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Diffusion of pure components (hydrogen (H,), argon (Ar), krypton (Kr), methane (C1), ethane (C2), propane
(C3), n-butane (nC4), and n-hexane (nC6)) in silica nanopores with diameters of 1, 1.5, 2, 3, 4, 5.8, 7.6, and
10nm were investigated using molecular dynamics (MD). The Maxwell-Stefan (M-S) diffusivity (D; ) and
self-diffusivities (D; s,s) were determined for pore loadings ranging to 10 molecules nm~3. The MD simu-
lations show that zero-loading diffusivity D; ;(0) is consistently lower, by up to a factor of 10, than the
values anticipated by the classical Knudsen formula; the differences increase with increasing adsorption
strength. Only when the adsorption is negligible does the D;(0) approach the Knudsen diffusivity value.
MD simulations of diffusion in binary mixtures C1-H,, C1-Ar, C1-C2, C1-C3, C1-nC4, C1-nC6, C2-nC4,
C2-nC6, and nC4-nC6 in the different pores were also performed to determine the three parameters D,
b,;, and Dy, arising in the M-S formulation for binary mixture diffusion. The B;; in the mixture were
found to be practically the same as the values obtained for unary diffusion, when compared at the same
total pore loading. Also, the D;; of any component was practically the same, irrespective of the partner
molecules in the mixture. Furthermore the intermolecular species interaction parameter D;,, could be
identified with the binary M-S diffusivity in a fluid mixture at the same concentration as within the silica
nanopore. The obtained results underline the overwhelming advantages of the M-S theory for mixture
diffusion in nanopores.
Our study underlines the limitations of the commonly used dusty-gas approach to pore diffusion in which
Knudsen and surface diffusion mechanisms are considered to be additive.

© 2008 Elsevier Ltd. All rights reserved.
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field exerted with the wall and we have to reckon with the motion
of adsorbed molecules; there is no “bulk” fluid phase to speak of.
This can be illustrated in the case of diffusion of methane inside a

1. Introduction

A wide variety of nanoporous materials such as zeolites, carbon

nanotubes, carbon molecular sieves, metal-organic frameworks, ti-
tanosilicates, MCM-41, and SBA-16, with pore sizes smaller than
about 10 nm, are used in adsorptive and membrane separations and
catalysis. In the development of process technologies it is often nec-
essary to have a good description of mixture diffusion within the
nanosized pores (Arora and Sandler, 2005; Chen and Sholl, 2004;
Chen et al., 1994; Ciesla and Schiith, 2005; Diiren and Snurr, 2004;
Himeno et al., 2007; Keskin et al., 2008; Krishna and Paschek, 2000;
Krishna and van Baten, 2006b, 2007; Kuznicki et al., 2001; Li et al.,
2007; Marathe et al., 2004; Schliinder et al., 2006; Snurr et al., 2004;
Yoshioka et al., 2001).

If the pore sizes are smaller than about 0.8 nm, as is the case of
zeolites, the molecules are always within the influence of the force
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zeolite pore. The Lennard-Jones size parameter ¢ for interaction of
methane with the oxygen atoms of the zeolite structure is 0.347 nm
(Dubbeldam et al., 2004). The minimum in the potential energy for
interaction with the wall surface occurs at a distance 21/6¢ = 0.39 nm
from the wall. This implies that the methane molecule at the centre of
a pore of radius 0.4 nm will experience significant interactions with
the surrounding walls. Diffusion inside pores smaller than 0.8 nm
has been examined in detail in several recent publications (Kérger
etal., 2003; Krishna and van Baten, 2008a,b) and will not be discussed
further in this paper. The main focus of the present communication
is on mixture diffusion in materials that have pore sizes ranging
from about 1 to 10 nm, such as MCM-41, SBA-16, and Vycor glass.
In such cases there is central core region where the influence of
interactions with the wall is either small or negligible. Diffusion in
this case is governed both by molecule-molecule and molecule-pore
wall interactions.

In the Onsager theory, used for example by Bhatia and
Nicholson (2008), the molecular fluxes Nj, defined in a reference
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frame with respect to the pore walls, are related to the chemical
potential gradients by

2
1 dyj
N T Sl 1S M

The Onsager reciprocal relations prescribe
Liz=1yn )

In the alternative Maxwell-Stefan (M-S) formulation (Krishna and
Wesselingh, 1997), we write
¢ dm %N —xiNy Ny

kBT dx DlZ D_l,s (3)

¢ dmy _x1Np —xoNy | Ny

kg dx by Py @
In Eqgs. (3) and (4) the bj s are the M-S diffusivities of species 1 and 2,
respectively, portraying the interaction between component i in the
mixture with the surface (s), or wall, of the pore. The P1, and Dy
are M-S diffusivities representing interaction between components
1 with component 2. The Onsager reciprocal relations require

Dy =Dy (5)

The ¢; are the loadings within the pore and x; represent the compo-
nent mole fractions

xj=ci/(c1 + ) =cifcr; i=1,2 (6)
For unary diffusion, Egs. (1), (3), and (4) simplify to yield

G p. dHi 1, dy

TRl Disdx L (7)

Ni= TkeT ' dx

where L; = ¢;D; ¢ is the Onsager coefficient for pure component i. By
introducing the thermodynamic factor I';

G du_pda. p_ 6O

kB_Ta =Tig fl@—cl, unary system (8)
we can re-write Eq. (7) as

dc; dc;
Ni==Pisli g = ~Drickis g ©)

where the Fick diffusivity Dy, ; ¢ for unary diffusion inside the pore
is defined as

Drjek,is = DisT'i (10)

The thermodynamic factor I'; can be obtained by differentiating the
pure component adsorption isotherm.

The fluxes N;j in the foregoing Egs. (1), (3), (4), and (7) include
the viscous flow contributions. Therefore the phenomenological On-
sager coefficients L;; and the M-S diffusivities Dj,s include the vis-
cous shear contributions to the diffusivity (Bhatia and Nicholson,
2008). In this context it must be noted that our Egs. (3) and (4) do
not correspond to those of the dusty-gas model (DGM) (Mason and
Malinauskas, 1983) used, for example, to interpret experimental data
in porous glass membrane permeation (Yang et al., 2005), and mix-
ture adsorption dynamics (Delgado and Rodrigues, 2001). The DGM
been the subject of severe criticisms in recent years because of a
number of flaws and inconsistencies highlighted by Kerkhof (1996),
Kerkhof and Geboers (2005a,b), and Young and Todd (2005); these
authors eloquently point out several flaws in the Mason development
of the DGM, especially pertaining to the accounting of the viscous

P

Fig. 1. Structure and wall surface landscape for 3 nm silica nanopore. Also shown
is a snapshot of the equilibrium positions of C1 and nC4 molecules.

contribution. Formally, Egs. (3) and (4) correspond with the binary
friction model of Kerkhof (1996), Kerkhof and Geboers (2005a,b),
derived by combining the mass and momentum balance relations for
binary mixtures; our Dj s can be viewed as the inverse of Kerkhof’s
wall-friction coefficients. Following Kerkhof, we get

BgcikgT

Dis=Djxn +
L,S 1L,Kn ’,Il

(11)
where Dj gy, is the Knudsen diffusivity, and By representing the per-
meability of the pore. The second term on the right-hand side of
Eq. (11) represents the viscous contribution. An important differ-
ence between our approach in the current paper with the work of
Kerkhof is that we do not neglect the influence of adsorption at the
pore wall, and attendant surface diffusion along the pore surface.
Indeed, one of the major objectives is to underline the influence of
surface adsorption on the Bj 5. At this stage in the model develop-
ment, Dj s represents a conglomerate of “Knudsen”, “surface”, and
“viscous” effects; in the molecular dynamics (MD) simulations that
we shall employ, this lumped parameter is determined, without de-
convolution into the individual contributions.

