pressure of species |
IP] modal matrix of [D]

conductive heat flux

q” heat flux through wall of condenser

R gas constant

Re Reynolds number

A summation parameter in equation (67)

t time

T absolute temperature

u; velocity of species i in diffusing mixture

u molar average velocity of mixture

v volume of dispersion on tray

[W] matrix of total mass transfer coefficients

‘x’ heavy phase (e.g. liquid)

X; mole fraction in fluid mixture (in some cases refers specifically to liquid
phase mole fraction)

¥ mole fraction in gaseous phase

vt mole fraction in top half of Loschmidt apparatus

yi mole fraction in bottom half of Loschmidt apparatus

‘y’ light phase, usually gaseous phase

Y thermodynamic driving force defined by equations (27)

z distance coordinate along diffusion path

Z distance coordinate along dispersion height, or along column height

VA total column height

Greek Letters

a; dimensionless weighting factors defined in equation (195)
(8] bootstrap solution matrix with elements given by (177) or (285)

Y; activity coefficient of species i



18:51 10 Septenber 2008

Downl oaded By: [University of California, Berkeley] At:

]

MASS AND ENERGY TRANSFER

matrix of thermodynamic factors defined by equation {40)
length of diffusion path, film thickness

Kronecker delta

heat transfer rate factor given by equation (217)

column matrix with elements given by equation {90)
dimensionless distance along diffusion path

matrix defined by equation (108)

parameters defined by equation (277)

parameters defined by equations (105) or (283)

molar chemical potential of species i

viscosity of phase ‘x’

dimensicnless distance along column or dispersion in tray
matrix of correction factors

mass density of fluid mixture

rate of production of entropy per unit volume

ratio of ‘11° element of square matrix to ‘22° element
dimensicnless mass transfer rate factor for binary system
matrix of dimensionless rate factors for multicomponent system
dimensionless rate factors for pseudo-species (film theory)
dimensionless rate factors for pseudo-species (penetration theory)
ratio of ‘12’ element of square matrix to ‘11’ element

ratio of ‘21’ element of square matrix to ‘22’ element

Operational Symbols

o/ot
d/dt

—Ad 4«

spatial derivative

material derivative following u
gradient operator

divergence operator
Laplacian or nabla operator
product over n factors

determinantal operator

271
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A difference operator- i .sii-t, (e s e

Matrix Notation

() column matrix with —7 elements

[ ] n—1 X n1 square matrix © - ¢ Lo
[ 1 n—1 X n—1 inverted matrix %"~
() row matrix, n—/ elements 7't
[ T transposed square matrix, n—1 X n=1

F diagonai matrix ‘with n—1 non-zéro eleménts
[ 1 symmetric part of square matrix ’
1 1 anti-symmetric part of square matrix
Subscripts

av averaged value of parameter '

b bulk phase parameter or property

c pertammg to coolant N '

I ‘ _mterfacnal paramerer pr preperty

Lk wmdlces ’ )

FEEA W

pertammg to nth specres N

parameter at plane z= 0 also overall parameter

v < £1 .
oh v S e I e

! pertammg to total mrxture N =

X pertammg to ph'as'e -

y pertaining to phase ‘y’

é parameter at plane z = &

o0 asymptotic value of parameter B
Superscripts e
* equilibrium value o
x pertaining to phase ‘x’ 3

y pertaining to phase ‘y’

~ey FR R B ) LBy
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o + coefficient corresponding to finite mass transfer rates

Overlines

transformed value of parameter
pseudo-binary coefficient

. averaged mixture property
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