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� Fugacity gradients are the appro-
priate driving forces for diffusion.

� Compressibility factor influences
diffusion in dense gases.

� The thermodynamic corrections are
important near supercritical pres-
sures.

� Thermodynamic corrections are pre-
dominant near V/L phase transition
regions.

� Mixture diffusion is often strongly
coupled near phase transition regions.
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Many operations of interest to chemical engineers require proper modeling of diffusion in fluid
mixtures at operating pressures ranging to several megapascals. Examples include supercritical
extraction, fractionation of natural gas liquids, enhanced oil recovery and exploitation of shale gas
reserves. The Maxwell–Stefan (M–S) formulation, in combination with the Peng–Robinson equation of
state, affords a convenient framework for modeling mixture diffusion. The primary objective of this
article is to highlight a number of important and distinguishing diffusional characteristics of mixture
diffusion at elevated pressures. For dense binary gas mixtures, the pressure-dependence of the M–S
diffusivity Ðij requires additional correction for the compressibility factor, Z; this correction introduces
a composition dependence for the Ðij that is absent for ideal gas mixtures. Also significant are influ-
ences of the thermodynamic correction factors Γij, that are related to the derivatives of the fugacity
coefficients with respect to the compositions. For operations near critical pressures, or close to vapor/
liquid and solid/liquid phase transition regions, the thermodynamic factor for binary mixtures tend to
reduce to near-zero values; this reduction has a direct and proportional impact on the Fick diffusivities.
For ternary fluid mixtures, the Γij cause the individual diffusion fluxes to be strongly coupled. Such
coupling effects can be of significant importance even for hydrocarbon mixtures; this conclusion is not
intuitively obvious. Strongly coupled diffusion leads to curvilinear equilibration trajectories, and may
cause uphill diffusion of species.

& 2016 Elsevier Ltd. All rights reserved.
na).
1. Introduction

Many separation and reaction processes of interest to chemical
engineers are conducted at pressures in the range of 1–100 MPa.
The ammonia synthesis reactor operates at pressures ranging to a
few hundred bars; the catalyst effectiveness is strongly influenced
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Nomenclature

[B] matrix defined by Eq. (13) (m�2 s)
ci molar concentration of species i (mol m�3)
ct total molar concentration of mixture (mol m�3)
C empirical constant
Ð12 M–S diffusivity for binary pair 1–2 (m2 s�1)
D12 Fick diffusivity for binary mixture (m2 s�1)
Di,eff Effective diffusivity in mixture (m2 s�1)
⎡⎣ ⎤⎦D Fick diffusivity matrix (m2 s�1)
D Determinant of the Fick diffusivity matrix (m4 s�2)
Ei Component Murphree efficiency (dimensionless)
fi fugacity of species i (Pa)
Fo Fourier number (dimensionless)
Ji molar diffusion flux of species i with respect to u

(mol m�2 s�1)
Mi molar mass of species i (kg mol�1)
n number of species in the mixture (dimensionless)
Ni molar flux of species i in laboratory fixed reference

frame (mol m�2 s�1)
Nt molar flux of total mixture in laboratory fixed re-

ference frame (mol m�2 s�1)
p total system pressure (Pa)
Pc critical pressure (Pa)
⎡⎣ ⎤⎦Q matrix quantifying fractional unaccomplished change

(dimensionless)
r radial direction coordinate (m)
R gas constant (8.314 J mol�1 K�1)
t time (s)

T absolute temperature (K)
Tc critical temperature (K)
xi mole fraction of component i in fluid phase

(dimensionless)
yi mole fraction of component i in vapor phase

(dimensionless)
u molar average mixture velocity (m s�1)
z direction coordinate (m)
Z compressibility factor (dimensionless)

Greek letters

δ slab thickness (m)
δij Kronecker delta (dimensionless)
ϕi fugacity coefficient of component i (dimensionless)
Γij thermodynamic factors (dimensionless)

Γ⎡⎣ ⎤⎦ matrix of thermodynamic factors (dimensionless)
Λ⎡⎣ ⎤⎦ matrix defined by (Eqs. (13) and 15) (m2 s�1)

μi molar chemical potential (J mol�1)
μi

0 molar chemical potential at standard state (J mol�1)
s rate of entropy production (J m�3 s�1 K�1)

Subscripts

c referring to critical parameter
i referring to component i
n referring to component n
t referring to total mixture
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Fig. 1. Experimental data of Takahashi and Hongo (1982) for M–S diffusivities of
CO2(trace amounts)/C2H4 mixtures, and CO2/C2H4(trace amounts) mixtures at
323.2 K for a range of pressures. The dashed line represents the estimations using
the FSG Eq. (1). The continuous solid lines represent the estimations of the M–S
diffusivities using Eq. (22).
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by intra-particle diffusion (Dyson and Simon, 1968). Supercritical
carbon dioxide (CO2) is widely used as a solvent for extraction of
trace quantities of compounds, such as lipids, and caffeine from
substrates; such operations are conducted at pressures higher than
the critical pressure of CO2, which is 7.28 MPa. The design of su-
percritical extraction processes is crucially dependent on the
proper estimation of the diffusion of solutes into the supercritical
fluid phase. Savage et al. (1995) point out a number of advantages
that are associated with carrying out reactions under supercritical
conditions. Hydro-processing of petroleum fractions is carried out
at pressures in the range of 50–100 bar (Sie and Krishna, 1998).
Fractionation of natural gas liquids, enhanced oil recovery and
exploitation of shale gas reserves are other examples of high
pressure processing.

Under the prevailing pressures and temperature conditions, the
fluid phases may exist either in the gaseous, liquid, or in a su-
percritical state. The proper description of the diffusion char-
acteristics in the fluid mixtures is often of crucial importance for
equipment design and process development. At elevated pres-
sures, the diffusion characteristics often exhibit significant devia-
tions from those normally observed for either ideal gas mixtures
or liquid phase mixtures under ambient conditions. To set the
scene and define the objectives of this article, we examine five
experimental data sets to highlight departures from normal dif-
fusion behaviors.

Fig. 1 shows the experimental data of Takahashi and Hongo
(1982) for diffusivities of CO2(trace amounts)/C2H4 mixtures, and
CO2/C2H4(trace amounts) mixtures at 323.2 K for pressures ran-
ging to 180 bar. For an ideal gas mixture, the binary diffusivity is
inversely proportional to the pressure, and is independent of
composition. The dashed line in Fig. 1 shows the estimates of
diffusivity using empirical (FSG) method of Fuller et al. (1966),
based on the kinetic theory of gases, and widely used in chemical
engineering practice
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Reduced pressure, p / pc
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Fig. 3. Experimental data of Nishiumi and Kubota (2007) for diffusivity of benzene
(component 1) in supercritical CO2 (component 2) as a function of the reduced
pressure, =p p P/r c2 where Pc2¼7.28 MPa is the critical pressure of CO2.
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where C is an empirical constant, p is the pressure, =
+

M12
2

M M
1

1

1

2

is

the mean molar mass of the mixture, v1, and v2 are the diffusion
volume, whose values are obtained by summing the contributions
of the volumes of the constituent atoms in the molecular species
(the values are tabulated in Table 11.1 of Reid et al. (1986)). Ac-
cording to the FSG estimation procedure, the product of D FSG

12 and
the total pressure, pD FSG

12 is a function only of temperature and is
also independent of composition.

At p¼180 bar, the FSG estimate is about five times higher than
the experimentally determined values. Evidently, increasing
pressure reduces the diffusivity more than proportionately. A
further point to note is that for p4100 bar, the diffusivities of
CO2(trace amounts)/C2H4 mixtures is higher than that for
CO2/C2H4(trace amounts) mixtures. What are the reasons for sig-
nificant deviations from the diffusivity characteristics of ideal gas
mixtures? How do we quantify the D12 vs p characteristics?

Fig. 2 shows the experimental data of Tuan et al. (1999) for the
dependence of the Fick diffusivity of methyl oleate (MO) (com-
ponent 1) in supercritical CO2 (component 2), on the mole fraction
x1. At x1E0.01, the diffusivity reduces about an order of magni-
tude compared to the infinite dilution value. What causes this
sharp reduction in MO diffusivity with small increase in x1?

Fig. 3 shows the experimental data of Nishiumi and Kubota
(2007) for diffusivity of benzene (component 1; x1E0.017) in
supercritical CO2 (component 2) as a function of the reduced
pressure, =p p P/r c2 where Pc2¼7.28 MPa is the critical pressure of
CO2. We note that the diffusivity exhibits a deep well at prE1.
What are the physico-chemical principles that underlie the cur-
ious D12 vs pr characteristics?

Fig. 4 shows the experimental data of Dysthe and Hafskjold
(1995) for Fick diffusivities of CH4(1)/n-C10H22(2) mixtures at
T¼303.5 K and p¼40, 50 and 60 MPa. It is easy to check that the
mixture is in the liquid state at the prevailing conditions. Nor-
mally, we would expect the thermodynamics of mixtures of n-al-
kanes to conform to ideal solution behaviors. It is interesting to
note the deep well in diffusivity values at a methane mole fraction,
x1E0.9. The well-depth gets shallower with increasing p. How do
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Fig. 2. Experimental data of Tuan et al. (1999) for the dependence of the Fick
diffusivity of methyl oleate (MO) (component 1) in supercritical CO2 (component
2), on the mole fraction of MO for T¼313.15 K, p¼10.6 MPa, and p¼11.5 MPa. The
continuous solid lines are the estimations of the Fick diffusivity using Eq. (23).
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Fig. 4. Experimental data of Dysthe and Hafskjold (1995) for Fick diffusivities of
CH4(1)/n-C10H22(2) mixtures at T¼303.5 K and p¼40, 50 and 60 MPa. The con-
tinuous solid lines are the estimations of the Fick diffusivity using Eq. (26).
we rationalize the well-depth in the D12 vs x1 dependence? Is
there a link between the well-depths in Figs. 3 and 4?

For diffusion in ternary fluid mixtures, the diffusion fluxes, Ji,
are related to the composition gradients dx dz/i by the generalized
Fick's law, expressed in two-dimensional matrix notation as
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Finite, non-zero, values of the off-diagonal elements D12, and
D21 cause the diffusion fluxes to be coupled; the extent of coupling
is particularly strong in non-ideal liquid mixtures that are en-
countered in liquid–liquid extraction processes (Krishna, 2015b,
2016b). For hydrocarbon mixtures, made up of species of similar
sizes, we would normally expect the off-diagonal elements D12,
and D21 to be a small fraction of the magnitudes of the diagonal
elements D11, and D22. For the ternary liquid mixture of
nC8H18(1)/nC10H22(2)/1-methylnapthalene(3) at the composition
x1¼0.384, x2¼0.308, x3¼0.308 at 296.15 K, Leahy-Dios et al.
(2005) report experimental data on the Fick diffusivity matrix in
the molar average reference velocity frame:

= −
−

× − −⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥D 1.92 1.07

0.333 2.47
10 m s9 2 1. We note that the magnitude

of D12 is about half the magnitude of D11; this implies strong
coupling. The molar masses of the three species are 0.114, 0.142,
and 0.142 kg mol�1. What is the reason for the large magnitude of
the off-diagonal elements for this ternary system in which the
molar masses differ by only 20%?

The primary objective of this article is to address all of the
questions posed in the foregoing paragraphs, and provide a unified
framework for describing mixture diffusion that is applicable to
dense fluids in high pressure operations. Towards this end, we use
the Maxwell–Stefan (M–S) diffusion formulation in combination
with the Peng Robinson equation of state (PR EOS) to describe
phase equilibrium thermodynamics. While the combination of the
M–S and PR EOS concepts is well established in the literature for
binary mixture diffusion (Leahy-Dios and Firoozabadi, 2007; Tuan
et al., 1999), this article aims to highlight the strong influence of
phase equilibrium thermodynamics on coupling effects in multi-
component diffusion.

This Supplementary material accompanying the article pro-
vides details of (a) derivations of the Maxwell–Stefan equations,
(b) further background information and insights on diffusivities,
(d) details of the calculations of the compressibility factor and
thermodynamic factors using the Peng–Robinson EOS, and
(e) input data, and simulation results.
2. The Maxwell–Stefan diffusion formulation

For n-component fluid mixtures, the M–S equations represent a
balance between the force exerted per mole of species i with the
drag, or friction, experienced with each of the partner species in
the mixture (Krishna, 2015a, 2016a; Standart et al., 1979). We may
expect that the frictional drag to be proportional to differences in
the velocities of the diffusing species ( )−u ui j . For component 1,
for example, we write

μ
Ð Ð

Ð

− = ( − ) + ( − ) +

+ ( − )
( )

d
dz

RT
x u u

RT
x u u

RT
x u u

........

3n
n n
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12
2 1 2

13
3 1 3

1
1

The corresponding relations for components 2, 3,.n are written
down in an intuitively obvious manner. The left member of Eq. (3)
is the negative of the gradient of the chemical potential, with the
units N mol�1; it represents the driving force acting per mole of
species 1. The term ÐRT/ ij is interpreted as the drag coefficient for
the i–j pair. The multiplier xj in each of the right members re-
presents the mole fraction of component j; this factor is in-
troduced because we expect the friction to be dependent on the
number of molecules of j relative to that of component 1. The M–S
diffusivity Ðij has the units m2 s�1 and the physical significance of
an inverse drag coefficient.

The modeling and design of separation and reaction equipment
requires calculation of the diffusion fluxes, Ji; these are defined
with respect to an arbitrarily chosen reference velocity of the fluid
mixture, u:

≡ ( − ) = ( )J c u u i n; 1, 2, .. 4i i i

Most commonly, we choose u as the molar average velocity of
the mixture

= + + ⋯ ( )u x u x u x u 5n n1 1 2 2

Only n�1 of the fluxes Ji are independent because the diffusion
fluxes sum to zero

∑ =
( )=
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1

The molar fluxes Ni in the laboratory fixed reference frame are
related to the diffusion fluxes Ji by
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By multiplying both sides of Eq. (3) by xi after introducing the
expressions for fluxes, we obtain
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For describing segregation in petroleum reservoirs, the left
member of Eq. (8) needs to be augmented to include the con-
tributions of the pressure gradients (induced by gravity) and the
temperature gradient (Soret effect) (Galliéro and Montel, 2008;
Standart et al., 1979; Touzet et al., 2011). The calculations pre-
sented in Figs. S32–S35 of Supplementary material illustrate the
relative influences of the segregation due to the influences of
gravity and thermal diffusion.

Only (n�1) of the chemical potential gradients μd
dz

i in Eq. (8)
are independent, because of the Gibbs–Duhem relationship

μ μ μ
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The Onsager Reciprocal Relations imply that the M–S pair dif-
fusivities are symmetric

Ð Ð= = ( )i j n; , 1, 2... 10ij ji

For fluid mixtures, the chemical potential of component i, μi is
related to the component fugacity,

( ) ( )μ μ μ ϕ= + = + ( )RT f RT x pln ln 11i i i i i i
0 0

where ϕi is the activity coefficient and p is the total pressure.
It is helpful to express the left member of Eq. (8) in terms of the

mole fraction gradients by introducing an (n�1)� (n�1) matrix of
thermodynamic factors Γ⎡⎣ ⎤⎦:
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The elements of Γ⎡⎣ ⎤⎦ can be calculated by analytic differentia-
tion of an equation of state (EOS) such as the Peng–Robinson (PR)
EOS. For binary mixtures, explicit analytic expressions for

Γ = = + ϕ∂
∂

∂
∂

x x1f
x x1

ln
1

ln1

1

1

1
for PR EOS are provided by Tuan et al.