For binary mixtures the relation between the Onsager L;; and the
M-S diffusivities Dj s and D, are (see supplementary material for
detailed derivations)

x1D
C1 D],S (1 + a72s 1;5)
XDy s+ %D
+ e L = 0
by,

L1 =

x>
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Fig. 2. (a) Maxwell-Stefan, D; 5, (b) viscous contribution, and (c) self-diffusivities D;s; of methane (C1) in silica pores of various diameters at 300K. (d) Comparison of Fick,
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From a practical viewpoint an important advantage of the M-S
equations (3) and (4), over the Onsager formulation (1) is that Dj s
can be identified with the corresponding pure component values.
This advantage does not hold for the Onsager formulation, and the
diagonal elements Ljj cannot be identified with the pure component
Lj. Furthermore, the P15 in the M-S formulation can be identified
with the binary M-S diffusivity in the corresponding fluid mixture
at the same mixture composition and total pore loading. The main
objectives of the present communication are to critically examine the
general validity of the perceived advantages of the M-S approach.
Specifically, we aim to provide answers to the following questions:

(1) Can the bj s, defined in Egs. (3) and (4), be identified with the
corresponding values for unary diffusion, defined by Eq. (7)?

(2) How does adsorption at the wall affect Bj s? Under what condi-
tions can Dj s be identified with the Knudsen diffusivity D;j g,?

(3) Can the molecule-molecule interaction parameter, P,, defined
in Egs. (3) and (4), be identified with the M-S diffusivity in a
binary fluid mixture at the same total loading as within the pore?

To obtain answers of reasonably wide applicability we carried
out MD simulations of diffusion in a variety of pure components
(hydrogen (H,), argon (Ar), krypton (Kr), methane (C1), ethane (C2),
propane (C3), n-butane (nC4), and n-hexane (nC6)) and a variety
of binary mixtures (C1-H,, C1-Ar, C1-C2, C1-C3, C1-nC4, C1-nC6,
C2-nC4, C2-nC6, and nC4-nC6) in silica pores of diameters 1, 1.5, 2,
3, 4, 5.8, 7.6, and 10 nm. The silica pore structures have been pre-
pared using a method based on Coasne et al. (2008); Fig. 1 shows
the landscape for a pore of 3 nm diameter, as an example. In every
case the following simulations were conducted: (1) Configurational-
bias Monte Carlo (CBMC) simulations in the grand canonical
ensemble were performed to determine the pure component ad-
sorption isotherms; these simulations allow calculation of the
thermodynamic factors required for the determination of the Fick
diffusivities using Eq. (10). (2) MD simulations of the pure component
self-diffusivities Di,self,s and M-S diffusivities Dj s inside the pores
for a range of molecular loadings. (3) MD simulations for diffusion in
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Fig. 3. (a) MD simulations of self-diffusivities B of H,, Ar, Kr, C1,C2, C3, nC4, and nC6 at 300K as a function of the fluid concentration c;. Plots of 1/(1/Djss — 1/D;;) for
(b) Ar, (c) C1, (d) C2, (e) €3, and (f) nC4, respectively, in the silica pores of different diameters are compared with corresponding data on b;;.

binary mixtures in the various pores to determine the L;;; with the
help of Egs. (12)-(15) the Dj s and D1, can be backed-out. (4) De-
termination of pure component self-diffusivities Dj;, along with the
M-S diffusivity D15 and the shear viscosity #; in fluids (i.e. without
the constraining influence of the silica pore wall) for varying con-
centrations. Most of the simulations were performed for T=300K.
Additionally, a few simulations were carried out at 200, 500, 700,
and 1200K to vary the adsorption strength. The entire data base
of simulation results is available in the supplementary material
accompanying this publication; this material includes details of the
MD simulation methodology, description of the force fields used,

simulation data (fluid phase Dijj, P13, and #j; pure component
isotherms; D sr5; comparison of Dj s obtained from both unary
and binary systems; comparison of D1, obtained from diffusion
inside pore with that for binary fluid mixtures), snapshots showing
the location of molecules inside the pores, detailed derivations of
the explicit formulae for backing out the Dy 5, Dy 5, and D1y from
the MD simulations of the L;; for mixture diffusion.

We should emphasize here that though specific silica structures
are used in the simulations, along with chosen force fields, the con-
clusions we draw in relation to the three questions posed above
have general validity for diffusion in rough cylindrical pores in the
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Fig. 4. Maxwell-Stefan diffusivities, D;, and self-diffusivities Djsys for H,, Ar, Kr, C1, C2, C3, nC4, and nC6 in (a, b) 2nm and (c, d) 3nm silica pores at 300K.

1-10nm range; this aspect will be further underlined in the ensuing
discussions.

2. Pure component diffusion inside pores

Fig. 2a shows the simulation results for B;js of C1 as a func-
tion of the loading c; inside the silica pores of eight different
diameters. The ¢; is expressed in units of molecules per nm3 of
pore volume; for conversion to engineering units we note that
1 moleculenm~3 = 1.66 kmol m—3. The Bj s increases with ¢; due to
the viscous contribution increasing with c;. Fig. 2b shows the calcu-
lations of the viscous contribution for different pore sizes using the

second term of the right member of Eq. (11), taking By = dlzj eff/32'
along with MD simulated values of the viscosity #;. These calcu-

lations only provide the right qualitative trends for the viscous
contribution with increasing cj; for more accurate calculations we
need to account for the radial variation of ¢; within the pore as in
the work of Bhatia et al. (2004) and Bhatia and Nicholson (2006).
The self-diffusivity D; o of C1 shows a pronounced decrease with
increasing pore loadings cj; see Fig. 2c. At any finite loading, the
self-diffusivity inside the pore is related to the Dj s by

111
Di.self,s Di,s b;;

(16)

where Dij; is the self-diffusivity in the pure fluid; this diffusivity arises
from molecule-molecule interactions. The derivation of Eq. (16) is

available in the supplementary material. MD simulations of self-
diffusivities in pure fluids, Djj, of a variety of molecules used in
this study are plotted in Fig. 3a as a function of the fluid density
ci. In the low density range, say c; <2 moleculenm=3 the Dj; de-
creases linearly with increasing c;; this is the low-density gas limit.
For ¢ > 5moleculenm~=3 we have high density fluid characteristics
with a much sharper decline in Dj; with increasing c;. Eq. (16) im-
plies that the parameter 1/(1/D,~‘self's — 1/Dj¢) should be (a) inde-
pendent of the pore diameter, and (b) equal the self-diffusivity of
pure component i in the fluid phase at the same loading as within
the pore. Figs. 3b-f present the 1/(1/D,-'self'S - 1/D;) data for Ar, C1,
C2, C3, and nC4, respectively, in silica pores of different sizes; this
data confirms that this parameter is pore size independent for ev-
ery molecule, and in good agreement with the corresponding value
of Dj; determined from independent fluid self-diffusion simulations.
For estimation purposes, the self-diffusivity inside the pore Dj g s
can be calculated using D; s and fluid phase Dj; (from Fig. 3a) as data
inputs; these calculations are shown by the dashed line in Fig. 2¢c for
the 2 nm pore.

