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The Maxwell–Stefan (M–S) formulation for binary mixture diffusion in micro-porous materials such as
zeolites, metal organic frameworks (MOFs), and covalent organic frameworks (COFs), that have pore sizes
typically smaller than 2nm, is formulated in a manner that is consistent with corresponding description
for meso-porous systems. The M–S equations are set up in terms of species concentrations, ci, defined in
terms of accessible pore volume space. Molecular dynamics simulations were carried out to determine the
exchange coefficients H12 for a large variety of binary mixtures in zeolites (MFI, AFI, BEA, FAU, LTA, CHA,
and DDR), MOFs (CuBTC, IRMOF-1, Zn(bdc)dabco, Co(bdc)dabco, MIL-47, Co-FA, Mn-FA, and Zn(tbip)),
COFs (COF-102, COF-103, and COF-108), and cylindrical silica pores of varying diameters. The exchange
coefficients H12 in all structures were found to be related by a constant factor, F, with the corresponding
M–S diffusivity for binary fluid mixture, H12,fl, at the same total mixture concentration, ct, as within the
pores. The factor F is primarily dictated by the degree of confinement of the guest molecules within
the channels, defined as the ratio of the characteristic sizes of the guest molecules to that of the host
channels. For meso-porous cylindrical silica pores: F = 1, and H12 = H12,fl. For CuBTC, MIL-47, IRMOF-1,
and COFs, that have structures with a high fractional open space and channel dimensions of 0.8–1.85nm,
the factor F is found to be in the range 0.55–0.85. For structures such as MFI, BEA, Co-FA, Mn-FA, and
Zn(tbip) that have smaller fractional open space, and channels smaller than 0.6nm, the factor F has values
< 0.2. The major conclusion of this study is that fluid mixture diffusivity H12,fl provides a good starting
point for an engineering estimate of the exchange coefficient H12 in porous materials.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the development and design of separation and reaction equip-
ment involving micro- and meso-porous materials, the proper de-
scription of mixture diffusion is of vital importance (Delgado and
Rodrigues, 2001; Farooq and Ruthven, 1991; Gavalas, 2008; Hansen
et al., 2009; Higgins et al., 2009; Kärger and Ruthven, 1992; Keskin
et al., 2009; Ruthven, 1984; van de Graaf et al., 1999; Wang et al.,
1999; Wang and LeVan, 2007, 2008). In the published literature the
models for diffusion in these materials have adopted two distinctly
different approaches, the need for which can be appreciated by con-
sidering the Lennard-Jones interaction potential (normalized with
respect to the energy parameter, �) for methane and a silica pore
wall; see Fig. 1a. The minimum in the potential energy for inter-
action with the wall surface occurs at a distance 0.39nm from the
wall, and for distances greater than about 0.6nm from the pore wall
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the interaction potential is virtually zero. In meso-porous materials
such as MCM-41, SBA-16, and Vycor glass that have pore sizes in the
range 2–50nm, there is a central core region where the influence
of interactions of the molecules with the pore wall is either small
or negligible. As illustration, Fig. 1b shows the radial distribution of
the loading of methane as a function of the distance from the wall
of a 3nm pore; the core region is demarcated. The maximum in the
concentration distribution occurs at the position corresponding to
the minimum in the Lennard-Jones interaction potential. Meso-pore
diffusion is governed by a combination of molecule–molecule and
molecule–pore wall interactions. The Maxwell–Stefan (M–S) equa-
tions are commonly written for mixture diffusion as (Kerkhof, 1996;
Krishna and van Baten, 2009a; Young and Todd, 2005)

− ci
RT

∇�i =
n∑

j=1
j� i

xjNi − xiNj

Hij
+ Ni

Hi
; i = 1, 2, . . . ,n (1)

In Eq. (1) Hi is the M–S diffusivities of species i, portraying the in-
teraction between component i in the mixture with the surface, or
wall, of the pore; it reflects a conglomerate of Knudsen and surface
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Fig. 1. (a) Normalized Lennard-Jones interaction potential for methane and O atoms
in a silica wall surface. (b) Radial distribution of methane in a 3nm cylindrical silica
pore in which the average loading ci = 6.62kmolm−3. The distribution was obtained
from a CBMC simulation of adsorption.