(1999).
We also define a (n�1)� (n�1) matrix of inverse diffusivities

⎡⎣ ⎤⎦B whose elements are given by
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Combining (Eqs. (8), (12), and 13), we can re-cast Eq. (8) into
(n�1) dimensional matrix notation
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For a binary mixture, n¼2, we get

Ð Γ= ( )D 1812 12

For a ternary mixture, n¼3, we derive
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For stable single phase fluid mixtures, we must have Γ ≥ 0
(Krishna, 2015b, 2016b). In view of Eq. (17), the condition of phase
stability translates to

Γ≥ ≥ ( )D 0; 0; phase stability 20

The condition for phase stability in a binary fluid mixture is

Γ≥ ≥ ( )D 0; 0; phase stability 2112

The occurrence of Γ < 0 implies vapor/liquid, liquid/liquid, or
liquid/solid phase transitions (Krishna, 2015b, 2016b).
3. Diffusivities in dense binary gas mixtures

In generalizing the FSG method to dense gas mixtures, it is
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Fig. 7. MD simulations for the Maxwell–Stefan diffusivity, Ð12, for binary CH4(1)/C2H6(2) mixtures at 333 K at (a) 5 MPa, (b) 10 MPa, (c) 20 MPa, (d) 30 MPa, and (e) 30 MPa
with varying compositions of methane x1. The simulation methodology is the same as that used in the work of Krishna and van Baten (2005). The continuous solid lines are
the estimations of the M–S diffusivities using Eq. (22). Also shown by the dashed lines are the FSG estimations, using Eq. (1). (f) Variation of the compressibility factor Z with
x1 at different total pressures.
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Fig. 8. (a) PR EOS calculations of the thermodynamic factor, Γ, for methyl oleate (MO)
(component 1) in supercritical CO2 (component 2), on the mole fraction of MO at
T¼313.15 K, p¼10.6 MPa, and p¼11.5MPa. (b) Calculations of the thermodynamic factor,
Γ, for naphthalene (component 1) in supercritical CO2 (component 2), as a function of the
mole fraction of naphthalene, at T¼308.2 K, p¼8.25MPa, and p¼10.4 MPa.
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Fig. 9. Calculations of the Fick diffusivity of benzene (component 1) in CO2

(component 2), as a function of the reduced pressure, p/pc and composition of
benzene in the mixture.
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important realize that Eq. (1) implies that at constant temperature,
the M–S diffusivity is inversely proportional to the molar density
of the gas phase. The total mixture molar density of the gas phase
is =ct

p
ZRT

where Z is the compressibility factor. Consequently, the
M–S diffusivity for dense gases can be estimated by correcting the
original FSG equation by introducing the compressibility factor Z:

Ð = ( )D Z 22ij ij
FSG

Due to the introduction of the compressibility factor, the M–S
diffusivity Ðij becomes dependent on mixture composition. The

molar density of the mixture is =ct
p

ZRT
, and therefore Eq. (22)

anticipates that Ðct ij is constant at constant temperature T.
Fig. 5 presents calculations of the compressibility factor, Z, using
the Peng–Robinson equation of state (PR EOS) for CO2(trace
amounts)/C2H4 mixtures, and CO2/C2H4 (trace amounts) mixtures.
The Z values are same at p4100 bar; this explains the differences in
the corresponding diffusivity values in Fig. 1. This implies, that the
departures from the FSG prescription, Eq. (1) (these calculation are
shown by the dashed lines in Fig. 1), is primarily to be attributed to
the departures of fluid densities from the ideal gas prescription. The
experimental data of Takahashi and Hongo (1982) conforms quite
well with the modified prescription of Eq. (22); the calculations are
shown by the continuous solid lines in Fig. 1.

In order to determine the limits of applicability Eq. (22), Fig. 6
presents comparisons of the estimates with MD simulation data
(Krishna and van Baten, 2009) for the M–S diffusivity, Ð12, for six
different equimolar binary mixtures at 300 K determined as a
function of the total molar concentration ct. The estimations of Ð12

using Eq. (22) are accurate up to a total molar concentration ct
E10 kmol m�3, corresponding to a system pressure of about
10 MPa. Put another way, the product Ðct 12 is constant for a given
binary mixture only up to a molar density of 10 kmol m�3. For
molar densities, ct410 kmol m�3, the MD simulated data are
significantly lower than the Ð12 values estimated from Eq. (22).

The limits of applicability of Eq. (22) are emphasized further in
the MD simulation data for the M–S diffusivity, Ð12, for binary
CH4(1)/C2H6(2) mixtures at 333 K at 5, 10, 20, 30, and 40 MPa with
varying compositions of methane x1; see Fig. 7. The continuous
solid lines are the estimations of the M–S diffusivities using Eq.
(22). Also shown by the dashed lines are the FSG estimations,
using Eq. (1). For system pressures below 10 MPa, Eq. (22) pro-
vides accurate estimates of Ð12 vs x1; the composition dependence
of Ð12 is entirely caused due to the variation of the compressibility
factor Z with x1. For system pressures exceeding 10 MPa, the MD
data show a much stronger composition dependence than antici-
pated by the Z correction introduced in Eq. (22). For the purposes
of this article, we refer to systems with ct410 kmol m�3 as “dense
fluid mixtures”, and use the term “dense gas mixtures” to indicate
systems for which Eq. (22) is of adequate accuracy.
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Fig. 10. (a) MD simulation data of Krishna and van Baten (2005) on Ð12 for the
binary mixtures of methane with ethane, propane, n-butane, n-hexane, and
n-decane at 333 K and 30 MPa as function of the mole fraction of methane. The
continuous solid lines are the calculations of Ð12 using the Vignes interpolation
formula (25). (b) Calculations of the Fick diffusivity using Eq. (26), where the
thermodynamic factor is calculated using the PR EOS.
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4. Diffusivities in supercritical CO2

The Fick diffusivity for dense gas mixtures can be estimated by
multiplying M–S diffusivity Ð12, determined from Eq. (22), with
the thermodynamic correction factor Γ:

Ð Γ Γ Γ
ϕ

= = ≡ +
∂
∂ ( )

⎛
⎝⎜

⎞
⎠⎟D D Z

x
; 1

ln
ln 23

FSG
12 12 12

1

1

Fig. 8a presents calculations of Γ for methyl oleate (MO)
(component 1) in supercritical CO2 (component 2) at pressures of
p¼10.6 MPa, and p¼11.5 MPa. The strong decrease in Γ with in-
creasing x1 provides a rationalization of the strong diffusivity in
the Fick diffusivity with small increase in the mole fraction of MO,
observed in Fig. 2. The continuous solid lines in Fig. 2 are estimates
using Eq. (23); there is reasonably good agreement between the
experimental data and the combined Maxwell–Stefan-PR EOS
model.

Higashi et al. (2002) report an analogous set of experimental
data for Fick diffusivity of naphthalene (component 1) in super-
critical CO2. Their data show significant reduction in the naph-
thalene diffusivity for increase in the naphthalene composition to
the level of x1E0.01. Their experimental observations can be ra-
tionalized by PR EOS calculations of the thermodynamic correction
factor; see Fig. 8b. The strong reduction in Γ with increasing x1
provides a rationalization of the experimental trends observed in
the data reported by Higashi et al. (2002).

For benzene/CO2 mixtures, Fig. 9 shows calculations of the Fick
diffusivity D12 using Eq. (23), as a function of the reduced pressure,
p/pc, for x1¼0.005, 0.007, 0.01, 0.013, and 0.017. The depth of the
well increases with increasing mole fraction of benzene in the
fluid phase mixture. The combined influence of the compressi-
bility factor Z and Γ provides an explanation of the experimentally
observed well in the experimental D12 vs pr data in Fig. 3.

The important message emerging from the data in Figs. 8 and 9
is that the corrections due the thermodynamic factor on the values
of the Fick diffusivity are significant even when the solute con-
centrations are at the level of x1E0.01.
5. Diffusion in binary fluid mixtures with ct410 kmol m�3

We turn our attention to diffusion in binary mixtures for which
the molar densities, ct410 kmol m�3; these are normally termed
as “liquid” mixtures. The M–S diffusivity of component 1, that is
present in infinitely dilute concentrations in component 2, Ð →x

12
12 ,

can be estimated using a number of procedures that are discussed
in Reid et al. (1986) and Taylor and Krishna (1993). The most well-
known estimation method is due to (Wilke and Chang, 1955)

( )
Ð

ψ
η

=
( )

→ C
M T

V 24
x

12
1 2

1/3

2 1
0.6

2

In Eq. (24), C is an empirical constant, M2 is the molar mass of
component 2, η2 is the (dynamic) viscosity of component 2, V1 is
the molar volume of component 1 at its normal boiling tempera-
ture, ψ is the association factor of the solvent 2. An analogous re-
lation holds for Ð →x

12
11 .

Leahy-Dios and Firoozabadi (2007) present an empirical model
for estimation of Ð →x

12
12 , valid for ct410 kmol m�3 that reduces to

the FSG correlation for dilute gases in the limit of low molar
densities.

The composition dependence of the M–S diffusivity is then
determined using the Vignes interpolation formula (Krishna and
van Baten, 2005, 2009)

( ) ( )Ð Ð Ð= ( )
→ →

25
x x x x

12 12
1

12
11 1 2 2

Cullinan (1966) has derived the Vignes interpolation formula
using the Eyring theory of rate processes as a fundamental basis.
As illustration of the accuracy of the Vignes interpolation formula,
Fig. 10a presents MD simulation data of Krishna and van Baten
(2005) on Ð12 for the binary mixtures of methane with ethane,
propane, n-butane, n-hexane, and n-decane as function of the
mole fraction of methane. The continuous solid lines are the cal-
culations of Ð12 using the Vignes interpolation formula (25). The
interpolation formula is of good accuracy for all five binary mix-
tures; Figs. S12–S16 provide validation of other binary alkane
mixtures.

The Fick diffusivity for binary liquid mixtures can be calculated



Fig. 11. (a) Calculations of the thermodynamic factor, Γ, for CH4(1)/n-C10H22(2) mix-
tures using PR EOS at p¼20, 25, 30, 35, 40, 50 and 60 MPa. (b) Spinodal compositions
for CH4(1)/n-C10H22(2) mixtures at T¼303.5 K. (c) Experimental data of Dysthe and
Hafskjold (1995) for Fick diffusivities of CH4(1)/n-C10H22(2) mixtures at T¼303.5 K with
varying total pressures; the mole fractions of methane x1¼0.903.
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by correcting the M–S diffusivity for the thermodynamic factor

( ) ( )Ð Ð
ϕ

= +
∂
∂ ( )

→ →
⎛
⎝⎜

⎞
⎠⎟D

x
1

ln
ln 26

x x x x
12 12

1
12

1 1

1

1 1 2 2

Fig. 10b presents calculations of the Fick diffusivity using Eq. (26),
where the thermodynamic factor is calculated using the PR EOS. At
methane mole fractions, x1, in the range 0.8–0.9, we note that the Fick
diffusivity of C1–nC6, and C1–nC10 mixtures shows a pronounced
minimum. For C1–nC10 mixtures, the minimum in the Fick diffusivity
appears to be in qualitative agreement with the experimental data
of Dysthe and Hafskjold (1995) shown in Fig. 4. We now attempt to
obtain a quantitative match with their experiments.

D'Agostino et al. (2012) have considered examples of binary
liquid mixture diffusion near the critical point in which the Fick
diffusivity exhibits a power-law dependence on Γ; this aspect
deserves further research scrutiny.

Fig. 11a presents calculations of the thermodynamic factor, Γ,
for CH4(1)/n-C10H22(2) mixtures at p¼20, 25, 30, 35, 40, 50 and
60 MPa. We note that for pressures below 40 MPa, there is a range
of compositions for which Γo0; this signifies phase instability.
The condition Γ¼0, defines the limits of phase stability and the
resulting spinodal compositions are plotted in Fig. 11b. The deep
well in the Γ values are caused by the proximity to V/L transitions.
The Fick diffusivity, estimated using Eq. (26), are shown by the
continuous solid lines in Fig. 4. All of the essential characteristics
of the Fick diffusivities are captured quantitatively; the clue lies in
the Γ corrections.

Fig. 11c shows the experimental data of Dysthe and Hafskjold
(1995) for Fick diffusivities of CH4(1)/n-C10H22(2) mixtures at
T¼303.5 K with varying total pressures at the critical composition
x1¼0.903. The experimental data show that the Fick diffusivity
progressively decreases in magnitude as the pressure is reduced,
and D12E0 at pE36 MPa. Eq. (26) provides a reasonable de-
scription of the experimentally observed pressure dependence.
6. Influence of thermodynamic coupling in ternary liquid
mixtures

Eq. (19) allows the estimation of the elements of the Fick dif-
fusivity matrix ⎡⎣ ⎤⎦D , obtained as a product of the matrix Λ⎡⎣ ⎤⎦ and

the matrix of thermodynamic factors Γ⎡⎣ ⎤⎦. Each of these matrices

Λ⎡⎣ ⎤⎦ and Γ⎡⎣ ⎤⎦ have non-zero off-diagonal elements, and therefore

the product of the two matrices, Λ Γ=⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦⎡⎣ ⎤⎦D is strongly coupled.
Differentiation of the PR EOS, allow the calculation of the

Γ δ= + =ϕ∂
∂

x i j; , 1, 2.ij ij i x
ln i

j

For estimation of the elements of Λ⎡⎣ ⎤⎦, Krishna and van Baten
(2005) have suggested the following extension of the Vignes in-
terpolation formula (25):

( )( ) ( )Ð Ð Ð Ð= ( )
→ → →

27ij ij
x x

ij
x x

ij
x x1 1 1i i j j

k k

For the estimation of Ð →
ij
x 1k , the i–j pair diffusivity when both i

and j are present in infinitely dilute concentration, Krishna and
van Baten (2005) suggest
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( ) ( )
( ) ( )

Ð Ð Ð

Ð Ð Ð
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For the special case of an equimolar mixture we obtain
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The simplified interpolation formula (29) was proposed by
Wesselingh and Bollen (1997).

Consider liquid phase diffusion in the ternary methane(1)/
propane(2)/n-hexane (3) mixture at 333 K and 8.5 MPa. In ternary
composition space, there is a composition region in which we have
V/L phase splitting. This region is indicated in Fig. 12. The com-
positions of the vapor and liquid phases in equilibrium with each
other are indicated by the tie-lines. The region to the left of the
two-phase region consists of the liquid phase region.

Thermodynamic coupling effects become increasingly sig-
nificant as the liquid phase compositions approach the phase
transition region. In order to demonstrate this, we performed
calculations for the determinant Γ as a function of the composi-
tion of n-hexane, x3, keeping the ratio x1/x2 at a constant value of
unity; see inset to Fig. 12. At the pure hexane vertex, x3¼1, Γ ¼1.
As x3 decreases in value and the two-phase region is approach, the
magnitude of Γ progressively decreases. The condition Γ ¼0
signifies the limit of phase stability; at this point we must have
Γ Γ Γ Γ=11 22 12 21, i.e. the product of the off-diagonal elements is equal
in magnitude to the product of the diagonal elements. This si-
tuation implies significant degree of thermodynamic coupling.
Strong coupling of the thermodynamic factor Γ⎡⎣ ⎤⎦ contributes to

strong coupling of the Fick matrix ⎡⎣ ⎤⎦D . At the composition, x1¼0.1,
x2¼0.2, x3¼0.7, that is far removed from the V/L phase transition

region, we calculate Γ = −
−

⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥

0.9397 0.0249
0.0333 0.9885

, and
Fig. 12. Ternary diagram delineating the two-phase V/L region for methane(1)/propane(
liquid phases in equilibrium with each other are indicated by the tie-lines. The region to
calculations for the determinant Γ as a function of the composition of n-hexane, x3, ke
= −
−

× − −⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥D 5.24 0.139

0.381 4.42
10 m s8 2 1. The contributions of the

off-diagonal elements is less than about 10%. At the composition
x1¼0.333532, x2¼0.521103, x3¼0.145365 that is at the V/L tran-

sition point, we calculate Γ = −⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥

0.2937 0.3546
0.2594 1.135

, and

= − × − −⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥D 2.53 3.84

1.47 9.29
10 m s8 2 1; in this case diffusional cou-

pling is extremely strong and ≈ −D D/ 1.512 11 . Furthermore, we
note that the sign of the off-diagonal elements of matrix ⎡⎣ ⎤⎦D are
the same as the corresponding ones for Γ⎡⎣ ⎤⎦ at both compositions.
Indeed, multiplying Γ⎡⎣ ⎤⎦ by a scalar diffusivity offers a simple and
fairly reliable procedure for the estimation of ⎡⎣ ⎤⎦D ; this has been
demonstrated in earlier work (Krishna, 2015b, 2016b).

We can now address the fifth question raised in the Introduc-
tion regarding the strong diffusional coupling of the Fick diffu-
sivity matrix for the ternary liquid phase mixture of
nC8H18(1)/nC10H22(2)/1-methylnapthalene(3) at 295.65 K. The
pressure and temperature conditions are far removed for V/L
transition points. We note that the melting points of nC8H18(1),
nC10H22(2), and 1MN(3) are 216 K, 243 K, and 251 K, respectively.
On cooling, crystals of 1MN will be first to come out of solution
and the 1MN can be separated from linear alkanes by fractional
crystallization. To demonstrate the possibility of phase separation,
Fig. 13 presents calculations for the determinant Γ for the ternary
mixture of nC8H18(1)/nC10H22(2)/1-methylnapthalene(3) as a
function of the composition of 1MN, x3, keeping the ratio x1/x2 at a
constant value of unity. The calculations are presented for three
different temperatures T¼295.65 K, 240 K, and 200 K. We note
that at the lowest temperature, T¼200 K, there is a range of
compositions for which Γ < 0, indicating phase instability and
crystal formation. We conclude that thermodynamic coupling is
strong in the nC8H18(1)/nC10H22(2)/1-methylnapthalene
2)/n-hexane (3) mixtures at 333 K and 8.5 MPa. The compositions of the vapor and
the left of the two-phase region consists of the liquid region. The inset shows the
eping the ratio x1/x2 at a constant value of unity.
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(3) because of the proximity to liquid/solid phase transition re-
gions. At a liquid mixture composition x1¼0.384, x2¼0.308,
x3¼0.308, we can evaluate the matrix of thermodynamic factors,

Γ = −
−

⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥

0.486 0.305
0.068 0.9

. Multiplying Γ⎡⎣ ⎤⎦ by a scalar

× − −3.4 10 m s9 2 1, corresponding to the self-diffusivity of nC10H22

as determined by MD simulations (Krishna and van Baten, 2005),

yields = −
−

× − −⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥D 1.65 1.03

0.23 3.06
10 m s9 2 1. This estimated value is

close to the experimentally determined value

= −
−

× − −⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥D 1.92 1.07

0.333 2.47
10 m s9 2 1 of Leahy-Dios et al. (2005).