From the simulated adsorption isotherms the thermodynamic
factor I'i can be calculated and the Fick diffusivity determined using
Eq. (10). The Dpy ;¢ data for the 2nm pore are plotted in Fig. 2c. In
the limit of zero loading inside the pores molecule-molecule inter-
actions and viscous contributions are both of negligible importance,
and the self, M-S, and Fick diffusivities converge to the same value
Di s(0). Results analogous to that in Fig. 2c are obtained for C1 in
all other pore diameters and also for other guest—pore combinations
investigated; see supplementary material.
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For a pore size of 2nm, the Dj s and D; s s data for Ar, Kr, C1,
C2, C3, nC4, and nC6 are shown in Figs. 4a and b. We note that
for longer n-alkanes nC4 and nC6 that have significantly higher ad-
sorption strengths, the Dj s increases with pore loadings, reaches
a maximum and then decreases as pore saturation is approached.
The loading dependence of Dj s for nC4 and nC6 are similar to that
observed in zeolites and metal-organic frameworks (Chmelik et al.,
2009; Krishna and van Baten, 2008a,b), and is characteristic of diffu-
sion of adsorbed molecules, i.e. surface diffusion. Put another way,
with increased adsorption strength the contribution of surface diffu-
sion to Dj s becomes increasingly important. Figs. 4c, and d present
the corresponding D s and Di,self,s data for Hy, Ar, C1, C2, C3, nC4,
and nC6 in a 3 nm pore.

We now try to obtain an answer to the second question posed
in the Introduction. When the mean free path of the molecule is
significantly larger than the pore diameter, molecule-wall surface
collisions are predominant and Knudsen diffusion is normally as-
sumed to hold, with the diffusivity given by Albo et al. (2006), Arya
et al. (2003a,b), Bhatia (2006), Bhatia and Nicholson (2006), and
Zschiegner et al. (2007)

D; _ oo 8RT
ikn = =3\ T

(17)

Following Bhatia and Nicholson (2006) we define the effective
pore diameter, dp_eff by

dp,eff:dp —0.92((7i+0'0) (18)

where dp is the centre-to-centre distance between the O atoms on
the surface of the pore, g; is the Lennard-Jones size parameter for
molecule-molecule interaction, and g is the Lennard-Jones size pa-
rameter for O atoms in the silica structure (the Lennard-Jones param-
eters are tabulated in the supplementary material). The correction to
the pore diameter is especially relevant for pores smaller than about
3 nm. Eq. (17) holds provided the molecules suffer diffuse reflections
on collision with the wall surface. Diffuse reflections usually result
from rough surfaces (Arya et al., 2003b; Bhatia, 2006; Bhatia et al.,
2004; Bhatia and Nicholson, 2006; Zschiegner et al., 2007), as is the
case with silica pores. Carbon nanotubes, in contrast, have smooth
walls and the reflections are specular; this results in diffusivity val-
ues about 2-3 orders of magnitude higher than those predicted
by Eq. (17) (Bhatia, 2006; Jakobtorweihen et al., 2007). In deriving
Eq. (17) it is also assumed that the molecules do not adsorb, or stick,
to the walls on collision. Furthermore, the Knudsen formula (17)
implies low pore concentrations, cj—0, with no molecule-molecule
interactions.
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From Eq. (11), we note that in the limit of low pore loadings,
ci— 0, molecule-molecule interactions will be negligible, the viscous
flow contribution is of negligible importance and the Dj s(0) should
approach Dj g,; we now address the question of whether Dj s(0)
can indeed be identified with the classical formula for Knudsen
diffusivity.

For diffusion of methane in the 2 nm pore, the D; g, is also plotted
in Fig. 2c (large blue circle), along with the calculations of Dj s using
the commonly used formula (11), that includes the viscous contri-
bution. In the calculations for Eq. (11) we use MD simulated values
of the viscosity #; taking By = dg_eff/32. The Knudsen diffusivity value

. Krishna, J.M. van Baten / Chemical Engineering Science 64 (2009) 870 - 882

calculated from Eq. (17) is significantly higher than the B; (0). Sim-
ilar results are obtained for other pores; data on i s(0)/Di g, at
300K for a variety of pore sizes for C1 and for Ar are plotted in
Fig. 5a against dp. Both data sets are consistently below unity. In-
terestingly, the Dj 5(0) for C1 deviate to a greater extent from Dj gy,
than the Ar data. The Dj s(0)/Dj, gy, values for C1 are lower than that
for Ar because C1 has a higher adsorption strength than Ar; we re-
turn to this point in later discussions. For both data sets in Fig. 5a the
ratio Dj 5(0)/Dj, g, appears to approach unity as the pore diameter is
increased beyond 10 nm.

From the MD simulation results of Bhatia and Nicholson (2006)
for diffusion of C1 and H, in a variety of pores at 300K, we
constructed a similar plot; see Fig. 5b. We note that the Dj s(0)/Dj,
values of both C1 and H, lie significantly below unity, signifying
departures from the Knudsen formula. Again, the data of the more
strongly adsorbed C1 deviate to a greater extent than the corre-
sponding results for the weakly adsorbed H,. Comparison of our
results for C1 (Fig. 5a) with those of Bhatia and Nicholson (2006)
in Fig. 5b shows that our values of Dj s(0)/Dj g, for a given pore
size tend to be higher. The reason is that the Lennard-Jones energy
parameter for interaction of C1 with the O atoms, ¢;_gp/kg, in our
simulations is taken to be 115K, in line with the force field for
zeolites (Dubbeldam et al., 2004); the corresponding value used by
Bhatia and Nicholson (2006) is significantly higher, and equals 207 K.
The adsorption strength is dictated by ¢;_/kgT; consequently, the
adsorption strength of C1 is much stronger in the Bhatia simula-
tions when compared to ours, resulting in lower Dj s(0)/Dj g,. We
stress this point in Fig. 5¢c by plotting our results for Bj s(0)/Dj,
against ¢;_g/kgT for C1, Ar, Kr at a variety of temperatures (200,
300, 500, 700, and 1200K) in a 2nm pore. The simulation results
of Bhatia et al. (2004) for C1 at a variety of temperatures in a
3.01nm pore are also plotted in Fig. 5c. The two different sets
of results, with two different ¢;_o/kgT parameter values, produce
similar results for D s(0)/Di gy, suggesting that the plot in Fig. 5c
has, perhaps, a generic validity. We note that for Ar at 1200K in
the 2nm pore, D;j s(0)/Dj k, ~ 1. On the basis of this plot we can
conclude that only for poorly adsorbing molecules at high T is the
approximation Bj s(0) ~ Dj g, of reasonable accuracy. We note that
the Dj s(0)/Dj g, tends to approach an asymptotic value of about 0.1
for low values of T. The practical consequence is that the adoption
of the Knudsen formula (17) for diffusion of say nC6 in silica pores
will lead to 10-fold overestimation of the fluxes. The fundamental
reasons for the deviation Dj s(0) from the Knudsen formula in cases
where there is significant Lennard-Jones interaction with wall is to
be found in the model of Bhatia and Nicholson (2006) who assume
oscillatory motion of molecules within pores in the 1-10 nm range
after suffering diffuse reflections from the pore walls; this aspect
needs further detailed investigation. Such oscillatory motion can
also been discerned on viewing animations of MD simulations, that
is available on our web-site (van Baten and Krishna, 2008).

For molecules with more than one pseudo-atom, such as
n-alkanes, it is difficult to plot the results in the same manner as in
Fig. 5¢c because ¢/kpg for the terminal CH3 groups are not the same
as for intermediate CH, groups (Dubbeldam et al., 2004). For this
reason, for n-alkanes, we chose to plot the Dj s(0)/Di g, for various
molecules against the Henry coefficient for adsorption; see Fig. 5d.
The Henry coefficients were determined from CBMC simulations of
the adsorption isotherms. It is interesting to note that Bj s(0)/Dj, kn
approaches an asymptotic value of about 0.1 for high values of the
Henry coefficient, consonant with the results in Fig. 5c.