diffusion, along with the viscous flow contribution. It is noteworthy
that Eq. (1) do not correspond to the dusty gas model (Mason and
Malinauskas, 1983), that been a subject of intense criticism in the
recent literature due to some inconsistencies and handling of the
viscous flow contribution (Kerkhof, 1996; Young and Todd, 2005).
The Hij are exchange coefficients representing interaction between
components i with component j. The Onsager reciprocal relations
prescribe

Hij =Hji (2)

The ci are the molar concentrations defined in terms of the pore
volume, and the xi represent the component mole fractions

xi = ci/ct; i = 1, 2, . . . ,n (3)

Molecular dynamics (MD) simulations for diffusion of a wide vari-
ety of binary (n = 2) mixtures in cylindrical meso-pores of silica with
various diameters have shown that the H12 can be identified with
the fluid phase diffusivity, H12,fl, in the binary mixture at the same
total molar loadings ct as within the pore (Krishna and van Baten,
2009a). The Hi have the same values as for the pure component dif-
fusion, evaluated at the total loading in the mixture, ct. These are
very convenient results, and allow mixture diffusion characteristics
to be estimated for engineering purposes from: (1) unary diffusion
data within the same pore and (2) fluid phase mixture diffusivity at
same loading ct.

In micro-porous materials such as zeolites, metal organic frame-
works (MOFs), and covalent organic frameworks (COFs), that have
typically pore sizes in the 0.35–2nm range, the description of dif-
fusion is significantly more complicated than within meso-pores.
Within micro-pores the guest molecules are always within the influ-
ence of the force field exerted with the wall and we have to reckon
with the motion of adsorbed molecules, and there is no “bulk” fluid
region. In the published literature, the M–S equations for binary mix-
ture diffusion in zeolites and MOFs are set up in a different manner
(Chempath et al., 2004; Krishna and van Baten, 2008a,b; Skoulidas
et al., 2003)

− �i

RT
∇�i =

n∑
j=1
j� i

cjNi − ciNj

ci,satcj,satH∗
ij

+ Ni

ci,satHi
; i = 1, 2, . . . ,n (4)

with fractional occupancies, �i

�i ≡ ci/ci,sat; i = 1, 2, . . . ,n (5)

used in place of the component mole fractions xi. The concentrations
ci are commonly expressed either in terms of moles of component i
per m3 of framework or per kg of framework; in the latter case the
left member of Eq. (4) has to be multiplied by the framework den-
sity, �, in order to yield fluxes Ni in the usual units of molm−2 s−1.
TheHi, defined in Eq. (4), represent molecule–pore wall interactions;
there are, however, fundamental differences with the corresponding
Hi, defined in Eq. (1) for meso-porous materials: there is no viscous
contribution, and no “Knudsen” character to diffusion mechanism
within micro-pores. Eq. (4) have evolved from a description of mul-
ticomponent surface diffusion (Krishna, 1990). Formally, however,
we note that the definition of Hi in Eq. (4) is consistent with that in
Eq. (1), and there is no need to distinguish between the two sets;
this explains the absence of a superscript * on the Hi in Eq. (4).

The binary exchange coefficients H∗
ij defined in Eq. (4) reflect

correlations in molecular jumps and the Onsager reciprocal relations
require that H∗

ij satisfy

cj,satH∗
ij = ci,satH∗

ji; i, j = 1, 2 (6)

The estimation of H∗
ij is the key to the description of mixture diffu-

sion characteristics; this parameter depends on a variety of factors:
degree of confinement of the species within the pores, connectiv-
ity, and loading. In the published literature the following “empirical”
interpolation formula:

cj,satH∗
ij = [cj,satH∗

ii]
ci/(ci+cj)[ci,satH∗

jj]
ci/(ci+cj) = ci,satH∗

ji (7)

has been recommended for estimating H∗
ij using information on the

self-exchange coefficients H∗
ii, obtainable from unary diffusion data
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Fig. 2. Pore landscapes (iso-potential surfaces) of zeolites: AFI, LTA-5A, CHA, NaX, DDR, MFI (8 Na+ per unit cell), and BEA.

onHi and self-diffusivities Di,self (Chempath et al., 2004; Krishna and
van Baten, 2008a,b; Skoulidas et al., 2003). The prediction of the H∗

ij
demands a lot of input data, including the ci,sat , that are accessible
from molecular simulations, but not commonly from experiments.