We conclude that the large off-diagonal elements of ⎡⎣ ⎤⎦D are as-
cribable to strong thermodynamic coupling.
7. Influence of diffusional coupling effects on transient equi-
libration trajectories

We shall demonstrate the strong influence of diffusional cou-
pling on the transient diffusion equilibration in the ternary liquid
phase of the methane(1)/propane(2)/n-hexane (3) mixture at
333 K and 8.5 MPa. At time t¼0, a liquid slab of composition
x10¼0.05, x20¼0.55, x30¼0.4 is exposed to a vapor phase mixture
of composition y1¼0.659033, y2¼0.318393, y3¼0.022574. The
vapor composition is held constant for the duration of the tran-
sient equilibration process in the liquid of half-thickness δ
(¼1 mm). The liquid slab is considered to be of “infinite” length in
the vertical direction and the diffusion is limited to the transverse
(z) direction. The composition of the liquid phase in equilibrium
with the vapor phase is x1δ¼0.333532, x2δ¼0.521103, x3δ
¼0.145365.

Fig. 14a presents the calculation results of the transient equi-
libration for liquid phase diffusion in methane(1)/propane(2)/n-
hexane (3) mixtures at 333 K and 8.5 MPa; the simulation details
are provided in Supplementary material accompanying this pub-
lication. It is noteworthy that propane (component 2) experiences
Fig. 14. (a) Transient equilibration for liquid phase diffusion in methane(1)/propane(2)/
n-hexane (3) mixtures at 333 K and 8.5 MPa using Eq. (19) for the estimation of the
elements of the Fick diffusivity matrix [ ]D . (b) The equilibration trajectory plotted in

composition space. (c) Component Murphree efficiencies plotted as a function of the

Fourier number,
δ

D t4 1/2

2
, wherein the value of the characteristics diffusivity is chosen as

the square root of the determinant of the Fick matrix, = × −D 5.5 101/2 8 m2 s�1.

Fig. 13. Calculations for the determinant Γ for the ternary mixture of
nC8H18(1)/nC10H22(2)/1-methylnapthalene(3) as a function of the composition of
1MN, x3, keeping the ratio x1/x2 at a constant value of unity. The calculations are
presented for three different temperatures T¼295.65 K, 240 K, and 200 K.



time, t / min

24.5 25.0 25.5

co
nc

en
tra

tio
ns

, c
i /

 a
rb

itr
ar

y 
un

its

0.0

0.5

1.0

1.5

2.0

2.5

3.0 methane
n-hexane

C1(1)/nC6(2)/nC10(3) 
mixture; 
x1= 0.5; x2 = 0.4; x3 = 0.1;
T = 333 K; p = 8.5 MPa;

time, t / min

24.5 25.0 25.5

co
nc

en
tra

tio
ns

, c
i /

 a
rb

itr
ar

y 
un

its

0.0

0.5

1.0

1.5

2.0

2.5

3.0
methane
ethane

C1(1)/C2(2)/C3(3) 
mixture; 
x1= 0.3; x2 = 0.3; x3 = 0.4;
T = 333 K; p = 8.5 MPa;

time, t / min

24.5 25.0 25.5

co
nc

en
tra

tio
ns

, c
i /

 a
rb

itr
ar

y 
un

its

0.0

0.5

1.0

1.5

2.0

2.5

3.0
methane
propane C1(1)/C3(2)/nC6(3) 

mixture; 
x1= 0.4; x2 = 0.4; x3 = 0.2;
T = 333 K; p = 8.5 MPa;

time, t / min

24.5 25.0 25.5

co
nc

en
tra

tio
ns

, c
i /

 a
rb

itr
ar

y 
un

its

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0 methane
ethane

C1(1)/C2(2)/nC6(3) 
mixture; 
x1= 0.4; x2 = 0.3; x3 = 0.2;
T = 333 K; p = 8.5 MPa;

Fig. 15. Simulation results for Taylor dispersion for four different liquid phase mixtures at 333 K and 8.5 MPa. (a) Methane(1)/propane(2)/n-hexane (3) mixtures, (b) methane
(1)/ethane(2)/n-hexane (3), (c) methane(1)/ethane(2)/propane (3), and (d) methane(1)/n-hexane(2)/n-decane (3). Eq. (19) is used for the estimation of the elements of the
Fick diffusivity matrix [ ]D . At time t¼0, Dirac δ-pulses M1¼M2¼10�7 mol of components 1 and 2 are injected at the inlet.
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an undershoot during transient equilibration. The equilibration
trajectory follows a curvilinear path in composition space; see
Fig. 14b. Transient overshoots/undershoots, and curvilinear equi-
libration trajectories are characteristic signatures of uphill diffu-
sion (Krishna, 2015a, 2015b, 2016a, 2016b, 2016c).

The fractional approaches to equilibrium, also termed as the
Murphree efficiencies (Murphree, 1925a, 1925b; Robbins and Cu-
sack, 1999; Seader et al., 2011; Treybal, 1980), are calculated from
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In Fig. 14c the component Murphree efficiencies are plotted as a

function of the Fourier number defined as,
δ

D t4 1/2

2
, wherein the

value of the characteristics diffusivity is chosen as the square root
of the determinant of the Fick matrix, At the averaged composi-
tion, we get = × −D 5.5 101/2 8 m2 s�1. We note that Murphree
efficiency of propane exceeds unity during most of the equilibra-
tion time span. An important reason for this is that the driving
force for propane (x20�x2δ)¼(0.55�0.521103)¼0.029 is sig-
nificantly lower than the driving forces of the partner species.
Consequently, the transfer of propane is strongly influenced by the
driving force of methane.
8. Taylor dispersion of ternary hydrocarbon liquid mixtures

A different demonstration of coupling effects in ternary hy-
drocarbon liquid mixtures is by consideration of Taylor dispersion
in a tube (Price, 1988; Rutten, 1992); the modeling details are
provided in Supplementary material. Fig. 15a shows the simulation
results for Taylor dispersion for liquid phase methane(1)/propane
(2)/n-hexane (3) mixtures at 333 K and 8.5 MPa, using Eq. (19) for
the estimation of the elements of the Fick diffusivity matrix ⎡⎣ ⎤⎦D .
The liquid mixture flowing in the tube has the (cross-sectional
averaged) composition x1¼0.4, x2¼0.4, x3¼0.2. At time t¼0, Dirac
δ-pulse containing M1¼M2¼10�7 excess amounts (arbitrary
units) of components 1 and 2 are injected at the inlet. The excess
concentration of methane, and propane at the exit of the tube are
shown as a function of time elapsed. Due to diffusional coupling,
the transient methane concentration displays double-hump, non-
Gaussian characteristics. Propane, on the other hand, experiences
transient undershoots.

Analogous non-Gaussian peaks are obtained for Taylor disper-
sion in methane(1)/ethane(2)/n-hexane (3), methane(1)/ethane
(2)/propane (3), and methane(1)/n-hexane(2)/n-decane (3) mix-
tures; Fig. 15b–d.

The Taylor dispersion analysis based on a linearized set of
Maxwell–Stefan equations are commonly used for determination
of the Fick diffusivity matrix in multicomponent mixtures (Price,
1988; Rutten, 1992). The Taylor dispersion analysis is also of re-
levance in the recovery of hydrocarbons from shale gas reserves an
in enhanced oil recovery.



Fig. 16. (a) Calculation of the compressibility factor, Z, and the determinant Γ in
the gaseous mixture N2/H2/NH3 at a temperature of 500 K and total pressure of
25 MPa; the ratio of the compositions x2/x1¼3. (b) Calculation of the effective
diffusivities in the gaseous mixture N2/H2/NH3 at a temperature of 500 K and total
pressure of 25 MPa. The M–S pair diffusivities are calculated using Eq. (22).
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9. Diffusion with heterogeneous chemical reaction

For mixture diffusion with a heterogeneous reaction

ν ν ν ν+ + + = ( )A A A A...... 0 31n n1 1 2 2 3 3

the ratios of the fluxes Ni, in the laboratory fixed reference velocity
frame, are determined by the reaction stoichiometry and so

ν ν ν ν
= = = =

( )
N N N N

....
32

n

n

1

1

2

2

3

3

For ammonia synthesis reaction + →N 3H 2NH2 2 3, for example,
we have the constraint = =

−
N N N
1 3 2
1 2 3 . In such cases, it is convenient

to re-write the Maxwell–Stefan diffusion formulation (8) in a dif-
ferent manner by defining effective diffusivities, Di,eff for each
component i as follows

μ
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Eq. (8) allows us to obtain an explicit expression for the ef-
fective diffusivity
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For dense gas mixtures, with cto10 kmol m�3, the M–S pair
diffusivities can be estimated from the FSG equation, and subse-
quently applying the Z-correction using Eq. (22).

The ammonia synthesis reactor operates at pressures ranging
to a few hundred bars, and fugacity coefficient corrections are
important (Dyson and Simon, 1968). To demonstrate this, Fig. 16a
shows calculations of the compressibility factor, Z, and the de-
terminant Γ in the gaseous mixture N2/H2/NH3 at a temperature
of 500 K and total pressure of 25 MPa. In these calculations, the
ratio of the compositions x2/x1¼3. Both Z, and Γ show significant
deviations from unity demonstrating the non-ideal gas behavior
and the importance of fugacity coefficient corrections. Fig. 16b
presents calculations of the effective diffusivities in the gaseous
mixture N2/H2/NH3 using Eq. (34). Interestingly, we note that the
effective diffusivity of N2 is practically the same as that of NH3.
10. Conclusions

The following major conclusions can be drawn from the in-
vestigations reported in this work.

(1) The Maxwell–Stefan (M–S) equations, in combination with the
Peng–Robinson equation of state, provide a convenient and
practical framework of describing mixture diffusion in dense
fluid mixtures.

(2) The Fick diffusivity for binary fluid mixtures, D12, is obtained
by multiplying the M–S diffusivity with the thermodynamic
factor Γ. For operation near critical pressures, or near phase
transition regions, Γ → 0, and correspondingly →D 012 .

(3) For diffusion of solutes in supercritical CO2, the corrections
due to Γ are significant even when the solute concentrations
are at the level of x1E0.01.

(4) For binary mixtures with molar densities cto10 kmol m�3,
the M–S diffusivity Ð12 can be estimated with good accuracy
by introducing the correction for the compressibility factor Z
in the Fuller–Schettler–Giddings procedure as in Eq. (22). This
correction introduces a composition dependence for the Ðij

that is absent for ideal gas mixtures.
(5) For binary mixtures with molar densities ct410 kmol m�3,

the M–S diffusivity Ð12 can be estimated using the Vignes in-
terpolation formula (25); the infinite dilution diffusivities can
be estimated using procedures such as the Wilke–Chang
correlation.

(6) For ternary fluid mixtures, the matrix of Fick diffusivities ⎡⎣ ⎤⎦D
is the product of Λ⎡⎣ ⎤⎦, calculable from the binary pair M–S
diffusivities, Ðij, and the matrix of thermodynamic factors Γ⎡⎣ ⎤⎦.
The off-diagonal elements of Γ⎡⎣ ⎤⎦ become of increasing im-
portance as the compositions approach those corresponding
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to V/L, or L/S phase transitions. This results in strong coupling
of the diffusion fluxes.

(7) Strongly coupled diffusion of ternary mixtures leads to curvi-
linear equilibration trajectories. For Taylor dispersion of tern-
ary hydrocarbon mixtures in tubes, coupling effects leads to
non-Gaussian peaks at the tube exit.
Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.ces.2016.07.025.
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1. Preamble 

This Supplementary material accompanying the article Describing Diffusion in Fluid Mixtures at 

Elevated Pressures by Combining the Maxwell-Stefan Formulation with an Equation of State provides 

details of (a) derivations of the Maxwell-Stefan equations, (b) some background information and 

insights on diffusivities, (d) details of the calculations of the compressibility factor and thermodynamic 

factors using the Peng-Robinson EOS, and (e) all input data, and simulation data results. 

All the calculations and simulations were performed using MathCad 15.1  

For ease of reading, this Supplementary material is written as a stand-alone document; as a 

consequence, there is some overlap of material with the main manuscript.  

2. The Maxwell-Stefan formulation for diffusion in n-component fluid 
mixtures  

The Maxwell-Stefan (M-S) formulation is widely used in chemical engineering practice to describe n-

component diffusion in bulk fluid mixtures. For n-component fluid mixtures, the M-S equations 

represent a balance between the force exerted per mol of species i with the drag, or friction, experienced 

with each of the partner species in the mixture. We may expect that the frictional drag to be proportional 

to differences in the velocities of the diffusing species  ji uu  . For component 1, for example, we 

write 

      nn
n

uux
Ð

RT
uux

Ð

RT
uux

Ð

RT

dz

d
 1

1
313

13
212

12

1 ........


 (1) 

The corresponding relations for components 2, 3, ..n are written down in an intuitively obvious 

manner. The left member of equation (1) is the negative of the gradient of the chemical potential, with 

the units N mol-1; it represents the driving force acting per mole of species 1. The term ijÐRT  is 

interpreted as the drag coefficient for the i-j pair. The multiplier xj in each of the right members 

represents the mole fraction of component j; this factor is introduced because we expect the friction to 

be dependent on the number of molecules of j relative to that of component 1. The M-S diffusivity ijÐ  
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has the units m2 s-1 and the physical significance of an inverse drag coefficient. The magnitudes of the 

M-S diffusivities ijÐ  do not depend on the choice of the mixture reference velocity because Equation 

(1) is set up in terms of velocity differences. 

The modelling and design of separation and reaction equipment requires calculation of the diffusion 

fluxes, iJ ; these are defined with respect to an arbitrarily chosen reference velocity of the fluid mixture, 

u : 

   niuucJ iii ,..2,1;   (2) 

Most commonly, we choose u  as the molar average velocity of the mixture 

nnuxuxuxu  2211   (3) 

Only n-1 of the fluxes iJ  are independent because the diffusion fluxes sum to zero 

 



n

i
iJ

1

0  (4) 

The molar fluxes iN  in the laboratory fixed reference frame are related to the diffusion fluxes iJ  by 

 



n

i
ittiiiii NNNxJucN

1

;  (5) 

Equation (1) may be re-written as 

 
 








n

j ij

jiji

ij

Ð

uux

dz

d

RT 1

1 
 (6) 

Multiplying both sides of equation (6) by xi we get 

 
     














n

j ijt

jjiiij
n

j ij

jjiiij
n

j ij

jijiii

ijijij

Ðc

ucxucx

Ð

uxxuxx

Ð

uuxx

dz

d

RT

x

111


 (7) 

Introducing the expressions for fluxes in equation (7), we obtain 
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 ni
Ðc

JxJx

Ðc

NxNx

dz

d

RT

x n

j

n

j ijt

jiij

ijt

jiijii

ij ij

,2,1;
1 1







  
 
 


 (8) 

where the second equality arises from application of equations (4) and (5).  

Only (n-1) of the chemical potential gradients 
dz

d i  are independent, because of the Gibbs-Duhem 

relationship 

02
2

1
1 

dz

d
x

dz

d
x

dz

d
x n

n


  (9) 

The second law of thermodynamics dictates that the rate of entropy production must be positive 

 
 

0
11 1

11




 




n

i
i

ni
i

n

i

i J
dz

d

T
J

dz

d

T

  (10) 

The Maxwell-Stefan diffusion formulation (8) is consistent with the Onsager formulation in which the 

(n-1) independent diffusion fluxes are postulated as linear functions of the (n-1) independent chemical 

potential gradients 

    






 


dz

d

RT
LcJ n

t

1
)(  (11) 

The units of the elements Lij are the same as those for Fick diffusivities, i.e. m2 s-1. The matrix of 

Onsager coefficients  L  is symmetric because of the Onsager Reciprocal Relations (ORR)2 

 jiij LL   (12) 

The Onsager Reciprocal Relations imply that the M-S pair diffusivities are symmetric  

 njiÐÐ jiij ...2,1,;   (13) 

Insertion of the Maxwell-Stefan diffusion eq. (1) into (10) we obtain on re-arrangement3 

 0
2

1

1 1

2
 

 

n

i

n

j
ji

ij

ji
t uu

Ð

xx
Rc  (14) 
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The term 
dz

d

RT

x ii 
 on the left hand member of equation (8) is the generalization of the mole fraction 

gradients, used as driving forces for ideal gas mixtures. Indeed, for ideal gas ternary mixtures, equation 

(8) simplify to yield   

 

23

2332

13

13313

23

3223

12

12212

13

3113

12

21121 ;

Ðc

NxNx

Ðc

NxNx

dz

dx

Ðc

NxNx

Ðc

NxNx

dz

dx

Ðc

NxNx

Ðc

NxNx

dz

dx

tt

tt

tt



















 (15) 

For mixtures of ideal gases for which the Ðij are independent of composition the condition (14) can 

only be satisfied if 

 mixtures) gas (ideal;0ijÐ  (16) 

Equation (16) was first derived by Hirschfelder, Curtiss and Bird.4  For non-ideal lfluid mixtures the 

Ðij are composition dependent in general and a result analogous to eq. (16) cannot be derived.3 

For fluid mixtures containing uncharged neutral species, the chemical potential of component i, i  is 

related to the component fugacity, pxpf iiiii   : 

    pxRTfRT iiiiii  lnln 00   (17) 

where i  is the activity coefficient and p is the total pressure. 