With increased adsorption at the pore walls, the importance of
surface diffusion increases. Surface diffusion is an activated process
(Krishna, 1990) and the temperature dependence on the surface dif-
fusivity can be expected to follow an Arrhenius behaviour rather
than the /T characteristic of Knudsen diffusion. Data on Dj 5(0) for
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C1, Ar, and nC6 obtained at different temperatures in 2 and 3 nm
pores are plotted against the calculated values of Dj g;, in Fig. 6a; we
note that the Dj s(0) data sets are not parallel to the parity line for
all three molecules; this signifies that the Dj s(0) does not follow a
/T dependence; the T-dependence of Dj 5(0) is closer to Arrhenius
behaviour, as is evidenced by the Arrhenius plots in Fig. 6b. The
results in Fig. 6b are in agreement with earlier work of Bhatia and
Nicholson (2003). A further point to note is that for Ar at 1200K in
the 2nm pore, Dj s(0) ~ Di k.

From Figs. 5 and 6 we can broadly conclude for any molecule
that bj 5(0) tends to approach the classical Knudsen value Dj, g, with
increasing pore diameter and/or increasing temperature. Qur con-
clusions are in line with the work of Albo et al. (2006) who report
MD simulation results of pores in the 10-150 nm range. Even though
Figs. 5 and 6 provide a good indication of the degree of departure
of the Bj s(0) from Dj iy, a priori estimation procedure for Bj s of
general validity for all types of molecules have yet to be developed.

In this connection the theory of Bhatia et al. (2004) and Bhatia and
Nicholson (2006, 2008) provides a good starting point, but needs to
be tested for molecules other than the simple molecules such as C1
and H; used in their studies.

In the commonly used DGM, Knudsen and surface diffusion
are treated as combinatorial phenomena (Mason and Malinauskas,
1983). We believe this approach to be fundamentally flawed be-
cause dynamic adsorption-desorption processes at the wall have a
significant influence on the “Knudsen” contribution to the fluxes.
For molecules with strong adsorption strength the actual “Knudsen”
contribution could be a factor 10 lower than that anticipated by the
classical Knudsen formula (17) as is implied in the results presented
in Fig. 5. Adding a surface diffusion contribution on the right-hand
side of Eq. (17) exacerbates this problem. Kerkhof and Geboers
(2005a,b) and Young and Todd (2005) underline other flaws in the
DGM formulation but ignore adsorption-desorption at the pore
walls in their suggested alternative models.
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3. Binary mixture diffusion inside silica pores

Consider diffusion of an equimolar (cq = ¢y) binary mixture of
C1 (1) and Ar (2) in the 7.6 nm pore at a temperature of 300K. The
values of Dy, Pys, and D1y determined from MD mixture sim-
ulations are presented in Figs. 7a-c, respectively, as a function of
the total mixture loading c; = c+cy. Also shown in (a) and (b) are
the i s for diffusion of pure component C1 and Ar, as function of the
corresponding ci. We note a good agreement between the Dj s ob-
tained from mixture simulations with the corresponding pure com-
ponent values. Eq. (11) is seen to significantly over-predict the Dj s
values for both components, but the ¢; dependence is qualitatively
correct. The P1, for mixture diffusion inside the 2nm pore is also
in excellent agreement with the M-S diffusivity for the equimolar
binary fluid mixture, determined by independent simulations using
the method described in earlier publications (Krishna and van Baten,
2005, 2006a,b).

The results presented in Fig. 7 are typical of C1-Ar mixtures in
all other pore diameters investigated in this study (see supplemen-
tary material for plots analogous to Fig. 7). A summary of the C1-Ar
mixture diffusion simulation results in eight different pore diame-
ters is given in Fig. 8. In Fig. 8a the D s of C1 (component 1) in
C1-Ar mixtures (denoted by open symbols) are compared with the
corresponding pure component value (shown by the filled symbols)
in pores of various diameters. There is good agreement between the

two sets of results, when compared at the same total loading within
the pore. Fig. 8b shows the analogous set of results for the Dy s of Ar
(component 2) in C1-Ar mixtures (open symbols) with pure compo-
nent values (filled symbols) in various pores; again good agreement
between the two sets is obtained. Furthermore, the M-S formulation
implies that the parameter D15, quantifying molecule-molecule in-
teractions should not depend on the pore size; this is confirmed by
the simulation results for B, in C1-Ar mixture in eight different
pores (filled symbols); see Fig. 8c. Also, shown in Fig. 8c is the D,
obtained from MD simulations in an equimolar fluid mixture (open
symbols); there is good agreement between the different sets of
results.

A further implication of the M-S equations is that the Dj s of any
species i in a binary mixture should be independent of the partner
molecule in that mixture. As a test of this premise, Fig. 9a compares
the M-S diffusivity of pure component C1 in a 3 nm pore with that in
equimolar binary C1-H,, C1-Ar, C1-C2, C1-C3, C1-nC4, and C1-nC6
mixtures in the same pore at the same temperature. The good agree-
ment between the different sets of simulation results underlines the
efficacy of the M-S formulation in predicting mixture diffusion on
the basis of pure component diffusivity data. The remarkable thing
to note about the results in Fig. 9a is that the extremely wide vari-
ation in the molar masses of the partner molecules, ranging from
0.002 molkg~1 for H, to 0.086molkg~1 for nC6, the M-S diffusiv-
ity of pure component C1 is practically unaffected for the range of
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loadings considered here. Analogous results for C2, nC4, and nC6 are
obtained in for the 3 nm pore; see Figs. 9b-d.

The precise estimation of ;s for pure component diffusion is,
however, the key to good estimation of mixture diffusion charac-
teristics. In practical applications, such as membrane permeation,
unary permeation experiments are performed to determine the per-
meances (Higgins et al., 2008). From the data on the permeances as
a function of the upstream pressures, the Dj s can be determined
using information on the adsorption isotherm. There is no need to
determine the viscous permeability By as the viscous contributions
are subsumed into the Bj 5. These Dj s are then to be used to calcu-
late the fluxes in binary mixtures by solving Egs. (3) and (4). For ap-
plications in practice, Egs. (12)-(15) can be used to estimate the L;;
from information on the pure component Bj s, along with the binary
D1, in the fluid mixture. We illustrate the application by consider-
ing equimolar C1-Hy and C1-nC4 mixtures in a 3nm pore. These
two mixtures are specifically chosen to represent extremes in the
mixture diffusion characteristics. In the C1-H, mixture, C1 is more
strongly adsorbed but is tardier, and H is poorly adsorbed but is
more mobile. In the C1-nC4 mixture, C1 is the component that is rel-
atively less strongly adsorbed but is more mobile, and nC4 is much
more strongly adsorbed but is much tardier. The pure component
bi s, along with “empirical” fits of this data, is shown in Fig. 10a.
The data on D1 for equimolar C1-H, and C1-nC4 fluid mixtures
are obtained from the MD simulation results; see Fig. 10b. The cal-
culations of L using Eqs. (12)-(14), using the fitted D; s, estimated

at the total mixture loading, c¢, are in good agreement with the MD
simulated values; see Figs. 10c and d.

The expressions for the self-diffusivities in a binary mixture inside
a pore can be derived (see supplementary material) as follows:

1 1 X1 X2
— = =+ 5= (19)
Disrs P1s P11 P12
1 1 X2 X1
22 (20)
Dyseifs DPa2s D P

The predictions of D for both components using the fitted
values of Dj s along with the Djj and D1, from binary fluid mixture
MD simulations are shown in Figs. 10e and f. The predictions are in
good agreement with the M-S model equations.

The Dy for fluid mixtures can be estimated from component self-
diffusivities Dj; using the Darken relations (Krishna and van Baten,
2005).