The main objective of the present communication is to develop
an alternate approach to modeling mixture diffusion in micro-pores
using Eq. (1) with the ci defined in terms of the accessible pore
volumes inside the zeolites, MOFs, and COFs. By comparing (1) and
(4) we find the inter-relation the two sets of exchange coefficients

cj,satH∗
ij/ct =Hij =Hji = ci,satH∗

ji/ct; i, j = 1, 2, . . . ,n (8)

For micro-porous materials, the exchange coefficient Hij defined by
Eq. (1) cannot be directly identified with the corresponding fluid
phase diffusivity Hij,fl because the molecule–molecule interactions
are also significantly influenced by molecule–wall interactions.
However, we shall demonstrate that the characteristics of Hij are
susceptible to a simpler physical interpretation than H∗

ij; this is the
major rationale for the alternative, unified, treatment developed in
this paper. We aim to show that the Hij for any guest–host structure
combination is related to the fluid phase Hij,fl by a constant factor F
defined as

F ≡ Hij/Hij,fl (9)
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Fig. 3. Pore landscapes (iso-potential surfaces) of MOFs: IRMOF-1, CuBTC, Co-FA, MIL-47, Zn(bdc)dabco, Co(bdc)dabco, and Zn(tbip). The pore landscape of Mn-FA is similar to
that of Co-FA. The structural information for the metal organic frameworks (MOFs) have been taken from various publications: Cobalt Formate (Co-FA) from Li et al.(2008);
Manganese Formate (Mn-FA) from Dybtsev et al.(2004); Zn(bdc)dabco from Bárcia et al.(2008) and Lee et al. (2007); Co(bdc)dabco from Wang et al.(2008); MIL-47 from
Alaerts et al. (2007), Finsy et al. (2008) and Barthelet et al.(2007); Zn(tbip) from Pan et al. (2006a,b); IRMOF-1 from Dubbeldam et al. (2007a,b); CuBTC from Chui et al.
(1999) and Yang and Zhong (2006).
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Fig. 4. Pore landscapes (iso-potential surfaces) of COFs: COF-102, COF-13, and
COF-108. The structural information is from El-Kaderi et al. (2007)

that has a value smaller than unity. We also examine the variety of
factors that influence the value of F, and suggest engineering estima-
tion procedures for Hij. We shall suggest interpolation procedures
with a more transparent physical basis that aims to supplant the
“empirical” Eq. (7).

To achieve our objectives we carried out MD simulations to deter-
mine the diffusivities H1, H2, and H12 for the binary mixtures: neon
(Ne)–argon (Ar), methane (C1)–Ar, C1–C2 (ethane), C1–C3 (propane),
Ne–carbon dioxide (CO2), Ar–CO2, and C1–CO2 in seven different ze-
olites (MFI, AFI, BEA, FAU, LTA, CHA, and DDR), eight different MOFs
(IRMOF-1, CuBTC, Zn(bdc)dabco, Co(bdc)dabco, MIL-47, Co-FA, Mn-
FA and Zn(tbip)), three different COFs (COF-102, COF-103, and COF-
108), and cylindrical silica pores with diameters dp ranging from 0.6
to 30nm. Though the majority of simulations were with all-silica ze-
olites (Si/Al = ∞ ), a few simulations were carried out for unary dif-
fusion in zeolites with finite Si/Al ratios to investigate the influence
of the presence of cations: NaX (106 Si; 86 Al; 86 Na++; Si/Al = 1.23),
NaY (144 Si; 48 Al; 48 Na+; Si/Al = 3), LTA-5A (96 Si; 96 Al; 32 Na+;
32 Ca++; Si/Al = 1), LTA-4A (96 Si; 96 Al; 96 Na+; Si/Al = 1), and MFI
(with 2Na+, 4Na+, 6Na+, and 8Na+).

Figs. 2–4 show the pore landscapes of the chosen zeolites,
MOFs and COFs. The various structures are deliberately chosen to
represent a wide variety of micro-pore topologies and connectiv-
ities: (a) one-dimensional channels (cylindrical silica pores, AFI,
Zn(tbip), MIL-47, Co-FA, Mn-FA), (b) intersecting channels (MFI,
BEA, Zn(bdc)dabco, Co(bdc)dabco), (c) cavities with large windows
(FAU, NaX, NaY, IRMOF-1, CuBTC, COF-102, COF-103, and COF-108),
and (d) cages separated by narrow windows (LTA, LTA-5A, LTA-4A,
CHA, and DDR). The loadings within the pore space are varied to
near saturation values. The accessible pore volumes of the various
structures were determined using the helium probe insertion sim-
ulation technique described in the literature (Myers and Monson,
2002; Talu and Myers, 2001). The salient information, including the
characteristic channel sizes, on the variety of structures investigated
is listed in Table 1.