It is helpful to express the left member of equation (8) in terms of the mole fraction gradients by 

introducing an (n-1) (n-1) matrix of thermodynamic factors   : 

 12,1,;
ln

;
ln 1

1

 




nji
x

x
dz

dx

dz

fd
x

dz

d

RT

x

j

i
iijij

j
n

j
ij

i
i

ii 



 (18) 
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The elements of    can be calculated by analytic differentiation of an Equation of State (EOS) such 

as the Peng-Robinson (PR) EOS. For binary mixtures, explicit analytic expressions for 

1

1
1

1

1
1

ln
1

ln

x
x

x

f
x







  for PR EOS are provided in the paper by Tuan et al.5 

We also define a (n-1) (n-1) matrix of inverse diffusivities  B  whose elements are given by 

 1...2,1,;
11

; )(
1











 






nji
ÐÐ

xB
Ð

x

Ð

x
B

inij
ijiij

n

k ik

k

in

i
ii

ik

 (19) 

Combining equations (8), (18), and (19), we can re-cast equation (8) into (n-1) dimensional matrix 

notation 

           
dz

xd
c

dz

xd
BcJ tt  1)(  (20) 

where we have additionally defined  

     1 B  (21) 

If we define a (n-1) (n-1) dimensional Fick diffusivity matrix  D  

    
dz

xd
DcJ t)(  (22) 

we obtain the inter-relationship 

          1BD  (23) 

For an ideal gas mixture, we have 

     mixture gas ideal];[1 DB    (24) 

Equation (23) underscores the direct influence of mixture thermodynamics on the Fick diffusivites Dij. 

For a binary mixture, n = 2, equation (8) simplifies to yield 

 
 

12

211211

Ðc

JxJx

dz

d

RT

x

t





 (25) 
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Introducing the constraints 12 JJ  , and 12 1 xx  , equation () simplies to yield 

 
dz

dx
Dc

dz

dx
Ðc

dz

d

RT

x
ÐcJ ttt

1
12

1
12

11
121 


 (26) 

in which the Fick diffusivity for binary mixture is 

  1212 ÐD  (27) 

For a ternary mixture, n = 3, we derive 

 





























































2221

1211

13

3

12

2

13

1

2312
2

1312
1

23

3

12

1

23

2

211222112221

1211

11

11

1

Ð

x

Ð

x

Ð

x

ÐÐ
x

ÐÐ
x

Ð

x

Ð

x

Ð

x

BBBBDD

DD
 (28) 

Equation (28) simplifies to yield 

 

    
    
























































2221

1211

123132231

122132231223132

121323112123113

2221

1211

2221

1211

2221

1211 1

1

ÐxÐxÐx

ÐxÐxÐÐÐÐx

ÐÐÐxÐxÐxÐ

DD

DD
 (29) 

The determinant of   B  for a ternary mixture is 

 
123132231

231312

2313

3

2312

2

1312

1 ;
1

ÐxÐxÐx

ÐÐÐ

ÐÐ

x

ÐÐ

x

ÐÐ

x
B





  (30) 

We also have 

 
123132231

2313122/1

ÐxÐxÐx

ÐÐÐ


  (31) 

The quantity 2/1  can be interpreted as an “average” magnitude of M-S diffusivity in the ternary 

mixture.  

For stable single phase fluid mixtures, we must have 0 . In view of equation (23), the condition 

of phase stability translates to 

 stability phase;0;0 D  (32) 
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Equation (32) implies that all the eigenvalues of the Fick matrix [D] are positive. It is interesting to 

note that thermodynamic stability considerations do not require the diagonal elements Dii to be positive. 

If recourse is made to the kinetic theory of gases, it can be shown that the diagonal elements iiD  are 

individually positive for mixtures of ideal gases. The off-diagonal elements )( jiDij   can be either 

positive or negative, even for ideal gas mixtures.  Indeed, the sign of )( jiDij   also depends on the 

component numbering. 

The condition for phase stability in a binary fluid mixture is 

 stability phase;0;012 D  (33) 

The occurrence of 0  implies vapor/liquid or liquid/solid phase transitions. 

3. Other choices of reference velocities in the definition of the Fick 
diffusivity matrix 

The Fick diffusivity matrix  D  is defined in equation (22) in terms of molar diffusion fluxes, iJ , that 

are, in turn, defined with respect to the molar average reference velocity frame u . Other choice of 

fluxes and reference velocities are encountered in the chemical engineering literature; see Section 3.2.2 

of Taylor and Krishna.6 

For mass diffusion fluxes,   



n

i
i

mass
iii jniuuj

1

0;,..2,1;  defined with respect the mass 

average mixture velocity 



n

i
ii

mass uu
1

 , we write    
dz

d
Dj mass

t

)( . 

The mass fractions are related to the mole fractions xi   

 M
M

M

M

c

c
x

M

Mx

Mx

Mx

i

i
n

i i

i

i

i

t

i
i

ii
n

i
ii

ii

t

i
i







 


 11

;  (34) 

where Mi is the molar mass of species i, with the units kg mol-1, and  M  is the mean molar mass of the 

mixture is 
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






 n

i i

i

n

i
ii

M

MxM

1

1

1


 (35) 

The mixture mass density is related to the total molar concentration of the mixture 

 Mctt   (36) 

For molar diffusion fluxes,   



n

i

volume
ii

volume
ii

volume
i JVniuucJ

1

0;,..2,1;  defined with 

respect the volume average mixture velocity 



n

i
iii

volume uVcu
1

, we write    
dz

cd
DJ volumevolume )( . This 

is a common choice in the experimental determination of diffusivities.  

The formulae for transformation of the Fick diffusivity matrix from one reference frame to another are 

provided in Section 3.2.4 of Taylor and Krishna.6 

For n-component mixtures, the numerical values of the elements of  D ,  massD , and  volumeD  are 

different.  However, the determinants of the corresponding matrices are equal to one another.6 

 volumemass DDD   (37) 

For the special case of a binary mixture, 
  12

2211

21
112

2

2

1

1

21
1 ;

1

dx
MxMx

MM
dd

MM

MM
dx














 


, and  

the Fick diffusivity is the same for the three different choice of reference velocity frames6 

 

 

 

 
dz

dc
DuucJ

dz

dx
DcuucJ

dz

d
Duuj

volume
i

volume

t

t
mass

1
1211

1
12111

1
12111








 (38) 
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4. Generalization of the M-S equations to include pressure gradients and 
body forces 

The important persuasive advantage of the M-S diffusion formulation (8) is that it can be extended to 

include the contribution of pressure gradients, that is important in the context of gravitational 

segregation in petroleum reservoirs.7 The treatment below closely follows earlier works.6, 8, 9 

The chemical potential gradient term may be expanded to explicitly include the contribution of the 

pressure gradient 

 pViipTiT   ,  (39) 

Here iV  is the partial molar volume of species i. The molar volume of the mixture is 

t

m

k
kk c

VxV
1

1

 


 where ct is the total molar concentration of the mixture, containing n species. 

Let 
~

iF  represent the body force acting per kg of species i.  Expressed per volume of mixture the 

generalized driving force di for diffusion is defined by 

 
~

iiii
i

iit F
dz

dp
Vc

dz

d
cRTdc 

  (40) 

The molar concentration of the mixture is 

 
t

i
i

n

i
it c

c
xcc  



;
1

 (41) 

Under the action of external body forces, linear momentum will be conserved 

 


 
 dt

d
F

dz

dp n

i
ii

t

v

1

~1
 (42) 

where v is the mass average mixture velocity,  is the stress tensor and i is the mass fraction of species 

i.  

In diffusion processes of relevance to chemical engineering mechanical equilibrium is established far 

quicker than thermodynamic equilibrium and we may safely assume 
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 



n

i
ii

t

F
dz

dp

dt

d

1

~1
0 


v

 (43) 

It is convenient to incorporate the mechanical equilibrium constraint (43) by redefining the 

generalized driving force in eq. (40) as follows 

 







 



n

i
ii

t
iiiii

i
iit F

dz

dp
F

dz

dp
Vc

dz

d
cRTdc

1

~~ 1 



 (44) 

where we add a vanishing contribution6, 8, 9 to the driving force defined by eq. (40).  

On re-arrangement we obtain the following expression for the generalized driving force 

   







 



n

i
iii

t

i
iii

t

ii
i FF

RTcdz

dp
Vc

RTcdz

d

RT

x
d

1

~~1 
 (45) 

where we note that  iiVc  is the volume fraction of species i.   

If the body forces iF   represent the force acting per mole of species i, i.e. iiii FcF 
~

 , the 

corresponding expressions for the generalized driving force is 

   







 



n

k
kkiii

t
iii

t

ii
i FcFc

RTcdz

dp
Vc

RTcdz

d

RT

x
d

1

11 
 (46) 

For transport in electrolyte systems, for example, the body force iF  acting per mol of species i is  

 
dz

d
zF ii


 F  (47) 

where zi is the ionic charge of species i and F is the Faraday constant.  Except in regions close to 

electrode surfaces, where there will be charge separation (the double layer phenomena), the condition of 

electro-neutrality is met 

 0
1




n

i
ii zc  (48) 

and therefore 
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 0
dz

F
11












 



d
zcFc

n

k
kk

n

k
kk  (49) 

In view of equations (47) and (49), the expression for the generalized driving force simplifies to yield 

  
dz

d

RT

zx

dz

dp
Vc

RTcdz

d

RT

x
d ii

iii
t

ii
i




F1 
 (50) 

The generalization of the M-S diffusion formulation (8) with the inclusion of pressure gradients and 

electrostatic potential gradients is 

   ni
Ðc

JxJx

Ðc

NxNx

dz

d

RT

zx

dz

dp
Vc

RTcdz

d

RT

x n

j

n

j ijt

jiij

ijt

jiijii
iii

t

ii

ij ij

,2,1;
F1

1 1










  
 
 


 (51) 

For diffusion inside porous materials, the friction experienced by species i with the wall (w) needs to 

be accounted for by adding the term representing the drag with the pore walls   iwwi ÐuuRT   where 

Ðiw is the pore diffusivity.  

5. Diffusivities in dense binary gas mixtures 

The M-S pair diffusivities Ðij for gaseous mixtures at low pressures, below about 10 bar, can be 

estimated to a good level of accuracy using the Fuller-Schettler-Giddings (FSG)10 method.  

     
12

23/1
2

3/1
112

75.17

12 sm
1043.1 








vvMp

T
Ð  (52) 

where p is the pressure (expressed in bars), 

21

12 11
2

MM

M


  is the mean molecular weight of the 

mixture (expressed in g mol-1), 1v ,  and 2v  are the diffusion volumes (expressed in cm3 mol-1) whose 

values are obtained by summing the contributions of the volumes of the constituent atoms in the 

molecular species (the values are tabulated in Table 11.1 of Reid, Prausnitz, and Poling11). According to 

the FSG estimation procedure, the product of Ð12 and the total pressure, p, is a function only of 

temperature and is also independent of composition.  
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In generalizing the FSG method to dense gas mixtures, it is important realize that equation (52) 

implies that, at constant temperature, the M-S diffusivity is inversely proportional to the molar density 

of the gas phase. For dense gases, the total mixture molar density of the gas phase is 
ZRT

p
ct   where Z 

is the compressibility factor. Consequently, the M-S diffusivity for dense gases can be estimated by 

correcting the original FSG equation by introducing the compressibility factor Z: 

      Z
vvMp

T
Ð

23/1
2

3/1
112

75.17

12

1043.1








 (53) 

where p is the pressure (expressed in bars). Due to the introduction of the compressibility factor, the M-

S diffusivity 12Ð  becomes dependent on mixture composition. The molar density of the mixture is 

ZRT

p
ct  , and therefore Equation (53) anticipates that 12Ðct  is constant at constant temperature T. 

In order to demonstrate the composition dependence of the 12Ð , Figure 1 presents calculations of 

combined FSG and PR EOS models for thermodynamics and diffusion in CO2(1)/C2H4(2) mixtures at T 

= 323.2 K with varying compositions x1, and total pressure, p. Figure 1a shows that the compressibility 

factor, Z, reduces slightly with increasing mole fraction  x1 of  CO2(1). The thermodynamic correction 

factor, 











1

1

ln

ln
1

x


is practically equal to unity for the entire range of pressures and compositions; 

see Figure 1b. The calculations of 
1

1
1

1

1
1

ln
1

ln

x
x

x

f
x







  use the analytic expressions provided in 

the paper by Tuan et a;5 we have also confirmed the validity of these expressions by comparison with 

calculations using numerical derivatives, programmed in MathCad 15.1 The small composition 

dependence of compressibility factor, Z, results in a corresponding, small, composition dependence of 

the Maxwell-Stefan diffusivity, Ð12 on x1; see Figure 1c.  

The Fick diffusivity for dense gas mixtures can be estimated by multiplying the estimates of the Ð12 

using Equation (53) with the thermodynamic correction factor  : 



 

SM 15

 











1

1
1212 ln

ln
1;

x
ÐD


 (54) 

For CO2(1)/C2H4(2) mixtures, the thermodynamic correction factors are practically unity, and therefore 

the Fick diffusivity values are indistinguishable from the M-S diffusivity, Ð12; see Figure 1d.  

 Figure 2 presents calculations of combined FSG and PR EOS models for thermodynamics and 

diffusion in CO2(1)/C2H4(2) equimolar mixtures (x1=0.5) with varying reduced pressures pr and reduced 

temperatures Tr. In conformity with the results presented in Figure 1b, the thermodynamic correction 

factor, 











1

1

ln

ln
1

x


is practically equal to unity for the entire range of pressures and temperatures; 

see Figure 2b. The calculations of the M-S and Fick diffusivities as functions of pr and Tr are presented 

in Figure 2c, and Figure 2d; these values are indistinguishable from each other because the 

thermodynamic correction factors are virtually unity. 

The compressibility factor, Z, on the other hand, is strongly dependent on the reduced pressures pr and 

reduced temperatures Tr; see Figure 2a. Indeed, the dependence of Z on pr and Tr is the predominant 

cause of the strong dependence of the M-S and Fick diffusivities on pr and Tr. The compressibility factor 

Z is the appropriate “correction factor” for translating FSG estimations of diffusivities, valid for low-

density gases, to binary pair diffusivities in dense gaseous mixtures. 

A generalized chart for this “correction factor”, developed using empirical fits of experimental 

diffusivity data, is presented in Figure 2 of the paper Takahashi12; this generalized chart is also 

recommended for use in the influential book of Reid, Prausnitz, and Poling11 (see Figure 11.7 of  Reid 

book).  The reader will find it easy to verify that the dependence of Z on pr and Tr as presented in Figure 

2a is practically indistinguishable from the generalized chart in Figure 2 of the Takahashi12 paper.   

For gaseous mixtures at high pressures, the experimental data of Takahashi and Hongo13 for M-S 

diffusivities of CO2(trace amounts)/C2H4 mixtures, and CO2/C2H4(trace amounts) mixtures at 298.2 K, 

323.2 K, and 348.2 K demonstrate quite clearly, and dramatically, that the assumption p Ðij = constant, 

implicit in the FSG estimation with Equation (52), becomes increasingly poor as p increases; see 
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Figures 3a, 3b, and 3c. The departures from the FSG  Equation (52) (these calculation are shown by the 

dashed lines in Figures 3a,b,c), is primarily to be attributed to the departures of fluid densities from the 

ideal gas prescription. The experimental data of Takahashi and Hongo13 conforms quite well with the 

modified prescription of equation (53); the calculations are shown by the continuous solid lines in 

Figures 3a, 3b, and 3c. It is noteworthy that the experimental data for CO2(trace amounts)/C2H4 

mixtures, and CO2/C2H4(trace amounts) mixtures are not coincidental. To understand the departures 

from the FSG prescription, Figures 3d, 3e, and 3f present calculations of the compressibility factor, Z, 

using the Peng-Robinson Equation of State (PR EOS) at the three different temperatures. In these 

calculations, the mole fraction of the trace component is arbitrarily chosen as 0.005. The compressibility 

factors for CO2(trace amounts)/C2H4 mixtures, and CO2/C2H4 (trace amounts) mixtures are not the 

same, and this explains the differences in the corresponding diffusivity values. 

Figure 4 presents MD simulation data for the Maxwell-Stefan diffusivity, Ð12, culled from Krishna 

and van Baten14, for six different equimolar binary mixtures at 300 K determined as a function of the 

total molar concentration ct in the simulation box.  The six binary mixtures are (a) CH4(1)/C2H6(2), (b) 

CH4(1)/C3H8(2), (c) CH4(1)/N2(2), (d) CO2(1)/CH4(2), (e) CO2(1)/N2(2), and (d) CO2(1)/Ar(2).  For 

MD simulation data, the x-axis is the total molar concentration, ct, in the simulation box; note that this 

value is not calculated from the ideal gas law. The estimations of Ð12 using Equation (53) are accurate 

up to a total molar concentration ct  10 kmol m-3, corresponding to a system pressure of about 10 MPa. 