P12 =xP11 +x1P2 (21)

Procedures for estimation of the pure component self-
diffusivities, Djj, for Lennard-Jones fluids are discussed by Yu and
Gao (2000). To illustrate the accuracy of Eq. (21), Fig. 11 shows MD
simulations of self-diffusivities, Dj;, of C1 and C3, along with the
b1, for equimolar binary C1-C3 fluid mixture as a function of the



880

a — it
100 m C1
- * nC4
o k il s H2
£ L
T
P C
= C
(2]
2 L
% silica nanopore;
» 3 nm; C1, nC4, H2; 300 K;
s MD simulations and fits
1||||I||||I||||I||||I
0 2 4 6 8
Loading, ¢;/ molecules nm3
C silica nanopore;

3 nm; C1-nC4 mixture; 300 K;
MD simulations vs model,

-
o

egs (12), (13), (14)

Onsager coefficient, L;;/ 108
molecules nm? m2s™!

0.1 B Ly
% Lo
® Lp
001 1 I R | 1 1 A |
1 10
Total loading, ¢/ molecules nm™3
e
NZ - C1(1)-nC4(2);
IS 15 F 3 nm silica pore;
= i 300 K
8 10 f—— egs (19), (20
Q_ : =] D1,se|f,s in mix
é T % Daserrs in Mix
% 5 +
é L
5 Rl
6 L
(%] 0 Ll N TR |

0.1 1 10
Total concentration, ¢,/ molecules nm™

R. Krishna, J.M. van Baten / Chemical Engineering Science 64 (2009) 870 - 882

b
equimolar binary fluid mixture;
0 102 MD simulations;
€ 300 K
(=}
=)
B
Q
2 10k
= C
) L
=} L
= L
3) | —a— C1-H, mix
s —— C1-nC4 mix
100 PRI R S S S A B S S A A S A A A AN AT SN AT A A A |
0 2 4 6 8 10 12
Total fluids concentration,
q ¢y / molecules nm
MD simulations;
o 100 ECH(1)-H2(2);
5 3 nm pore;
Nl 300 K
]
< 10
= E v
[=i v
:8 g 5]
5 o 18
o2
o § eqgs (12), (13), & (14)
55 m Ly
4] IS 0.1 L
2 ® v L2
© ® ® L
001 1 1 L1l 1 1 L1l
0.1 1 10
Total concentration, ¢, / molecules nm3
f
o 100 C1(1)-H2(2);
E : v 3 nm silica pore;
2 [ v 300 K
%w-; L
) L
g
= ]
= . .
é 10 t B Diserrs in mix
© [ ¥V D2,se|f,s in mix
3 ({1920, L\,

0.1 1 10
Total concentration, ¢,/ molecules nm™

Fig. 10. (a) The MD simulated Maxwell-Stefan diffusivity D;; of pure component C1, nC4, and H, (symbols) in 3nm pore at 300K, along with fits (continuous solid lines).
(b) MD simulated Maxwell-Stefan diffusivity D, of binary fluid mixtures C1-H,, and C1-nC4 at 300K. MD simulated values of the Onsager coefficients L; (symbols), for
(c) C1-nC4 and (d) C1-H, equimolar mixtures in 3nm pore, are compared with calculations (continuous solid lines) following Egs. (12)-(14). MD simulated values of the
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and (20).

total fluid concentration, c;. The calculations of D1, according to
Eq. (21), shown by the continuous solid line, are in excellent agree-
ment with the MD simulated values of D1, for an equimolar fluid
mixture over the entire range of concentrations. Furthermore,
Eq. (21) is also in good agreement with the data for D15 backed out
from mixture diffusion inside a 3 nm pore.

The identification of the P, parameter in the M-S equations
with molecule-molecule interactions in the fluid phase is an im-
portant advantage of the M-S formulation. In sharp contrast the

cross-coefficient L1, in the Onsager formulation cannot be identified
solely with molecule-molecule interactions as is evident by close
examination of Eq. (14). The Ly, is also influenced by molecule-wall
interactions.

4. Conclusions

On the basis of a large data set of MD simulations of unary and
binary diffusion of a variety guest species in silica nanopores of eight
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different diameters, answers to the three questions posed in the
Introduction can be obtained.

(1) For all systems investigated the Dj s describing binary mixture
diffusion, defined in Eqs. (3) and (4), can be identified with
the corresponding values for unary diffusion, defined by Eq. (7).
The equality holds provided the pure component values are de-
termined at the total mixture loading, c;. For molecules that ad-
sorb strongly at the pore walls, the Dj s tends to increase with c;,
reach a maximum and then decrease to near-zero values as pore
saturation is attained. The assumption of loading-independent
bj s is not a good one for such molecules, except perhaps for low
loadings. Further work is required to provide a priori estimations
of Bj s as a function of the pore loadings. For this purpose, it will
be necessary to quantify the viscous flow and surface diffusion
contributions in more detail.

(2) For rough surface walls, as is typical of silica nanopores, the
b; 5(0) is lower than the Knudsen diffusivity value Dj g, calcu-
lated using Eq. (17). The stronger the adsorption characteristics,
the lower is the value of Bj s(0)/Dj g, For any given molecule,
our MD simulation results show that Dj s(0) tends to approach
the classical Knudsen value Dj g, with increasing pore diame-
ter and/or increasing temperature; these results complement
the work of Albo et al. (2006) who investigated pore sizes
in the 10-150nm range. For engineering purposes the ratio
bj s(0)/Di,kn can be estimated using the trends in Figs. 5 and 6.
At any given pore loading, ci, the ;s can be estimated from
D; s = D;(0) + BocikpT/n;, with the added cautionary note that
for more reliable estimation of the viscous contribution we need
to account for radial distribution of ¢; within the pore following
the work of Bhatia and Nicholson (2006).

(3) The molecule-molecule interaction parameter, D1, defined in
Egs. (3) and (4), can be identified with the M-S diffusivity in the
binary fluid mixture at the same loading as within the pore. For
practical purposes P15 can be estimated from pure component
transport properties (Krishna and van Baten, 2005).

Notation

By permeability of pore, m?

Cj concentration of species i, molecule m—3

Ct total concentration in mixture, molecule m—3

dp pore diameter, m

dp,eff effective pore diameter defined by Eq. (18), m

Drickis Fick diffusivity for unary diffusion inside pore, m2s~!

Dj kn Knudsen diffusivity of species i, m%s~1

bis Maxwell-Stefan diffusivity for species-pore wall
interaction, m2 s—!

bi s(0) zero-loading M-S diffusivity for species-pore wall
interaction, m2 s~1

Dj seif s self-diffusivity of species i within pore, m2s—1

bij self-diffusivity of species i in fluid phase, m2 s~1

b1y Maxwell-Stefan diffusivity for species-species
interaction, m2 s—!

fi fugacity of species i, Pa

kg Boltzmann constant, 1.38x10~23 | molecule~1 K1

Li Onsager coefficients for pure component i,
moleculenm—3 m2s~1

L Onsager coefficients for mixture diffusion,
molecule nm—3 m2s~!

M; molar mass of species i, kg mol~!

N;j molecular flux of species i, moleculem—2 s~!

R gas constant, 8.314Jmol~1 K1

T absolute temperature, K

Xi mole fraction of species i based on loading within pore,
dimensionless

X spatial distance, m

Greek letters

I'i thermodynamic factor for unary diffusion,
dimensionless

&/kp Lennard-Jones energy parameter, K

ni viscosity of species i, Pas

Wi molar chemical potential, ] mol~!

4 Lennard-Jones size parameter, m

Subscripts

eff effective pore diameter

i referring to component i

Kn referring to Knudsen

0 referring to O atoms in silica

p referring to pore

S referring to surface, or wall of pore

t referring to total mixture
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1. Construction of the structure of silica nanopores

The silica structures have been prepared using a method based on Coasne et al.[1]. An initial S
cristobalite (unit cell of 8 Si and 16 O atoms, at glass density of 2200 kg/m3, with a box size of 7.132
A) structure was considered. The total number of S-cristobalite unit cells in the complete box was
determined by a minimum of 24 A in the z-direction, and a minimum of 24 A plus target pore diameter
in the remaining two directions. A cylindrical cavity was cut out of the initial geometry. Subsequently,
all Si atoms that was not bound to 4 O atoms were removed. Any non-bound O atoms were removed
after that. This causes singly bound O atoms to remain in the structure. Half of these need to be removed
to ensure electro-neutrality of the system. Pairs of singly-bound O-atoms were detected for which the O-
O distance is less than 2.7 A. These combinations where replaced by a single O atom to form a Siloxane
bridge. The single O atom was placed at the geometric mean location of the two removed O atoms. Half
of the remaining singly bound O atoms were removed at random, introducing one bond defect per O
atom. Of the remaining structure, all atoms were displaced on a random sphere with 0.7 A radius to
form the amorphous structure. The structure data files we used in our simulations are available on our
website [2]. The framework structure, and the landscapes for eight different pore diameters 1, 1.5, 2, 3,

4,5.8, 7.6 and 10 nm are presented in Figures 1, 2, 3,4, 5,6, 7, and 8

2. Monte Carlo simulation methodology
The adsorption isotherms were computed using Monte Carlo (MC) simulations in the grand canonical
(GC) ensemble. The interaction between the guest molecules and the silica surface is assumed to be
dominated by interactions between guest molecules and the O atoms in the silica. The united atom
force field for alkanes, developed by Dubbeldam et al. [3] for zeolites, is used to describe Lennard-
Jones interactions, both alkane-alkane, and alkane — O atom in the silica pore. For Lennard-Jones
parameters are tabulated in Dubbeldam et al. [3]; the potential for the n-alkanes includes bond

stretching, bending, and torsion. Simulations were also carried out for Ar, Kr, and H,. The
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intermolecular Lennard-Jones parameters for Ar are those listed in Skoulidas and Sholl[4]. For Kr the
parameters are from Talu and Myers [5]. The force field for H, corresponds to that given by Kumar et
al.[6] In implementing this force field, quantum effects for H, have been ignored because the work of
Kumar et al.[6] has shown that quantum effects are of negligible importance for temperatures above 200
K; all our simulations were performed at 300 K. The force field of Kumar et al.[6] is quite similar to
that used by Gallo et al. [7]. The Lennard-Jones parameters for molecule-molecule interactions of Ar,
Kr, Ne, and H; are summarized in Tables 1.

For simulations with linear and branched alkanes with two or more C atoms, the Configurational-Bias
Monte Carlo (CBMC) simulation technique [8, 9] was employed. The beads in the chain are connected
by harmonic bonding potentials. A harmonic cosine bending potential models the bond bending
between three neighboring beads, a Ryckaert-Bellemans potential controls the torsion angle. The beads
in a chain separated by more than three bonds interact with each other through a Lennard-Jones
potential. The Lennard-Jones potentials are shifted and cut at 12 A. The CBMC simulation details have
been given in detail elsewhere [3, 8-10].

All simulations were performed with 1x1x2 unit cells.

The CBMC isotherm simulations were performed using the BIGMAC code developed by T.J.H.
Vlugt[11] as basis. From the adsorption isotherms we can calculate the thermodynamic factors,

necessary for determination of the Fick diffusivities; this aspect is discussed below.

3. MD simulation methodology
Diffusion is simulated using Newton’s equations of motion until the system properties, on average, no
longer change in time. The Verlet algorithm is used for time integration. A time step of 1 fs was used in
all simulations. For each simulation, initializing CBMC moves are used to place the molecules in the
domain, minimizing the energy. Next, follows an equilibration stage. These are essentially the same as
the production cycles, only the statistics are not yet taken into account. This removes any initial large
disturbances in the system that do not affect statistics on molecular displacements. After a fixed number

of initialization and equilibrium steps, the MD simulation production cycles start. For every cycle, the
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statistics for determining the mean square displacements (MSDs) are updated. The MSDs are
determined for time intervals ranging from 2 fs to 1 ns. In order to do this, an order-N algorithm, as
detailed in Chapter 4 of Frenkel and Smit[8] is implemented. The Nosé-Hoover thermostat is applied to
all the diffusing particles.

The DLPOLY code[12] was used along with the force field implementation as described in the
previous section. DL POLY is a molecular dynamics simulation package written by W. Smith, T.R.
Forester and I.T. Todorov and has been obtained from CCLRCs Daresbury Laboratory via the
website.[12]

The MD simulations were carried out for a variety of molecular loadings within the pores. All
simulations were carried out on the LISA clusters of PCs equipped with Intel Xeon processors running
at 3.4 GHz on the Linux operating system[13]. Each MD simulation, for a specified loading, was run for

120 h, determined to be long enough to obtain reliable statistics for determination of the diffusivities.

4. MD simulations for binary mixtures inside cylindrical silica pores
The Maxwell-Stefan (M-S) equations for binary mixture diffusion inside a cylindrical silica pore can

be written as

¢ _di 5NN N (1)

k,T dx

~

In equation (1) the D; are the M-S diffusivities of species 1 and 2, respectively, portraying the
interaction between component i in the mixture with the surface (s), or wall, of the silica pore. The D,
and P,; are M-S diffusivities representing interaction between component 1 with component 2. The ¢;

are the loadings within the pore and x; represent the component mole fractions
x;=c;/(c,+e, +..c, ) i=ln (2)
The Onsager reciprocal relations require

P, =D, 3)

g Jt



For binary mixtures we can define a square 2x2 matrix [B]

c, du,
_ G T _oNB NG =12 4
k,T dx ; v )

The four elements of the matrix [B] are given explicitly by

1 X
By =—+ — (%)
Dl,s Blz
1 X
B, =L 4N ()
DZ,S DIZ
X
B, = S (7)
BIZ
X
B,y =~ ’ (8)
DIZ
Furthermore, we define a matrix [A] as the inverse of [B]
[A]=[B]" ©)
The inversion can be carried out explicitly to give the following expressions
x,D
D, (1+ L ]
A, = Bz 10
1+ X, s T Xy
BIZ
x,D
» (14‘ 2 1,s ]
DIZ
A, = (11)
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x,D
Bz’s 21,8
A, _x_2A12 = B (13)
X, X Bz,s +x,D, |
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The elements A;; can be obtained from MD simulations of molecular displacements using the formula
in the direction along the axis of the cylindrical pore

A, =5 lim ii<(2(r (t+ 80 -1, (z))J-("Z(rk,_i (480 -, (t))j> (14)

=1 k=1

In this expression n; and n; represent the number of molecules of species i and j respectively, and ry;(7)
is the position of molecule / of species i at any time 7. In this context we note a typographical error in eq
(14) as printed in earlier publications [14-16] wherein the denominator in the right member had #;
instead of n;. The simulation results presented in these publications are, however, correct as the proper

formula given in eq (14) was used. Compliance with the Onsager Reciprocal Relations demands that

nA;=nA s i, j=12,..n (15)

y =i

We define a matrix of thermodynamic correction factors [I']

_ dInf ¢ o
G du =3I, Ve, F'Ec_,a nfi_< 4, i, j=1,.n (16)
kT dx “3 " ¢; dInc, f, &,

where f; represents the fugacity of component i in the bulk fluid phase outside the pore . With this

definition equation (4) can be recast in the form

d (C) d (C) d (C)

=[BI(N); (N)=-[B]"[[1——~=-A]l]

—[I'] (17)



The matrix of Fick diffusivities for binary mixture diffusion is defined as
D, =181 [T] =[A][T] (18)

An alternative to the M-S formulation is the Onsager formulation, in which the flux equations are

expressed as

1 &, du,
N =——>» L. L. =12 19
' k,T ; Yodx (19)
with
L,=1L, (20)

Equation (19) is used, for example, by Bhatia and Nicholson [17].