Put another way, the product 12Ðct  is constant for a given binary mixture only up to a molar density of 

10 kmol m-3. For molar densities, ct > 10 kmol m-3, the MD simulated data are significantly lower than 

the Ð12 values estimated from Equation (53). 

The limits of applicability of Equation (53) are emphasized further in the MD simulation data for the 

Maxwell-Stefan diffusivity, Ð12, for binary CH4(1)/C2H6(2) mixtures at 333 K at (a) 5 MPa, (b) 10 MPa, 

(c) 20 MPa, (d) 30 MPa, and (e) 40 MPa and with varying compositions of methane x1; see Figure 5. 

The continuous solid lines are the estimations of the M-S diffusivities using Equation (53). Also shown 

by the dashed lines are the FSG estimations, using equation (52). For system pressures below 10 MPa, 
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Equation (53) provides accurate estimates of Ð12 vs x1; the composition dependence of Ð12 is entirely 

caused due to the variation of the compressibility factor Z with x1. For system pressures exceeding 10 

MPa, the MD data show a much stronger composition dependence than anticipated by the Z correction 

introduced in Equation (53). For the purposes of this article, we refer to systems with ct > 10 kmol m-3 

as “dense fluid mixtures”, and use the term “dense gas mixtures” to indicate systems for which Equation 

(53) is of adequate accuracy.  

The proper modelling of the composition and pressure dependence of Ð12 for dense fluid mixtures are 

discussed in Section 5 below. 

6. Diffusion of solutes in supercritical CO2  

Supercritical carbon dioxide (CO2) is widely used as a solvent for extraction of trace quantities of 

compounds, such as lipids, and caffeine from substrates. The design of supercritical extraction processes 

is crucially dependent on the proper estimation of the diffusion of solutes into the supercritical gas 

phase. 

Figures 6a presents the experimental data of Tuan et al.5 for the dependence of the  Fick diffusivity of 

methyl oleate (MO) (component 1) in supercritical CO2 (component 2) on the mole fraction of MO for T 

= 313.15 K at pressures of  p = 10.6 MPa, and p = 11.5 MPa. The strong decrease in the Fick diffusivity 

with increasing mole fraction of MO, even to the level of x1  0.01, is noteworthy.  The composition 

dependence can be rationalized by PR EOS calculations of the compressibility factor Z, and the 

thermodynamic correction factor, 











1

1

ln

ln
1

x


;  see Figures 6b,c. The compressibility factor Z is 

virtually composition independent. However,   decreases sharply with increasing x1. The continuous 

solid line in Figure 6a,b represent calculations using Equation (54):   Z
x

ÐD 











1

1
012 ln

ln
1


 with input 

data for the infinite dilution M-S diffusivity value (at Z = 1) of 129
0 sm1025 Ð ; there is reasonably 

good agreement between the combined Maxwell-Stefan-PR EOS model and the experimental data.  
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Higashi et al.15 report experimental data for diffusivity of naphthalene (component 1) in supercritical 

(CO2). Their data show significant reduction in the naphthalene diffusivity for increase in the 

naphthalene composition to the level of x1  0.01. Their experimental observations can be rationalized 

by PR EOS calculations of the thermodynamic correction factor 











1

1

ln

ln
1

x


; see Figure 7. The 

decrease in the thermodynamic factor, , is much more prominent at p = 8.25 MPa that at  p = 10.4 

MPa. The thermodynamic factor provides a rationalization of the experimental trends observed in the 

data reported b Higashi et al.15 

The important message emerging from the data in Figures 6 and 7 is that the corrections due the 

thermodynamic factor on the values of the Fick diffusivity are significant even when the solute 

concentrations are at the level of x1  0.01. 

Figure 8a presents experimental data of Ago and Nishiumi16 for diffusivity of benzene in supercritical 

CO2 as a function of the reduced pressure, p/pc where pc = 7.28 MPa is the critical pressure of CO2.  The 

measurements were made in a Taylor dispersion tube with varying amounts of benzene injection into 

the tube, expressed inL. We note that with increased injection of benzene, the variation of the 

diffusivity with the total system pressure p is significantly affected. For injection of 5.7 L and 13.1 L 

of benzene, we note a sharp increase in the diffusivity at the reduced pressure, p/pc  1. In order to 

rationalize the experimental results we use PR EOS calculations of the compressibility factor Z, and the 

thermodynamic correction factor, 











1

1

ln

ln
1

x


; see Figures 8b, and 8c. These calculations have been 

performed at four different benzene compositions, x1 = 0.005, 0.007, 0.01, and 0.013 that correspond to 

the four different amounts of Benzene injected in the Taylor dispersion experiments. Particularly 

noteworthy is the deep well in  at the reduced pressure, p/pc  1. The depth of the well increases with 

increasing mole fraction of benzene in the fluid phase mixture. The calculations of the Fick diffusivity 

based on combining the FSG calculations with the PR EOS:  12

1

1
7

sm
ln

ln
1

108 

















x

Z
p

Dij


 where 
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p is the pressure (expressed in bars) are shown in Figure 8d for x1 = 0.005, 0.007, 0.01, and 0.013. These 

model calculations are able to rationalize the characteristics of the experimental diffusivities in Figure 

8a; the key factor appears to be deep well in the thermodynamic factor, . 

Figure 9a  presents an analogous set of experimental data of Nishiumi and Kubota17 for diffusivity of 

benzene in supercritical CO2 as a function of the reduced pressure, p/pc. The deep well in the 

experimental Fick diffusivity at the reduced pressure, p/pc  1 can be rationalized by model predictions 

(indicated by the continuous solid lines) based on combining the FSG calculations with the PR EOS: 

12

1

1
7

sm
ln

ln
1

108 

















x

Z
p

Dij


 for x1 = 0.005, 0.007, 0.01, 0.013, and 0.017; see Figure 9b. 

7. Diffusion in binary fluid mixtures with ct  > 10 kmol m-3 

We turn our attention to diffusion in binary mixtures for which the molar densities, ct > 10 kmol m-3; 

these are normally termed as “liquid” mixtures. The M-S diffusivity of component 1, that is present in 

infinitely dilute concentrations in component 2, 1
12

2xÐ , can be estimated using a number of procedures 

that are discussed in Reid, Prausnitz, and Poling,11 and Taylor and Krishna.6  The most well-known 

estimation method is due to Wilke and Chang:18 

 
 

6.0
12

31
21

12
2

V

TM
CÐ x




  (55) 

In equation (55), C is an empirical constant, M2 is the molar mass of component 2, 2 is the (dynamic) 

viscosity of component 2, V1 is the molar volume of component 1 at its normal boiling temperature, is 

the association factor of the solvent 2. An analogous relation holds for 1
12

1xÐ . 

The composition dependence of the M-S diffusivity is then determined using the Vignes interpolation 

formula14, 19 

    2211 1
12

1
1212

xxxx ÐÐÐ   (56) 
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Leahy-Dios and Firoozabadi20 present an empirical model for estimation of 1
12

2xÐ ,valid for ct > 10 

kmol m-3 that reduces to the FSG correlation for dilute gases in the limit of low molar densities.  

The Fick diffusivity for binary liquid mixtures can be calculated by correcting the M-S diffusivity for 

the thermodynamic factor 

      










 

1

11
12

1
1212 ln

ln
12211

x
ÐÐD

xxxx 
 (57) 

We now highlight some characteristics of diffusion in binary mixtures that have the propensity to 

undergo vapor/liquid phase transitions.   

As illustration, the PR EOS calculations for the compressibility factor, Z, and the thermodynamic 

correction factor, 











1

1

ln

ln
1

x


 are shown in Figure 10a, and 10b for CH4(1)/C3H8(2) mixtures at 

298.15 K and x1 = 0.7; the calculations are for varying reduced pressures pr and reduced temperatures 

Tr.  For stable single phase mixtures, we have the stability constraint in Equation (33). The occurrence 

of 0  implies vapor/liquid phase transitions.  From Figure 10b, we note that there is a range of values 

of pr and Tr for which 0 .  For reduced pressures pr > 2, i.e. p larger than about 100 bar, the mixtures 

are in the liquid phase over the entire range of compositions.   

Figure 11 presents calculations of the compressibility factor, Z, and the thermodynamic correction 

factor, 











1

1

ln

ln
1

x


 in CH4(1)/C3H8(2) mixtures at T = 298.15 K with varying compositions x1, and 

total pressure, p. There is a range of fluid mixture compositions for which we experience phase 

transitions, signified by 0 ; see Figure 11b.  For pressures p larger than about 100 bar, no phase 

transitions are experienced and the mixtures are in the liquid phase.   

The M-S diffusivities for binary mixtures in the liquid phase are composition dependent. For 

illustration purposes, Figures 12, 13,  14,  15, 16,  and 17a present MD simulation data of Krishna and 

van Baten19 for  binary mixtures containing linear alkanes at 333 K and 30 MPa. For the chosen 

pressure and temperature, the mixtures are in the liquid phase for the entire range of compositions; this 
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can be verified for the calculations of the thermodynamic correction factor, 











1

1

ln

ln
1

x


 in 

CH4(1)/C3H8(2) mixtures that is presented in Figure 10b, and Figure 11b.   

Figure 12 presents the MD simulation data of Krishna and van Baten19 on the Maxwell-Stefan 

diffusivity Ðij for methane(1)/ethane(2), methane(1)/n-hexane(3), and ethane(2)/n-hexane(3) binary 

mixtures. For the three binary mixtures methane(1)/ethane(2), methane(1)/n-hexane(3), and ethane(2)/n-

hexane(3), we can determine the M-S diffusivities (units: 10-8 m2 s-1)  at the limiting compositions as 

follows: 

methane(1)/ethane(2): 58.2;3.5 1
12

1
12

21   xx ÐÐ  

methane(1)/n-hexane(3): 05.1;3 1
13

1
13

31   xx ÐÐ  

ethane(2)/n-hexane(3): 84.0;09.1 1
23

1
23

32   xx ÐÐ  

In terms of the self-diffusivities in the binary mixtures, the limiting values of the M-S diffusivities are 

1
12

1
,1

1
12

1
,2

2211 ;   xx
self

xx
self ÐDÐD  (58) 

Also shown in Figure 12 are the calculations using Vignes interpolation formula (56) along with the 

infinite dilution M-S diffusivity values at either ends of the composition range. The interpolation 

formula is of good accuracy. 

Figure 13 presents the MD simulation data of Krishna and van Baten19 on Ðij for the binary 

methane(1)/ethane(2), methane(1)/propane(3), and ethane(2)/propane (3) mixtures. The continuous 

solid lines are the calculations of Ðij using the Vignes interpolation formula (56). The interpolation 

formula is of good accuracy. 

Figure 14 presents MD simulation data of Krishna and van Baten19 on Ðij for the binary 

methane(1)/propane(2), methane(1)/n-hexane(3), and propane(2)/n-hexane (3) mixtures. The continuous 

solid lines are the calculations of Ðij using the Vignes interpolation formula (56). The interpolation 

formula is of good accuracy. 
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Figure 15 presents MD simulation data of Krishna and van Baten19 on Ðij for the binary 

ethane(1)/propane(2), ethane(1)/n-butane(3), and propane(2)/n-butane (3) mixtures. The continuous 

solid lines are the calculations of Ðij using the Vignes interpolation formula (56). The interpolation 

formula is of good accuracy. 

Figure 16 presents MD simulation data of Krishna and van Baten19 on Ðij for the binary propane(1)/n-

butane(2), propane(1)/n-pentane(3), and n-butane(2)/n-pentane (3) mixtures. The continuous solid lines 

are the calculations of Ðij using the Vignes interpolation formula (56). The interpolation formula is of 

good accuracy. 

Figure 17a presents MD simulation data of Krishna and van Baten19 on Ðij for the binary mixtures of 

methane with ethane, propane, n-butane, n-hexane, and n-decane at at 333 K and 30 MPa as function of 

the mole fraction of methane. The continuous solid lines are the calculations of Ðij using the Vignes 

interpolation formula (56). The interpolation formula is of good accuracy for all five binary mixtures.  

Figure 17b presents calculations of the Fick diffusivity using Equation (57), where the 

thermodynamic factor is calculated using the PR EOS, using the binary interaction parameters in Table 

2. 

At methane mole fractions, x1, in the range 0.8 – 0.9, we note that the Fick diffusivity of C1-nC6, and 

C1-nC10 mixtures shows a pronounced minimum. 

In order to test the validity of the estimations using Equation (57) and the trends of the Fick 

diffusivity predicted in Figure 17b, we examine published experimental data. 

Firstly, let us consider thermodynamics and diffusion in CH4(1)/C3H8(2) mixtures at T = 311 K and 

206.8 bar.  Figure 18a  shows calculations of the thermodynamic factor, , using analytic differentiation 

of the PR EOS. With the MD simulation data as guidelines for the limiting M-S diffusivities for 

CH4(1)/C3H8(2) mixtures, we choose: 8.1;4.5 1
12

1
12

21   xx ÐÐ  (units of 10-8 m2 s-1). Figure 18b 

compares the experimental data of Sigmund, as reported in Figure 2c of Leahy-Dios and Firoozabadi,20 

for Fick diffusivities of CH4(1)/C3H8(2) mixtures at T = 311 K and p = 206.8 bar with the estimations 

using Equation (57). The agreement is reasonably good. 
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We now examine the characteristics of diffusivities in binary liquid phase CH4(1)/n-C10H22(2) 

mixtures in regions close to vapor/liquid phase transitions. Figures 19a, and 19b present experimental 

data of Dysthe and Hafskjold21 for Fick diffusivities of CH4(1)/n-C10H22(2) mixtures at T = 303.5 K and 

p = 40, 50 and 60 MPa. The experimental data show a deep well in the Fick diffusivities at  x1 0.9; the 

depth of the well is higher at lower pressures; these characteristics correlate with the composition 

dependence of the thermodynamic factor 











1

1

ln

ln
1

x


; see  Figure 19c. In order to rationalize the 

deep well at x1 0.9, we determined the compositions for which 0
ln

ln
1

1

1 











x


; the spinodal 

curve obtained from PR EOS is plotted in Figure 19d. 

The sharp well in the Fick diffusivity data at x1 0.9 is caused by the proximity to the spinodal 

compositions. 

Also shown in Figures 19a, and 19b are the estimations of the Fick diffusivities using Equation (57); 

for the purposes of the estimations we use the values 1291
12 sm10141  xÐ , and 1291

12 sm1032  xÐ  

that are estimated from the Dysthe and Hafskjold21 experimental data.  Equation (57) quantitatively 

captures the composition variation of the Fick diffusivities at various pressures.  

Figure 19e shows the experimental data of Dysthe and Hafskjold21 for Fick diffusivities of CH4(1)/n-

C10H22(2) mixtures at T = 303.5 K with varying total pressures at the critical composition x1= 0.903. 

The experimental data show that the Fick diffusivity progressively decreases in magnitude as the 

pressure is reduced, and D12  0 at p  36 MPa.  Equation (57) provides a reasonable description of the 

pressure dependence. 

8. Estimation of Fick diffusivity matrix in ternary liquid mixtures  

Equation (29) allows the estimation of the elements of the Fick diffusivity matrix  D , obtained as a 

product of the matrix    and the matrix of thermodynamic factors   . Each of these matrices     and 

   have non-zero off-diagonal elements, and therefore the product of the two matrices,     D  is  
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strongly coupled. Differentiation of the PR EOS, allow the calculation of the 

2,1,;
ln

 ji
x

x
j

i
iijij 


 .  

For the ternary mixture nC12H26(1)/nC16H34(2)/n-C6H14 (3) at the composition x1 = 0.35, x2 = 0.317,  

x3 = 0.333 at 298.15 K, Kett and Anderson22 report experimental data on the Fick diffusivity matrix: 

  129 sm10
031.1225.0

266.0969.0 







D . The estimations of the matrix of thermodynamic factors using the PR 

EOS, yields   






 


03.1137.0

026.07.0
, suggesting that off-diagonal elements of  D  are strongly 

influenced by thermodynamic coupling. 

For the ternary mixture of nC8H18(1)/nC10H22(2)/1-methylnapthalene(3) at a liquid mixture 

composition  with mass fractions 1 = 0.3333,  2 = 0.3333,   3 = 0.3333 at 295.65 K, Leahy-Dios et 

al.23 report experimental data on the Fick diffusivity matrix in the mass average reference velocity 

frame:   129 sm10
4.242.0

93.099.1 










massD ; the large magnitudes of the off-diagonal elements are 

particular noteworthy. The corresponding mole fractions of the three components  are x1 = 0.384, x 2 = 

0.308,  x 3 = 0.308. We use the molar average reference velocity frame consistently in this article, and 

therefore we need to transform the values  massD ; the transformation formula are provided in Section 

3.2.4 of Taylor and Krishna;6 see Figure 20. 

On transformation, we obtain the matrix of Fick diffusivities in the molar average reference velocity 

frame   129 sm10
47.2333.0

07.192.1 










D . 

The estimations of the matrix of thermodynamic factors at this composition using the PR EOS, yields 

  












9.0068.0

305.0486.0
, suggesting that off-diagonal elements of  D  emanate primarily because of 

the strong thermodynamic coupling.  
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The MD simulation data of Krishna and van Baten19 for self-diffusivities of nC8 and nC10 are close 

to one another 129 sm104.3   (see Table 1). Multiplication of   , with this scalar diffusivity yields 

  129 sm10
06.323.0

03.165.1 










D , that is close to the experimentally determined values. We conclude 

that thermodynamic coupling is the major source of diffusional coupling in mixtures of liquid 

hydrocarbons. 

To understand the reason for the strong thermodynamic coupling, we note that the melting points of  

nC8H18(1), nC10H22(2), and 1MN(3)  are 216 K, 243 K, and 251 K, respectively.  On cooling, crystals of 

1MN will be first to come out of solution and the 1MN can be separated from linear alkanes by 

fractional crystallization. To demonstrate the possibility of phase separation, Figure 21 presents 

calculations for the determinant   for the ternary mixture of nC8H18(1)/nC10H22(2)/1-

methylnapthalene(3) as a function of the composition of 1MN, x3, keeping the ratio x1/x2 at a constant 

value of unity. The calculations are presented for three different temperatures T = 295.65 K, 240 K, and 

200 K. We note that at the lowest temperature, T = 200 K, there is a range of compositions for which 

0 , indicating phase instability and crystal formation.  Thermodynamic coupling is strong in the 

nC8H18(1)/nC10H22(2)/1-methylnapthalene(3) because of the proximity to liquid/solid phase transition 

temperature. 

For estimation of the elements of   , Krishna and van Baten19 has suggested the following extension 

of the Vignes interpolation formula (56): 

      kk
jjii

xx
ij

xx
ij

xx
ijij ÐÐÐÐ 111   (59) 

For the estimation of 1kx
ijÐ , the i - j pair diffusivity when both i and j are present in infinitely dilute 

concentration, Krishna and van Baten19 suggest  
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For the special case of an equimolar mixture we obtain 
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The simplified interpolation formula (61) was proposed by Wesselingh and Bollen.24 

Krishna and van Baten19 and Krishna25 provide detailed validation of the interpolation formula (59) 

by comparison with MD simulations of a wide variety of ternary mixtures consisting of n-alkanes.  For 

illustration, in Figure 22 we present the MD data for 2/1  for three different ternary mixtures: 

methane(1)/ethane(2)/n-hexane(3) 

methane(1)/ethane(2)/propane(3) 

methane(1)/propane (2)/n-hexane(3) 

The open circles in Figure 22 represent calculations using Equations (31), (59), and (61).There is 

good agreement between the two sets. 

Consider liquid phase diffusion in the ternary methane(1)/propane(2)/n-hexane (3) mixture at 333 K 

and 8.5 MPa. In ternary composition space, there is a region in which we have V/L phase splitting.  This 

region is indicated in Figure 23. The compositions of the vapor and liquid phases in equilibrium with 

each other are indicated by the tie-lines. The region to the left of the two-phase region consists of the 

liquid phase region.  

Thermodynamic coupling effects become increasingly significant as the liquid phase compositions 

approach the phase transition region. In order to demonstrate this, we performed calculations for the 

determinant   as a function of the composition of n-hexane, x3, keeping the ratio x1/x2 at a constant 

value of unity; see inset to Figure 23.  At the pure hexane vertex, x3 = 1,   = 1. As x3 decreases in 



 

SM 27

value and the two-phase region is approach, the magnitude of   progressively decreases. The condition 

  = 0 signifies the limit of phase stability; at this point we must have 21122211  , i.e the product of 

the off-diagonal elements is equal in magnitude to the product of the diagonal elements. This situation 

implies a significant degree of thermodynamic coupling. A large degree of thermodynamic coupling has 

a significant influence of the diffusion equilibration trajectory when operating close to the two-phase 

region.  

9. Influence of diffusional coupling effects on transient equilibration 
trajectories 

We shall demonstrate the strong influence of the off-diagonal elements of the matrix of 

thermodynamic factors    on the transient diffusion equilibration in the ternary liquid phase of the 

methane(1)/propane(2)/n-hexane (3) mixture at 333 K and 8.5 MPa. At time t = 0, a liquid slab of 

composition x10 = 0.05, x20 = 0.55, x30 = 0.4 is exposed to a vapor phase mixture of composition y1 = 

0.659033, y2 = 0.318393, y3 = 0.022574; see schematic in Figure 24. The vapor composition is held 

constant for the duration of the transient equilibration process in the liquid of half-thickness (= 1 

mm). The liquid slab is considered to be of “infinite” length in the vertical direction and the diffusion is 

limited to the transverse (z) direction. 

The composition of the liquid phase in equilibrium with the vapor phase is x1 = 0.333532, x2 = 

0.521103, x3 = 0.145365. 

For a binary liquid mixture, the fractional unaccomplished change is given by26  

  
 

 



 



 




0
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220 4
12exp
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8
;)(

m
zz

Dt
m

m
QxxQxtx




  (62) 

The )(tx  is the spatial-averaged composition in the slab at time t. 

This expression can be generalized for ternary liquid mixtures by using two-dimensional matrix 

notation by replacing the binary mixture diffusivity D by the Fick matrix  D ; the justification for this 

procedure is provided in earlier works.6, 27, 28  
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The expression for fractional unaccomplished change for ternary liquid mixtures is written using two-

dimensional matrix notation as 

       
 

   

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The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,6 is required for explicit 

calculation of  Q . For the case of distinct eigenvalues, 1  and 2  of the 2-dimensional square matrix 

 D , the Sylvester theorem yields 

         
 
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
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







IDfIDf

Q  (64) 

In equation (64),  I  is the identity matrix with elements ik . The functions  if   are obtained by 

substituting the eigenvalues 1  and 2  in place of the binary diffusivity in equation (62): 

  
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The calculations are  implemented in MathCad 15.1 In the MathCad implementation, the matrix  D  is 

evaluated at the average between the initial compositions x10 = 0.05, x20 = 0.55, x30 = 0.4 and the final 

equilibrated composition x1 = 0.333532, x2 = 0.521103, x3 = 0.145365. The matrix  D   is assumed to 

be constant during the equilibration process. 

Figure 25a presents the calculation results of the transient equilibration for liquid phase diffusion in 

methane(1)/propane(2)/n-hexane (3) mixtures at 333 K and 8.5 MPa. It is noteworthy that propane 

(component 2) experiences an undershoot during transient equilibration. The equilibration trajectory 

follows a curvilinear path in composition space; see Figure 25b. Transient overshoots/undershoots, and 

curvilinear equilibration trajectories are characteristic signatures of uphill diffusion.25, 28-31 

The fractional approaches to equilibrium, also termed as the Murphree efficiencies,32-36 are calculated 

from 
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 In Figure 25c the component Murphree efficiencies are plotted as a function of the Fourier number 

defined as, 
2

2/1
4


tD

, wherein the value of the characteristics diffusivity is chosen as the square root of 

the determinant of the Fick matrix, At the averaged composition, we get 82/1
105.5 D  m2 s-1. We 

note that Murphree efficiency of propane exceeds unity during most of the equilibration time span. An 

important reason for this is that the driving force for propane (x20 -  x2) = (0.55 - 0.521103)  = 0.029 is 

significantly lower than the driving forces of the partner species.  Consequently, the transfer of propane 

is strongly coupled with the transfer fluxes of methane. 

10. Taylor dispersion of ternary hydrocarbon liquid mixtures for 
laminar flow in a circular tube  

A different demonstration of coupling effects in ternary hydrocarbon liquid mixtures is by 

consideration of Taylor dispersion in a tube. For laminar flow in a circular tube of length L, and radius 

R the concentration development following the Dirac -pulse injection of a tracer of a binary mixture 

with Fick diffusivity D is 
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 (67) 

In equation (67), M is the excess amount of component (moles) injected, above the concentration in 

the flowing stream at the inlet; R is the tube radius (not the gas constant !). The details of the derivation 
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are provided, for example, by Price37 and Rutten;38 these authors also provide details of the extension of 

the model to multicomponent mixtures. 

Following, Rutten,38 our Taylor dispersion calculations are for the following set of conditions: 

Length of tube, L = 15 m; 

Cross-sectional averaged velocity in tube, u = 0.01 m s-1; 

Radius of tube, R = 0.265 mm 

Figure 26 shows the simulation results for Taylor dispersion for liquid phase 

methane(1)/propane(2)/n-hexane (3) mixtures at 333 K and 8.5 MPa, using Equation (29) for the 

estimation of the elements of the Fick diffusivity matrix  D . The liquid mixture flowing in the tube has 

the (cross-sectional averaged) composition x1 = 0.4, x2 = 0.4, x3 = 0.2. At time t = 0, Dirac -pulse 

containing M1 = M2 = 10-7 excess amounts (arbitrary units) of components 1 and 2 are injected at the 

inlet.  The excess concentration of methane, and propane at the exit of the tube are shown as a function 

of time elapsed. Due to diffusional coupling, the transient methane concentration displays double-hump 

characteristics.  Propane, on the other hand, experiences transient undershoots. 

Figure 27 shows the corresponding Taylor dispersion simulation results for (a) 

methane(1)/ethane(2)/n-hexane (3), (b) methane(1)/ethane(2)/propane(3), (c)  propane(1)/n-butane(2)/n-

pentane, and (d) methane(1)/n-hexane(2)/n-decane (3) mixtures at 333 K and 8.5 MPa, using Equation 

(29) for the estimation of the elements of the Fick diffusivity matrix  D . Except for propane(1)/n-

butane(2)/n-pentane(3) mixtures that have chain lengths close to one another, the diffusional coupling 

effects have a significant influence on the dispersion characteristics. 

11. Diffusion with heterogeneous chemical reaction 

For mixture diffusion with a heterogeneous reaction 

 0A......AAA 332211  nn  (68) 

the ratios of the fluxes Ni, in the laboratory fixed reference velocity frame, are determined by the 

reaction stoichiometry and so 
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1  (69) 

For ammonia synthesis reaction 322 NH2H3N  , for example, we have the constraint 

231
321




NNN
. In such cases, it is convenient to re-write the Maxwell-Stefan diffusion formulation (8) 

in a different manner by defining effective diffusivities, Di,eff for each component i as follows 

 ni
dz

d

RT

x
DcN ii

effiti ,2,1;, 








 (70) 

 Equation (8) allows us to obtain an explicit expression for the effective diffusivity 
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For dense gas mixtures, with ct < 10 kmol m-3, the M-S pair diffusivities can be estimated from the 

FSG equation, and subsequently applying the Z-correction using Equation (53).  

The ammonia synthesis reactor operates at pressures ranging to a few hundred bars, and fugacity 

coefficient corrections are important.39 To demonstrate this, Figure 28a shows the calculation of the 

compressibility factor, Z, and the determinant   in the gaseous mixture N2/H2/NH3 at a temperature of 

500 K and total pressure  of 25 MPa. In these calculations, the ratio of the compositions x2/x1 = 3. Both 

Z, and   show significant deviations from unity demonstrating the non-ideal gas behaviour and the 

importance of fugacity coefficient corrections. Figure 28b presents calculations of the effective 

diffusivities in the gaseous mixture N2/H2/NH3 using Equation (71); in these calculations, the M-S pair 

diffusivities are calculated using Equation (53). Interestingly, we note that the effective diffusivity of N2 

is practically the same as that of NH3. 

It must be remarked here that the  Wilke formula40  

    



n

ikkieffi

ik

ÐxxD
1=k

//1,  (72) 
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is often used to calculate the effective diffusivity of component i in a multicomponent mixture, even 

though its general validity is restricted to the situation wherein the species i diffuses in a mixture of 

stagnant, non-transferring, species, i.e. when Nj (j i ) = 0.  For example, Dyson and Simon39 use 

equation (72) in effectiveness factor calculations for ammonia synthesis. A cautionary note against the 

use of equation (72) to describe diffusion in the ammonia synthesis process has been flagged.41 

We illustrate the effective diffusivity approach using Equation (71) by considering: chemical vapor 

deposition (CVD). Consider the specific example of the CVD process for deposition of tungsten, by 

surface reaction on a wafer 

 6HF+WH3WF (s)26   (73) 

The gas phase mixture consists of four species WF6, H2, HF, along with inert gas Ar. The molar masses 

of the four species are, respectively: 297.83, 2, 20, and 40 kg mol-1. For example, in a tungsten CVD 

reactor with the species WF6 (1), H2 (2), HF (3) and inert Ar (4), the flux ratios are 2/1 = 3; 3/1 = -6; 

4/1 = 0.  Calculations of the effective diffusivities according to eq. (70) are illustrated in Figure 29 for 

conditions in which the ratio of the compositions x2/x1 = 3, and the composition of Ar is held constant at 

x4 = 0.3. At the chosen temperature (673 K) and pressure conditions (100 Pa), use of the Peng-Robinson 

equation of state reveals that ideal gas behavior prevails despite the presence of the “heavy” WF6. The 

effective diffusivity of H2 is about an order of magnitude higher than that of WF6.  Also noteworthy is 

that the effective diffusivities are practically composition independent. The large differences in the 

effective diffusivities of WF6 (1), H2 (2), HF (3) have a significant influence on the composition profiles 

in the effective diffusion layer between the bulk gas phase and the surface of the wafer. We take the 

opportunity to note that the effective diffusivity calculations presented in earlier work 8 are erroneous. 

In order to demonstrate this, let us consider transient diffusion equilibration of two compartments 

containing of gaseous mixtures of two different compositions.  The left compartment, taken to be 

representative of the bulk gas mixture in a CVD reactor, has the initial composition x1,L = 0.2; x2,L= 0.4, 
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x3,L = 0.1, x4,L = 0.3. The right compartment has the initial compositions x1,R = 0.02, x2,R = 0.1, x3,R = 

0.6, x4,R = 0.28; these are representative of the gaseous compositions at the gas/wafer interface.   

The transient equilibration process is described by  

    LiRi
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RiLii xx
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In equation (74), the effective diffusivities are evaluated at the average composition x1,eq = 0.11, x2,eq = 

0.25, x3,eq = 0.35,  x4,eq = 0.29, and assumed  to be composition independent.  

Figure 30a show the composition trajectories followed during equilibration plotted as a function of the 

dimensionless distance coordinate  
tD

z

ref4
 where the reference diffusivity value 12 s m1 refD .  In 

ternary composition space, the equilibration trajectory follows a serpentine diffusion path; see Figure 

30b.  If each of the diffusivities of the transferring components were assumed to be identical, and equal 

to 12 s m1 refD , the equilibration path is linear, as indicated by the dashed line in Figure 30b.   

Implicit in the results present in Figure 30 is the fluxes of each component is “coupled” to the driving 

forces of the partner species in the mixtures; such coupling effects have an influence on the predictions 

of the deposition rates in CVD reactors.42 

12. Analysis of ultracenfrifugation 

Equation (45) is the appropriate starting point for the analysis of separations in an ultracentrifuge.  

The centrifugal force exerted per kg of component i in a multicomponent mixture is rFi
2

~

  where r 

is the distance from the axis of rotation, and   is the angular velocity: 

)secondper    srevolutionin    expressed  speed  rotational(2 . Equation (45) yields 
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Mechanical equilibrium is established quickly in relation to thermodynamic equilibrium in an 

ultracentrifuge.  At mechanical equilibrium we have 

 rF
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Substituting in equation (75) results in 
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At thermodynamic equilibrium, the driving forces vanish and therefore the composition distribution is 

described by 
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The ultracentrifuge induces a separation provided that the volume fraction iiVc   is different from the 

mass fraction i .  As illustration, consider the separation of the gaseous isotopes U235F6(1)/U238F6(2) at 

293.15 K as described in Example 2.3.2 of Taylor and Krishna;6 see Figure 31.The molar masses are 

M1=0.34915 kg mol-1; M2=0.35215 kg mol-1. The centrifuge rotates at 40000 rpm. The separation takes 

place within the annular space between  mm100  rr  and mm601  rr . The mole fraction 

distribution of component 1 within the annular space as a function of the radial distance r is 
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The composition profiles within the annular space are shown in Figure 31; the heavier isotope 

concentrates near the periphery. An uranium enrichment industrial facility will have a few million 

centrifuges to achieve the desired degree of separation.6 
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13. Segregation in hydrocarbon reservoirs; influence of gravity 

Equation (51) is the appropriate starting point for the analysis of gravitational segregation in 

hydrocarbon reservoirs.7 The analysis below essentially follows the treatment of separations in a 

centrifuge as described in our earlier works.6, 8  

For gravitational segregation, the pressure gradient is 

 g
dz

dp
t  (80) 

Setting the fluxes to zero in Equation (51), the steady-state mole fraction profiles are described by 
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Introducing the thermodynamic correction factors, we write the relations for the (n-1) independent 

mole fractions 
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 (82) 

in which we have used the equality, Mctt  . The partial molar volume iV  can be determined from 

the PR EOS, by analytic differentiation of the expression for the molar volume of the mixture, 

p

ZRT
VVV  21 . The explicit formulae are   









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22 1
x

Z
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RT

x

Z
xZ

p

RT
V . The total molar concentration of the mixture, 

ZRT

p
ct  . 