For binary mixtures the relation between the Onsager matrix [L] and the M-S matrix [A] is
[Ln le}:{Anq A1202:| 21)
Ly L, Ayep Ayc,
Equation (21), in combination with eq (D14), allows the elements L;j to be obtained from MD

simulations. Furthermore, equation (21), used in combination with equations (10), (11), (12), and (13)

allows the calculation of the elements L;; from information on c¢;, D;s and Di5.

5. Unary diffusion inside cylindrical silica pore

For unary diffusion, equation (1) simplifies to yield

- du, N,
_ cl ﬂl — l (22)
kyT dx D,
The corresponding Onsager relation for unary diffusion is
du, N,
_ L oaw N, (23)
k,T dx L,

with the inter-relationship



i i i,s (24)

The pure component D; s can be obtained from MD simulations of molecular displacements using the

formula in the coordinate direction along the axis of the cylindrical pore

=1

111 (& ’
D, —EAI}E}Q”—ZA—t<(Z(I’z,,(f+Al‘)—r1,,(f))] > (25)

Let us apply equation (1) to a system consisting of two species that are identical with respect to

diffusional properties and, furthermore, that we have equimolar diffusion N, + N, =0

(26)

o du _(x1+x2)N1+ N1y
- 1
k,T dx b, b

= +
Bll Bls

l,s

The M-S diffusivity Dy, is the self-diffusivity in the fluid mixture. Equation (26) defines the self-

diffusivity within a pore

¢, du, N,

- 27
k,T dx D @7

l.se; f.s

and so we derive the expression

D b D 28)

i,self s i,s ii

Following Krishna and Paschek [18] the expressions for the self-diffusivities in a binary mixture

inside a pore can be derived as follows

1 1
IR T (29)
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In equations (29) and (30), the P; and P,, are the self-diffusivities of species 1 and 2 in the binary
fluid mixture, and these are not necessarily the same as the corresponding self-diffusivities in pure
fluids, encountered in equation (28).

The self-diffusivities Di;eir,s can be computed from MD simulations by analyzing the mean square

displacement of each species i for the coordinate direction along the pore axis using

| | L 5
D, s = 2_”1 Altlgl E <(z (rl,i (t+A1)—r,, (t)) J> (€29)

=1

By introducing the thermodynamic factor T’

¢, du, dqi, F_&ln.fi_cig‘i,

=T, ; 1= ——; unary system 32
KT dx ' dx dinc, f, &, i G2)
we can re-write equation (22) as
dc, dc,
N.=-D,., —=-Pp I —~- 33
i Fick,i,s dX s i dX ( )

The thermodynamic factor can be obtained by differentiating the pure component adsorption

isotherm. The Fick diffusivity for unary diffusion inside the pore is

=D, T, (34)

6. MD simulations of diffusivity and viscosity in pure fluids
The validity of equation (28) was also tested by performing independent simulations to determine the
self-diffusivities Dj; in the pure fluids at various loadings ¢;. The MD simulation methodology for selt-
diffusivities in pure fluids is the same as used in our earlier publications [16, 19, 20].
Figure 9 summarizes the pure component self-diffusivity data for pure fluids P;; of various molecules
considered in this publication.
Figures 10 and 11 compare the pure fluid Dj with the data for self-diffusivities in binary fluid

mixtures C1-Ar, C1-C2, C1-C3, C1-nC4, C1-nC6, and C1-H,, C2-nC4, C2-nC6, and nC4-nC6.



Furthermore, the M-S diffusivities D), in binary fluid mixtures were determined using the
methodology used in our earlier publications [16, 19, 20]. Figure 12 summarizes the data on the M-S
diffusivities P, in binary fluid mixtures.

In order to determine the viscous contribution to the diffusivity, the shear viscosity 7; was determined
for pure fluids using the procedure in the published literature [21, 22]. Figure 13 presents MD simulated
data on the shear viscosity of pure fluids, 7. The 7; data are used to estimate the viscous contribution to

the Pj in different pore structures.

7. Backing out D;; and D;, from mixture simulations
The MD simulations for binary mixtures yields the 2x2 matrix [A] using the formula (14). The first

step is to determine the determinant
|A|:A11A22 -ALA,, (35)

The elements of [B] are then obtained explicitly using

B, " (36)
B, :% (37)
B, = —% (38)
B, = —% (39)

Combining equation (7) with (38) we can obtain P, explicitly

M

D, =-
B,

(40)
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Combining equation (8) with (39) we can obtain P, from the equivalent relationship

F2

D), =—
B,

(41)

From equations (5), (36), and (40) we get

X
p,. =1/|B, - 2] (42)
1, /( 11 Dlz

From equations (6), (37), and (40) we get

X
b, . =1/|B —lj (43)
2, /[ 22 Blz

The D, backed out using equations (42) and (43) can be compared with the MD simulated pure

component values using equation (25). These two sets of results are compared at the same total loading
inside the pore.

The D, backed out using equation (41) are also compared with values for binary mixture diffusion in
fluid mixtures of the same composition and total loading; the latter were determined using the
methodology described in earlier publications [16, 19, 20].

Bhatia and Nicholson [17] present MD simulation results for the Onsager matrix [L]. From their data

the elements of [A] can first be calculated using
L,
A =—L (44)
C.
J
and the foregoing explicit relations used for backing out P;s and D;».

8. Simulation results
The CBMC, and MD simulation results for adsorption and diffusion in the eight different pores are

presented graphically in Figures 14 — 59. The comparison of MD simulated D; gi,s With those calculated
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from equation (28) are presented in the simulation results in the Figures 14 — 59; there is only a brief
discussion on this in the main text of the paper.

Also presented graphically are the comparisons of the MD simulated H; ¢ values for pure components
with the calculations using the formula of Kerkhof [23-25];

N B,c,k,T
n;

(45)

i,s i,Kn

wherein we estimate the first term on the right hand side of equation (45) using the classical Knudsen

formula

d,s |SRT

1

(46)

In all the Figures in the Supplementary material, the Knudsen calculations using equation (46) are
indicated by a large blue filled circle.

The viscous term (second member on the right hand side of equation (45)) is estimated taking

d2
B — peff 47
0=y (47)

and, furthermore, using the MD simulated values of 7; in Figure 13, after empirical fitting.

The effective pore diameter in equations (46), and (47) are calculated from

d,,=d,—092(c,+0,) (48)

p.eff

where d,, is the centre-to-centre distance between the O atoms on the surface of the pore, &; is the
Lennard-Jones size parameter for molecule-molecule interaction, and oo is the Lennard-Jones size

parameter for O atoms in the silica structure (see Table 1).
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9. Animations
For visual appreciation of the diffusion phenomena in cylindrical silica pores, animations were
created on the basis of the MD simulations; these can be viewed by downloading the movies from our

website[2].
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11. Notation

permeability of pore, m*

matrix of inverse Maxwell-Stefan coefficients, m~s

concentration of species i, molecule m™

total concentration in mixture, molecule m™

pore diameter, m

effective pore diameter defined by equation (48), m
self-diffusivity of species i within pore, m* s

self-diffusivity of species i in fluid phase, m* s

Fick diffusivity for unary diffusion inside pore, m* s
Maxwell-Stefan diffusivity for species-pore wall interaction, m* s™'
zero-loading M-S diffusivity for species-pore wall interaction, m* s
Maxwell-Stefan diffusivity for species-species interaction, m* s
Knudsen diffusivity of species i, m* s

fugacity of species i, Pa

Boltzmann constant, 1.38%10™ J molecule™ K!

Onsager coefficients for pure component i, molecule nm™ m” s™
Onsager coefficients for mixture diffusion, molecule nm™ m* s’
molar mass of species i, kg mol™

molecular flux of species i, molecules m™ s™

number of molecules of species i in simulation box, dimensionless
number of species in mixture, dimensionless

position vector for molecule / of species i at any time ¢, m

gas constant, 8.314 J mol™ K

mole fraction of species i based on loading within pore, dimensionless
time, s

absolute temperature, K
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Greek letters

[A]
&/l kB

[I']

Subscripts

Kn

spatial distance, m

matrix of Maxwell-Stefan diffusivities, m’s’

Lennard-Jones interaction energy parameter, K

matrix of thermodynamic factors, dimensionless
thermodynamic factor for unary diffusion, dimensionless
thermodynamic factors for mixtures, dimensionless
viscosity of species 7, Pa s

molar chemical potential, J molecule™

Lennard-Jones size parameter, m

referring to component i
referring to total mixture
referring to Knudsen

referring to O atoms in silica

Vector and Matrix Notation

O
[]

vector

square matrix
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Table 1. Lennard-Jones parameters for guest molecules CHs, Ar, and Kr. The interaction between
adsorbates was calculated using Lennard-Jones potentials. For adsorbate-adsorbate interactions,
Lorentz-Berthelot mixing rules were applied for o and &%g. Leonard-Jones interaction with the silica
was considered to be dominated by interactions with the O atoms. For longer n-alkanes the parameters
are as listed by Dubbeldam et al.[3]

(pseudo-) atom | Atom- Atom- Atom - O in | Atom - O in
atom atom silica silica
o/ A ehy /| K o/ A ek K

CH4 3.72 158.5 3.47 115

Ar 3.42 124.07 3.17 95.61

Kr 3.636 166.4 3.45 109.6

H, 2.782 38.7 2.713 79.914
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Figure 10. MD simulation results for self-diffusivities Pj in pure fluids compared with those in

equimolar binary C1-Ar, C1-C2, C1-C3, C1-nC4, C1-nC6, and C1-H; fluid mixtures.

Figure 11. MD simulation results for self-diffusivities P;; in pure fluids compared with those in

equimolar binary C2-nC4, C2-nC6, and nC4-nC6 mixtures.

Figure 12. MD simulation results for Maxwell-Stefan diffusivities Pj, in equimolar binary fluid

mixtures Cl-Ar, C1-C2, C1-C3, C1-nC4, C1-nC6, and C1-H,.

Figure 13. MD simulation results for shear viscosity 7; of pure fluids.

Figure 14 - 59. Simulation results for unary and binary diffusion in the variety of silica pores.
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Pure C1 and pure Ar, 2 nm pore, 500 K Figure 23
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Pure Kr, 2 nm pore, 300 K
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Pure C2, Pure C3, 2 nm pore, 300 K Figure 27
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Pure nC4, Pure nC6, 2 nm pore, 300 K
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Pure C1 and pure Ar, 3 nm pore, 300 K

Loading, ¢,/ molecules nm?

Loading, ¢;/ molecules nm*

10 =
1k
01L silica nanopore;
= 3 nm; C1; 300 K;
- GCMC simulations
001 IV Y T B Wi
104 105 108 107 108 10° 10"
Fugacity, £/ Pa
10 &
1e
0.1
E silica nanopore;
r 3 nm; Ar; 300 K;
. GCMC simulations
001 0 T T Y Y I W 1Y N W W 11
104 105 108 107 108 10° 10"

Fugacity, £/ Pa

102

10

1D, g5 11D, 1 10° m’s”

100

102

1AID, g5 11D, ) 1 10° m”s™

—@— in pore
—3— fluid B,

MD simulations;
| 3 nm silica pore;

C1; 300K

I I T T |

0 2 4 6 8 10

Loading, ¢/ molecules nm

—@— in pore
—— fluid B,

10" |-
[ MD simulations;
| 3 nm silica pore;
Ar; 300 K
100\\\\\\\\\\\\\\\\\\\\\\\\\
0 2 4 6 8 10

Loading, ¢/ molecules nm™

100

10

100

10

Diftusivity / 10" m~s *

Figure 30

B,c,k,T

silica nanopore;
3 nm; C1; 300 K;
MD simulations

—e— D
—8— Di,self,s
calculated

0 2 4 6 8

Loading, ¢, / molecules nm*

D, =D
N\

silica nanopore;
3 nm; Ar; 300 K;
MD simulations

: ® Di,s
— 8 Di,self,s
calculated

0 2 4 6 8

Loading, ¢, / molecules nm*



C1 —Ar mixture, 3 nm pore, 300 K Figure 31
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Pure C1 and pure H,, 3 nm pore, 300 K Figure 32
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C1 —H, mixture, 3 nm pore, 300 K Figure 33
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C1 —Ar mixture, 3 nm pore, 300 K
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Pure C1 and pure C2, 3 nm pore, 300 K Figure 35
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C1 - C2 mixture, 3 nm pore, 300 K Figure 36
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Pure C1 and pure C3, 3 nm pore, 300 K
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C1 - C3 mixture, 3 nm pore, 300 K Figure 38
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Pure C1 and pure nC4, 3 nm pore, 300 K
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C1 - nC4 mixture, 3 nm pore, 300 K Figure 40
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C1 — nC4 mixture, 3 nm pore, 300 K
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Pure C1 and pure nC6, 3 nm pore, 300 K Figure 42
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C1 - nC6 mixture, 3 nm pore, 300 K Figure 43
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C2 — nC4 mixture, 3 nm pore, 300 K
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C2 — nC6 mixture, 3 nm pore, 300 K
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nC4 — nC6 mixture, 3 nm pore, 300 K
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Pure C1 and pure Ar, 4 nm pore, 300 K

B 108
10 -
© E N"’ —@— in pore
E c € —— fluid B,
= ® 2 | ii
@ i o 107
5 Z .
ks 1 > I
2 g 9 I
o : o 10
S 0% silica nanopore; = - MD simulations;
9 B 4 nm; C1; 300 K; = i 4 nm silica pore;
B GCMC simulations L C1; 300 K
001 7 Y T O A 1Y Y I S W W11 1000 2‘ 4‘1- 6
104 108 108 107 108 109 100
Fugacity, f/ Pa Loading, ¢/ molecules nm
[
103
10 o —@— in pore
% ; E —— fluid B,
= C B 10% ¢
3 - = i
3 = ¢
o 1E Q z
o = = L
S - o
o r 3 10" |
o) i Q E
S 01 o r MD simulations;
8 E silica nanopore; - r 4 nm silica pore;
- B 4 nm; Ar; 300 K; - Ar; 300 K
L GCMC simulations 100 ! ! \
001 T A T I W Y I A A W 1Y I W 1 0 2 4 6

10* 105 108 107 108 10° 10" ) 3
Loading, ¢/ molecules nm

Fugacity, £/ Pa

1 o

JIHIUDIVILY /1 1V

pirusivity / 10 - m™s -~

100

10

100

10

Figure 49

+B0cikBT

silica nanopore;
4 nm; C1; 300 K;
MD simulations

d -~
i —e— b
i — 8 Di,self,s
N es ema= calculated

I I I I T T Y I |
0 1 2 3 4 5

Loading, ¢, / molecules nm*

B,ck,T

+
\ n;

silica nanopore;
4 nm; Ar; 300 K;
MD simulations

—e— D
—8— Di,self,s
calculated

0 1 2 3 4 5

Loading, ¢, / molecules nm*



C1 —Ar mixture, 4 nm pore, 300 K
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Pure C1 and pure Ar, 5.8 nm pore, 300 K Figure 52
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C1 —Ar mixture, 5.8 nm pore, 300 K Figure 53
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Pure C1 and pure Ar, 7.6 nm pore, 300 K Figure 55
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Pure C1 and pure Ar, 10 nm pore, 300 K
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