The mixture mass density is determined from Mctt  . 

The “driving force” for gravitational segregation is essentially the difference between the volume 

fraction and the mass fraction. To illustrate these differences, Figure 32a presents PR EOS calculations 

of the volume fractions and mass fractions as a function of the binary mixture C2H6/nC10H22 at a 

pressure p = 20 MPa and temperature T = 440 K. There is a large difference between the volume 
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fraction and the mass fraction of either component, and this leads to segregation. Figure 32b presents 

calculations of the partial molar volumes of ethane and n-decane, along with molar volume of mixture. 

Figure 32c show the variation of the compressibility factor, Z, and thermodynamic factor, , with mole 

fraction of ethane. Both Z-corrections and -corrections are of significance. 

For thermodynamically ideal mixtures, equation (82) reduces to yield 

   1,,2,1;  ni
RT

gx
MV

dz

dx i
iit

i   (83) 

Equation (83) can be solved analytically to yield the composition profiles 

   1,,2,1;exp)( 



  niz

RT

g
MVzx iiti   (84) 

For a binary mixture, including thermodynamic non-idealities, equation (82) simplifies to yield 

  
RT

gx
MV

dz

dx
t

1
11

1 1



   (85) 

As illustration, we consider gravitational segregation for the binary mixture C2H6/nC10H22 in a 

reservoir of 600 m depth at a pressure p = 20 MPa and temperature T = 440 K. The mixture composition 

at depth z = 300 m from the surface (z = 600 m) is x1 = 0.5, x2 = 0.5. The composition distribution along 

the reservoir depth is shown in Figure 33. The continuous solid lines are calculations using  correction. 

The dashed lines are calculations that ignore  corrections. The thermodynamic correction factors 

cannot be ignored. The profiles show a higher concentration of the lighter ethane at the top, whereas the 

heavier nC10H22 hydrocarbon concentrates at the well bottom. 

Figure 34 presents the solutions to  equation (82) for gravitational segregation for the ternary mixture 

CH4/nC4H10/nC12H26 in a reservoir of 600 m depth at a pressure p = 35 MPa and temperature T = 333.15 

K. The mixture composition at depth z = 300 m from the surface (z = 0) is x1 = 0.2, x2 = 0.4, x3 = 0.4. 

The binary interaction parameters in PR EOS, are k12 = 0.019, k13 = 0.008, and k23 = 0.0. Both the 

lightest component (methane), and the heaviest component (nC12) experience significant segregation. 
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The lighter CH4 concentrates at the top layers, and nC12 concentrates in the bottom layers. Our results 

are in agreement with the MD simulations of Touzet et al.43 

14. Segregation in hydrocarbon reservoirs; influence of both gravity 
and thermal diffusion 

The Soret effect, also called thermal diffusion, is the tendency of a mixture of two or more 

components to separate due to a temperature gradient. In 1879 Charles Soret discovered that a salt 

solution contained in a tube with the two ends at different temperatures did not remain uniform in 

composition; the salt was more concentrated near the cold end than near the hot end of the tube; for a 

review of the history and applications see Platten.44 In hydrocarbon reservoirs, the temperature gradient 

1-mK 03.0
dz

dT
;43 i.e. the temperature increases along the reservoir depth. Segregation is also 

induced due to thermal diffusion. The M-S equations can be extended to account for thermal diffusion 

in the following manner3 
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 (86) 

The thermal diffusion coefficients T
iD  have the units of kg m-1 s-1. The terms 

i

T
iD


 have the units of 

m2 s-1. The thermal diffusion coefficients are not all independent; we have the constraint 

 0
1
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n

j

T
iD  (87) 

For the special case of a binary mixture, we write 
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Introducing the constraint TT DD 21  , we obtain 
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Equation (89) may be re-written as 
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Introducing the diffusion fluxes 

  uuxcJ t  111  (91) 

we derive 
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Since, the diffusion fluxes sum to zero, 21 JJ  , we get 
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Define the thermal diffusion ratio 
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The thermal diffusion ratio kT1 is dimensionless. 

Other quantities encountered are the thermal diffusion factor T  
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The Soret coefficient is defined as 
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Equation (93) reduces to yield 
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For segregation due to gravity, and thermal diffusion the flux expression is therefore 
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Setting the fluxes equal to zero, the steady-state the steady-state mole fraction profiles are described by  
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Introducing the thermodynamic correction factor 




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 we write the steady-state mole 

fraction profile as 
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1    (100) 

Let us examine the influence of thermal diffusion for situations in which gravitational segregation 

effects are negligible. When 0;0;0;0 1
111 

dT

dx
kSD TT

T ; this implies that the component 1 

segregates towards the cold end; in this scenario, thermal diffusion serves to enhance the gravitational 

segregation effect. Conversely, when 0;0;0;0 1
111 

dT

dx
kSD TT

T , the component 1 segregates 

towards the hot end; in this scenario, thermal diffusion acts in a direction opposite to the gravitational 

segregation.  

To illustrate the relative influences of gravity, and thermal diffusion on segregation in petroleum 

reservoirs, we revisit the segregation for the binary mixture C2H6/nC10H22 in a reservoir of 600 m depth 

at a pressure p = 20 MPa and temperature T = 440 K. The mixture composition at depth z = 300 m from 

the surface (z = 600 m) is x1 = 0.5, x2 = 0.5. The composition distribution along the reservoir depth is 
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shown in Figure 35 for three different scenarios. Figure 35a shows segregation due to gravity effects 

alone; here we solve  
RT

gx
MV

dz

dx
t

1
11

1   . Figure 35b shows segregation due to thermal diffusion  

effects alone; here we solve 
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1
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T . Figure 35c shows segregation 

due to combined effects of gravity and thermal diffusion; here we solve 
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15. Notation 

ai  activity of species i, dimensionless 

[B]  matrix defined by Equations (19), m-2 s 

ci  molar concentration of species i, mol m-3 

ct  total molar concentration of mixture, mol m-3 

di  generalized driving force, m-1 

ijÐ    M-S diffusivity for binary pair i-j, m2 s-1 

D12  Fick diffusivity for binary mixture, m2 s-1  

Di,eff  effective diffusivity in mixture, m2 s-1 

 D    Fick diffusivity matrix, m2 s-1  

D    Determinant of the Fick diffusivity matrix, m4 s-2  

2/1
D    Square-root of determinant of  D , m2 s-1  

T
iD    thermal diffusion coefficients, kg m-1 s-1  

Ei  Component Murphree efficiency, dimensionless 

fi fugacity of species i, Pa 

F   Faraday constant, 9.65×104 C mol-1  

Fi Body force acting per mole of species i, N mol-1 

~
iF    Body force acting per kg of species i, N kg-1 

Fo    Fourier number, dimensionless 

g gravitational acceleration, 9.81 m s-2 

Ji molar diffusion flux of species i with respect to u , mol m-2 s-1 

k12   binary interaction parameter in PR EOS, dimensionless  

1Tk    thermal diffusion ratio, dimensionless  

 L    Onsager diffusivity matrix in fluid phases, m2 s-1  

M excess amount injected in Taylor dispersion experiment, mol 
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Mi   molar mass of species i, kg mol-1 

M   mean molar mass of mixture, kg mol-1 

n number of species in the mixture, dimensionless 

Ni molar flux of species i in laboratory fixed reference frame, mol m-2 s-1 

Nt molar flux of total mixture in laboratory fixed reference frame, mol m-2 s-1 

p  total system pressure, Pa 

Pc  critical pressure, Pa 

 Q   matrix quantifying fractional unaccomplished change, dimensionless 

r  radial direction coordinate, m  

R  gas constant, 8.314 J mol-1 K-1  

R  radius of tube in Taylor dispersion studies, m  

1TS   Soret coefficient, K-1 

t  time, s  

T  absolute temperature, K  

Tc  critical temperature, K 

xi  mole fraction of component i in fluid phase, dimensionless 

yi  mole fraction of component i in vapor phase, dimensionless 

u  cross-sectional averaged velocity in dispersion tube, m s-1 

u   molar average mixture velocity, m s-1 

iV   partial molar volume of species i, m3 mol-1 

z  direction coordinate, m  

zi  charge on species i, dimensionless 

Z  compressibility factor, dimensionless  

 

Greek letters 
 

T    thermal diffusion factor, dimensionless

   slab thickness, m 

 ij  Kronecker delta, dimensionless 
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i  fugacity coefficient of component i, dimensionless 

ij  thermodynamic factors, dimensionless 

    matrix of thermodynamic factors, dimensionless 

    matrix defined by Equations (19), (21), m2 s-1 

2/1    Square-root of determinant of   , m2 s-1  

  electrostatic potential, V 

i  molar chemical potential, J mol-1 

i  mass fraction of component i, dimensionless 

0
i   molar chemical potential at standard state, J mol-1 

i  mass density of component i, kg m-3 

t  mass density of mixture, kg m-3 

  rate of entropy production, J m-3 s-1 K-1 

 

Subscripts 
 

c  referring to critical parameter 

i  referring to component i 

n   referring to component n 

t  referring to total mixture 
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Table 1.    Self-diffusivities 1
,
jx

selfiD  in units of 10-8 m2 s-1 for linear alkanes at 333 K and 30 MPa. The 

rows indicate species i and the columns, species j. The tabulated data is from Krishna and van Baten.19 

 C1 C2 C3 nC4 nC5 nC6 nC7 nC8 nC9 nC10 

C1 7.00 2.58 1.50 1.05  1.05  1.05  1.05 

C2 5.30 1.95 1.23 0.92  0.84  0.83  0.83 

C3 4.52 1.63 1.03 0.79 0.72 0.75     

nC4 3.83 1.44 0.92 0.69 0.65      

nC5   0.83 0.62 0.59      

nC6 3.00 1.09 0.77   0.56     

nC7       0.44    

nC8 2.36 0.97      0.40   

nC9         0.34  

nC10 1.86 0.82        0.34 

 

As illustration, for the system, C1/C3/nC6, we have  
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Table 2. PR EOS binary interaction parameters45 for linear alkanes using in the simulations presented 

here.  

 C1 C2 C3 nC4 nC5 nC6 nC10 

C1  -0.003 0.016 0.019 0.026 0.04 0.0411 

C2   0.001 0.01 0.008 -0.04  

C3    0.003 0.027 0.001  

nC4     0.017   

nC6       0 
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Table 3. Estimated values of self-diffusivities 1
,
jx

selfiD  in units of 10-8 m2 s-1 for linear alkanes at 333 K 

and 8.5 MPa. The rows indicate species i and the columns, species j. The tabulated data is from Krishna 

and van Baten.19 

 C1 C2 C3 nC4 nC5 nC6 nC10 

C1 35 12.9 7.5 5.25 0 5.25 5.25 

C2 26.5 9.75 6.15 4.6 0 4.2  

C3 22.6 8.15 5.15 3.95 3.6 3.75  

nC4 19.15 7.2 4.6 3.45 3.25 0  

nC5 0 0 4.15 3.1 2.95 0  

nC6 15 5.45 3.85 0 0 2.8 1.7 

nC10 9.3     1.7 1.7 
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Table 4. Flory-Huggins parameters for permeation of penetrants CO2 (component 1) and C2H6 

(Component 2) across a cross-linked polyethylene oxide (XLPEO) membrane (indicated by subscript 

m). The temperature is 298.15 K. 
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Table 5. Flory-Huggins parameters for permeation of penetrants CO2 (component 1) and C2H6 

(Component 2) across a cross-linked polyethylene oxide (XLPEO) membrane (indicated by subscript 

m). The temperature is 263.15 K. 
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Table 6. Modified Maxwell-Stefan diffusivities for permeation of penetrants CO2 (component 1) and 

C2H6 (Component 2) across a cross-linked polyethylene oxide (XLPEO) membrane (indicated by 

subscript m). The temperature is 298.15 K. 

Input data: 
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Table 7. Modified Maxwell-Stefan diffusivities for permeation of penetrants CO2 (component 1) and 

C2H6 (Component 2) across a cross-linked polyethylene oxide (XLPEO) membrane (indicated by 

subscript m). The temperature is 263.15 K. 
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17.   Captions for Figures 

 

 

 

 

Figure 1. Calculations of combined FSG and PR EOS models for thermodynamics and diffusion in 

CO2(1)/C2H4(2) mixtures at T = 323.2 K with varying compositions x1, and total pressure, p. (a) 

Compressibility factor,  Z. (b) Thermodynamic correction factor,  (c) Maxwell-Stefan diffusivity, Ð12. 

(d) Fick diffusivity, D12. The PR EOS calculations presented here use a binary interaction parameter k12 

= 0.0. 

 

 

Figure 2. Calculations of combined FSG and PR EOS models for thermodynamics and diffusion in 

CO2(1)/C2H4(2) mixtures (x1=0.5) with varying reduced pressures pr and reduced temperatures Tr. (a) 

Compressibility factor, Z. (b) Thermodynamic correction factor,  (c) Maxwell-Stefan diffusivity, Ð12. 

(d) Fick diffusivity, D12. The reduced pressure is calculated from 
2211 cc

r PxPx

p
p


 . The reduced 

temperature is calculated from 
2211 cc

r TxTx

T
T


 . The PR EOS calculations presented here use a binary 

interaction parameter k12 = 0.0. 

 

 

 

Figure 3. (a, b, c) Experimental data of Takahashi and Hongo13 for M-S diffusivities of CO2(trace 

amounts)/C2H4 mixtures, and CO2/C2H4(trace amounts) mixtures at (a) 298.2 K, (b) 323.2 K, and (c) 
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348.2 K for a range of pressures. The dashed lines are the estimations using the FSG equation (52). The 

continuous solid lines are the estimations of the M-S diffusivities using Equation (53). (d, e, f) 

Calculations of the compressibility factor using the Peng-Robinson Equation of State (PR EOS) of 

CO2(trace amounts)/C2H4 mixtures, and CO2/C2H4(trace amounts) mixtures at (d) 298.2 K, (e) 323.2 K, 

and (f) 348.2 K for a range of pressures. The PR EOS calculations presented here use a binary 

interaction parameter k12 = 0.0. The mole fraction of the trace component is taken to be 0.005. 

 

 

Figure 4. Data on MD simulations for the Maxwell-Stefan diffusivity, Ð12, culled from Krishna and van 

Baten14, for binary (a) CH4(1)/C2H6(2), (b) CH4(1)/C3H8(2), (c) CH4(1)/N2(2), (d) CO2(1)/CH4(2), (e) 

CO2(1)/N2(2), and (d) CO2(1)/Ar(2) mixtures at 300 K. For MD simulation data, the x-axis is the total 

molar concentration, ct, in the simulation box; note that this value is not calculated from the ideal gas 

law. The continuous solid lines are the estimations of the M-S diffusivities using Equation (53); in this 

case the x-axis is calculated using 
ZRT

p
ct  .  

 

Figure 5. MD simulations for the Maxwell-Stefan diffusivity, Ð12, for binary CH4(1)/C2H6(2) mixtures 

at 333 K at (a) 5 MPa, (b) 10 MPa, (c) 20 MPa, (d) 30 MPa, and (e) 40 MPa and with varying 

compositions of methane x1. The simulation methodology is the same as that used in the work of 

Krishna and van Baten.19 The continuous solid lines are the estimations of the M-S diffusivities using 

Equation (53). Also shown by the dashed lines are the FSG estimations, using equation (52).  
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Figure 6. (a) Experimental data of Tuan et al.5 for the dependence of the  Fick diffusivity of methyl 

oleate (MO) (component 1) in supercritical CO2 (component 2), on the mole fraction of MO for T = 

313.15 K, p = 10.6 MPa, and p = 11.5 MPa. Also shown by the continuous solid lines are the 

estimations of the Fick diffusivity using Equation (54). (b, c) Calculations of the (b) compressibility 

factor, Z, and the (c) thermodynamic factor,  using the PR EOS. The critical parameters for the PR 

EOS calculations are taken from Table 2 of Tuan et al;5 the binary interaction parameter, k12 = 0.063. 

 

 

Figure 7. Calculations of the thermodynamic factor, , for naphthalene (component 1) in supercritical 

CO2 (component 2), as a function of the mole fraction of naphthalene, at p = 8.25 MPa, and p = 10.4 

MPa. The temperature T = 308.2 K. The PR EOS calculations use the binary interaction parameter, k12 = 

0.016, calculated by Higashi et al.15 

 

 

 

Figure 8. (a) Experimental data of Ago and Nishiumi16 for diffusivity of benzene (component 1) in 

supercritical CO2 (component 2) as a function of the reduced pressure, 
2c

r P

p
p  where Pc2 = 7.28 MPa 

is the critical pressure of CO2. The measurements were made in a Taylor dispersion tube with varying 

amounts of benzene injection into the tube. (b) Calculations of the compressibility factor using the 

Peng-Robinson Equation of State (PR EOS). (c) Calculations of the thermodynamic factor, , using PR 

EOS. (d) Calculations of the Fick diffusivities as a function of p/pc and composition of benzene in the 

mixture using the PR EOS. The PR EOS calculations presented here use a binary interaction parameter 

k12 = 0.0774. 
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Figure 9. (a, b) Experimental data of Nishiumi and Kubota17  for diffusivity of benzene (component 1) 

in supercritical CO2 (component 2) as a function of the reduced pressure, 
2c

r P

p
p   where Pc2 = 7.28 

MPa is the critical pressure of CO2. The measurements were made in a Taylor dispersion tube with 

varying amounts of benzene injection into the tube.  The solid lines are the calculations of the Fick 

diffusivities as a function of p/pc and composition of benzene in the mixture using the PR EOS. The PR 

EOS calculations presented here use a binary interaction parameter k12 = 0.0774. 

 

 

 

 

Figure 10. PR EOS calculations for thermodynamics in CH4(1)/C3H8(2) mixture (x1=0.7) with varying 

reduced pressures pr and reduced temperatures Tr. (a) Compressibility factor, Z. (b) Thermodynamic 

correction factor,  The reduced pressure is calculated from 
2211 cc

r PxPx

p
p


 . The reduced 

temperature is calculated from 
2211 cc

r TxTx

T
T


 . The PR EOS calculations presented here use a binary 

interaction parameter k12 = 0.016. 

 

 

Figure 11. PR EOS calculations for thermodynamics in CH4(1)/C3H8(2) mixtures at T = 298.15 K with 

varying compositions x1, and total pressure, p. (a) Compressibility factor, Z. (b) Thermodynamic 

correction factor,  The PR EOS calculations presented here use a binary interaction parameter k12 = 

0.016. 
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Figure 12. MD simulation data of Krishna and van Baten19 on Ðij for the binary methane(1)/ethane(2), 

methane(1)/n-hexane(3), and ethane(2)/n-hexane(3) mixtures at 333 K and 30 MPa. The continuous 

solid lines are the calculations of Ðij using the Vignes interpolation formula (56). The values of the self-

diffusivities at the limiting compositions, 1
,
jx

selfiD , are provided in Table 1. The M-S diffusivities at the 

limiting compositions, calculated from Table 1, are (units of 10-8 m2 s-1): 

.84.0;09.1;05.1;3;5.2;3.5 1
23

1
23

1
13

1
13

1
12

1
12

323121   xxxxxx ÐÐÐÐÐÐ  

 

 

Figure 13. MD simulation data of Krishna and van Baten19 on Ðij for the binary methane(1)/ethane(2), 

methane(1)/propane(3), and ethane(2)/propane (3) mixtures at 333 K and 30 MPa.. The continuous solid 

lines are the calculations of Ðij using the Vignes interpolation formula (56). The values of the self-

diffusivities at the limiting compositions, 1
,
jx

selfiD , are provided in Table 1. The M-S diffusivities at the 

limiting compositions, calculated from Table 1, are (units of 10-8 m2 s-1): 

.23.1;63.1;5.1;52.4;5.2;3.5 1
23

1
23

1
13

1
13

1
12

1
12
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Figure 14. MD simulation data of Krishna and van Baten19 on  Ðij for the binary methane(1)/propane(2), 

methane(1)/n-hexane(3), and propane(2)/n-hexane (3) mixtures at 333 K and 30 MPa.. The continuous 

solid lines are the calculations of Ðij using the Vignes interpolation formula (56). The values of the self-

diffusivities at the limiting compositions, 1
,
jx

selfiD , are provided in Table 1. The M-S diffusivities at the 

limiting compositions, calculated from Table 1, are (units of 10-8 m2 s-1): 

.75.0;77.0;05.1;3;5.1;52.4 1
23
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23
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13
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13
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12
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Figure 15. MD simulation data of Krishna and van Baten19 on Ðij for the binary ethane(1)/propane(2), 

ethane(1)/n-butane(3), and propane(2)/n-butane (3) mixtures at 333 K and 30 MPa.. The continuous 

solid lines are the calculations of Ðij using the Vignes interpolation formula (56). The values of the self-

diffusivities at the limiting compositions, 1
,
jx

selfiD , are provided in Table 1. The M-S diffusivities at the 

limiting compositions, calculated from Table 1, are (units of 10-8 m2 s-1): 
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13
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Figure 16. MD simulation data of Krishna and van Baten19 on Ðij for the binary propane(1)/n-butane(2), 

propane(1)/n-pentane(3), and n-butane(2)/n-pentane (3) mixtures at 333 K and 30 MPa.. The continuous 

solid lines are the calculations of Ðij using the Vignes interpolation formula (56). The values of the self-

diffusivities at the limiting compositions, 1
,
jx

selfiD , are provided in Table 1. The M-S diffusivities at the 

limiting compositions, calculated from Table 1, are (units of 10-8 m2 s-1): 

.65.0;62.0;72.0;83.0;79.0;92.0 1
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1
13

1
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Figure 17. (a) MD simulation data of Krishna and van Baten19 on Ðij for the binary mixtures of methane 

with ethane, propane, n-butane, n-hexane, and n-decane at 333 K and 30 MPa as function of the mole 

fraction of methane.  The continuous solid lines are the calculations of Ðij using the Vignes interpolation 

formula (56). (b) Calculations of the Fick diffusivity using Equation (57), where the thermodynamic 

factor is calculated using the PR EOS, using the binary interaction parameters in Table 2. 
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Figure 18. (a, b) Thermodynamics and diffusion in CH4(1)/C3H8(2) mixtures at T = 311 K and 206.8 

bar. (a) Calculations of the thermodynamic factor, , using PR EOS. (b) Experimental data of Sigmund, 

as reported in Figure 2c of Leahy-Dios and Firoozabadi,20 for Fick diffusivities of CH4(1)/C3H8(2) 

mixtures at T = 311 K and p = 206.8 bar. The continuous solids lines are the estimations using Equation 

(57), along with limiting M-S diffusivities determined from MD simulations (units of 10-8 m2 s-1): 

5.1;52.4 1
12

1
12

21   xx ÐÐ . The PR EOS calculations presented here use the binary interaction 

parameters in Table 2. 

 

 

 

Figure 19. (a) Experimental data of Dysthe and Hafskjold21 for Fick diffusivities of CH4(1)/n-C10H22(2) 

mixtures at T = 303.5 K and p = 40 MPa. (b)  Experimental data of Dysthe and Hafskjold21 for Fick 

diffusivities of CH4(1)/n-C10H22(2) mixtures at T = 303.5 K and p = 40, 50 and 60 MPa. (c) Calculations 

of the thermodynamic factor, , using PR EOS at p = 20, 25, 30, 35,  40, 50 and 60 MPa. (d) Spinodal 

compositions for CH4(1)/n-C10H22(2) mixtures at T = 303.5 K. (e) Experimental data of Dysthe and 

Hafskjold21 for Fick diffusivities of CH4(1)/n-C10H22(2) mixtures at T = 303.5 K with varying total 

pressures; the mole fractions of methane x1 = 0.903. The PR EOS calculations use the binary interaction 

parameters in Table 2. 
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Figure 20. Transformation of Fick diffusivity matrix from mass average reference velocity to molar 

average reference velocity, and vice versa. 

 

 

Figure 21. Calculations for the determinant   for the ternary mixture of nC8H18(1)/nC10H22(2)/1-

methylnapthalene(3) as a function of the composition of 1MN, x3, keeping the ratio x1/x2 at a constant 

value of unity. The calculations are presented for three different temperatures T = 295.65 K, 240 K, and 

200 K. The PR EOS calculations presented here use the binary interaction parameters = 0 for all three 

binary pairs. 

 

Figure 22. MD simulated values19 (shown by red circles) of 2/1  for (a) methane(1)/ethane(2)/n-

hexane(3), (b) methane(1)/ethane(2)/propane (3), and (c) methane(1)/propane(2)/n-hexane (3) at 333 K. 

The open circles represent calculations using Equations (31), (59), and (61).  

 

 

Figure 23.  Ternary diagram delineating the two-phase V/L region for methane(1)/propane(2)/n-hexane 

(3) mixtures at 333 K and 8.5 MPa. The compositions of the vapor and liquid phases in equilibrium with 

each other are indicated by the tie-lines. The region to the left of the two-phase region consists of the 

liquid region. The inset shows the calculations for the determinant   as a function of the composition 

of n-hexane, x3, keeping the ratio x1/x2 at a constant value of unity. The PR EOS calculations presented 

here use the binary interaction parameters in Table 2. 
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Figure 24. Schematic for transient diffusion of methane(1)/propane(2)/n-hexane (3) mixtures at 333 K 

and 8.5 MPa into a liquid phase slab of half-thickness . The surfaces on either side of the liquid slab 

consists of ternary vapor phase mixture of constant composition. At time t = 0, a liquid slab of 

composition x10 = 0.05, x20 = 0.55, x30 = 0.4 is exposed to a vapor phase mixture of composition y1 = 

0.659033, y2 = 0.318393, y3 = 0.022574; this composition is held constant during the equilibration 

process. The composition of the liquid phase in equilibrium with the vapor phase is x1 = 0.333532, x2 

= 0.521103, x3 = 0.145365.  

   

 

Figure 25. (a) Transient equilibration for liquid phase diffusion in methane(1)/propane(2)/n-hexane (3) 

mixtures at 333 K and 8.5 MPa using Equation (29) for the estimation of the elements of the Fick 

diffusivity matrix  D . (b) The equilibration trajectory plotted in composition space. (c) Component 

Murphree efficiencies plotted as a function of the Fourier number, 
2

2/1
4


tD

, wherein the value of the 

characteristics diffusivity is chosen as the square root of the determinant of the Fick matrix, 

82/1
105.5 D  m2 s-1. The M-S diffusivities at the limiting compositions are calculated from Table 3 

as guidelines. The PR EOS calculations presented here use the binary interaction parameters in Table 2. 

 

 

 

Figure 26. Simulation results for Taylor dispersion for liquid phase methane(1)/propane(2)/n-hexane (3) 

mixtures at 333 K and 8.5 MPa, using Equation (29) for the estimation of the elements of the Fick 

diffusivity matrix  D . The liquid mixture flowing in the tube has the (cross-sectional averaged) 

composition x1 = 0.4, x2 = 0.4, x3 = 0.2. At time t = 0, Dirac -pulses M1 = M2 = 10-7 moles of 

components 1 and 2 are injected at the inlet. The M-S diffusivities at the limiting compositions are 
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calculated from Table 3 as guidelines. The PR EOS calculations presented here use the binary 

interaction parameters in Table 2. 

 

 

Figure 27. Simulation results for Taylor dispersion for liquid phase (a) methane(1)/ethane(2)/n-hexane 

(3), (b) methane(1)/ethane(2)/propane (3), (c)  propane(1)/n-butane(2)/n-pentane, and (d) methane(1)/n-

hexane(2)/n-decane (3) mixtures at 333 K and 8.5 MPa, using Equation (29) for the estimation of the 

elements of the Fick diffusivity matrix  D . The liquid mixture flowing in the tube has the (cross-

sectional averaged) compositions (a) x1 = 0.4, x2 = 0.3, x3 = 0.2, (b) x1 = 0.3, x2 = 0.3, x3 = 0.4, (d) x1 = 

0.7, x2 = 0.2, x3 = 0.1,  and(d) x1 = 0.5, x2 = 0.4, x3 = 0.1. At time t = 0, Dirac -pulses M1 = M2 = 10-7 

moles of components 1 and 2 are injected at the inlet. The M-S diffusivities at the limiting compositions 

are calculated from Table 3 as guidelines. The PR EOS calculations presented here use the binary 

interaction parameters in Table 2. 

 

 

 

Figure 28. (a) Calculation of the compressibility factor, Z, and the determinant    in the gaseous 

mixture N2/H2/NH3 at a temperature of 500 K and total pressure  of 25 MPa. In these calculations, the 

ratio of the compositions x2/x1 = 3. (b) Calculation of the effective diffusivities in the gaseous mixture 

N2/H2/NH3 at a temperature of 500 K and total pressure of 25 MPa. In these calculations, the M-S pair 

diffusivities are calculated using Equation (53). 
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Figure 29. Calculation of the effective diffusivities in the gaseous mixture WF6/H2/HF/Ar at a 

temperature of 673 K and total pressure 100 Pa. In these calculations, the ratio of the compositions x2/x1 

= 3, and the composition of Ar is held constant at x4 = 0.3. 

 

 

Figure 30. (a) Transient equilibration between the left and right compartments of gaseous mixtures 

WF6/H2/HF/Ar at a temperature of 673 K and total pressure 100 Pa. The left compartment has the initial 

composition x1,L = 0.2; x2,L= 0.4, x3,L = 0.1, x4,L = 0.3. The right compartment has the initial 

compositions x1,R = 0.02, x2,R = 0.1, x3,R = 0.6, x4,R = 0.28. The x-axis is 
tD

z

ref4
 where the reference 

diffusivity value 12 s m1 refD . (b) The equilibration trajectories are plotted in ternary composition 

space.  The dashed line represents the trajectory followed if each component has the same effective 

diffusivity with a value 12 s m1 refD . 

 

 

Figure 31. Separation of gaseous uranium isotopes U235F6(1)/U238F6(2) by ultracentrifugation as 

described in Example 2.3.2 of Taylor and Krishna.6 

 

 

Figure 32. Composition dependence of the thermodynamic properties binary mixture C2H6/nC10H22 at a 

pressure p = 20 MPa and temperature T = 440 K. (a) Volume fractions and mass fractions as a function 

of the mixture mole fractions. (b) Partial molar volumes of ethane and n-decane, along with molar 

volume of mixture. (c) Variation of the compressibility factor, Z, and thermodynamic factor, , with 

mole fraction of ethane. The binary interaction parameter in PR EOS, k12 = 0.014.  
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Figure 33. Gravitational segregation for the binary mixture C2H6/nC10H22 in a reservoir of 600 m depth 

at a pressure p = 20 MPa and temperature T = 440 K. The mixture composition at depth z = 300 m from 

the surface (z = 0) is x1 = 0.5, x2 = 0.5. The binary interaction parameter in PR EOS, k12 = 0.014. The 

continuous solid lines are calculations using  correction.  The dashed lines are calculations that ignore 

 corrections. 

 

 

Figure 34. Gravitational segregation for the ternary mixture CH4/nC4H10/nC12H26 in a reservoir of 600 

m depth at a pressure p = 35 MPa and temperature T = 333.15 K. The mixture composition at depth z = 

300 m from the surface (z = 0) is x1 = 0.2, x2 = 0.4, x3 = 0.4. The binary interaction parameters in PR 

EOS, are k12 = 0.019, k13 = 0.008, and  k23 = 0.0. The continuous solid lines are model calculations using 

 correction.   

 

Figure 35. Segregation for the binary mixture C2H6/nC10H22 in a reservoir of 600 m depth at a pressure 

p = 20 MPa and temperature T = 440 K. The mixture composition at depth z = 300 m from the surface 

(z = 0) is x1 = 0.5, x2 = 0.5. The binary interaction parameter in PR EOS, k12 = 0.014. (a) Segregation 

due to gravity effects alone, (b) Segregation due to thermal diffusion alone. (c) Segregation due to a 

combination of gravity and thermal diffusion.  
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Reduced pressure, p / pc
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Fig.  S4
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Fig.  S5
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Fig.  S6
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Fig.  S7

Diffusion of naphthalene in supercritical CO2
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Fig.  S8
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Fig.  S14C1/C3; C1/nC6; C3/nC6 mixtures: 
Vignes interpolation
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Fig.  S15C2/C3; C2/nC4; C3/nC4 mixtures: 
Vignes interpolation
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Fig.  S16C3/nC4; C3/nC5; nC4/nC5 mixtures: 
Vignes interpolation
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Fig.  S17

mole fraction of methane, x1
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Fig.  S18
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Fig.  S19
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Fig.  S20
nC8/nC10/1MN mixtures: Transforming reference 

velocity frames
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Fig.  S21

nC8/nC10/1MN mixtures: L/S phase transitions
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Fig.  S22
Ternary mixtures: Vignes interpolation

Mole fraction of methane, x1

0.0 0.2 0.4 0.6 0.8 1.0

|
|1/

2  / 
10

-8
 m

2  s
-1

0

1

2

3

4

5

6

MD simulations
Interpolation

C1 (1) - C2 (2) - C3 (3);
333 K

Mole fraction of methane, x1

0.0 0.2 0.4 0.6 0.8 1.0

|
|1/

2  / 
10

-8
 m

2  s
-1

0

1

2

3

4

MD simulations
Interpolation

C1 (1) - C3 (2) - nC6 (3); 333 K

Mole fraction of methane, x1

0.0 0.2 0.4 0.6 0.8 1.0

|
|1/

2  / 
10

-8
 m

2  s
-1

0

1

2

3

4

MD simulations
Interpolation

C1 (1) - C2 (2) - nC6 (3); 333 K



Fig.  S23
C1/C3/nC6 mixtures: V/L phase transitions
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Fig.  S24
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Fig.  S25
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Fig.  S26C1/C3/nC6 mixture: Taylor dispersion
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Fig.  S27
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Fig.  S28
Effective diffusivities in Ammonia Synthesis
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Fig.  S29
Effective diffusivities in CVD reactor
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Fig.  S30Diffusion trajectories in CVD reactor
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Fig.  S31Ultracentrifugation
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Fig.  S32
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Fig.  S33Gravitational segregation
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Fig.  S34Gravitational segregation
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Fig.  S35
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