Additionally, we determined the fluid phase self-diffusivitiesHii,fl
of pure components along with the M–S diffusivity H12,fl for fluid
mixtures. The entire data base of simulation results is available in the
Supplementary material accompanying this publication; this mate-
rial includes details of the MD simulation methodology, description
of the force fields used, and simulation data. A selection of the sim-
ulation results is discussed below with the aim of drawing a variety
of generic conclusions.

2. Exchange coefficient H12 for binary mixture diffusion

We start by underlining the differences in mixture diffusion char-
acteristics of micro- and meso-pores. For this purpose we consider
the dependence of H12 for an equimolar C1–Ar mixture on the to-
tal concentration ct within cylindrical silica meso-pores of diameters
dp = 2, 3 and 4nm; see Fig. 5a. TheH12,fl for binary C1–Ar fluid phase
mixture diffusion, obtained from independent MD simulations, is
also presented in square symbols. At molar loadings ct < 4kmolm−3

theH12,fl decreases linearlywith increasing ct; this is the low-density
gas limit. For ct > 8kmolm−3 we have high density fluid charac-
teristics with a sharper decline in H12,fl with increasing ct. We see
that for meso-pore sizes of 2, 3, and 4nm the H12 can be identified
with H12,fl over the entire loading range; this equality holds for all
meso-pore sizes investigated, ranging to 30nm. For dp = 0.6, 0.75
and 1nm, the H12 are lower than the H12,fl values by a constant
factor F; see Fig. 5b. The factor F = 0.23, 0.45, and 0.8 for dp = 0.6,
0.75, and 1nm, respectively, implying that the narrower the pore
the larger is the departure from the fluid value H12,fl. Put another
way, the molecule–molecule interactions are influenced more sig-
nificantly by the walls in narrower pores. Clearly the diffusion in



3164 R. Krishna, J.M. van Baten / Chemical Engineering Science 64 (2009) 3159 -- 3178

Table 1
Salient structural information on zeolites, MOFs and COFs.

Structure Typical channel, cavity or window size Pore volume fraction

MFI (all-silica) Intersecting channels of 5.1–5.6Å size 0.297
AFI 1D channels of 7.3Å size 0.274
FAU (all-silica) Cages separated by 7.4Å size windows 0.44
NaY Window size as for all-silica FAU 0.408
NaX Window size as for all-silica FAU 0.4
CHA Cages separated by 3.8Å size windows 0.38
DDR Cages separated by 3.6Å×4.4Å size windows 0.245
LTA (all-silica) Cages separated by 4.1Å size windows 0.4
LTA-5A Window size lower than for all-silica LTA 0.38
BEA Intersecting channels of two sizes: 7.1 and 5.6Å 0.41
IRMOF-1 Two alternating, inter-connected, cavities of 10.9 and 14.3Å with window size of 8Å 0.81
CuBTC Large cages are inter-connected by 9Å windows of square cross-section. The

large cages are also connected to tetrahedral-shaped pockets of ca. 6Å size
through triangular-shaped windows of ca. 4.6Å size

0.75

MIL-47 One-dimensional channels of ca 8.5Å diameter 0.61
Zn(bdc)dabco Two types of channels: 7.5Å×7.5Å along the a-axis and channels of 3.8Å×4.7Å along b- and c-axis 0.66
Co(bdc)dabco Channels similar to Zn(bdc)dabco 0.65
Co-FA One dimensional zig-zag channels of 5.5Å 0.25
Mn-FA Adamantane-like cages of 5.5Å diameter are connected to each other via a small

window of approximately 4.5Å to form a 1D zig-zag channels
0.3

Zn(tbip) One dimensional channels of 4.5Å size 0.175
COF-102 Cavity of size 8.9Å 0.8
COF-103 Cavity of size 9.6Å 0.82
COF-108 Two cavities, of sizes 15.2 and 29.6Å 0.93

The data on pore volume fraction is obtained using the helium probe insertion simulation technique (Myers and Monson, 2002; Talu and Myers, 2001).

pores with dp < 2nm, needs to be approached in a manner differ-
ent to that for dp > 2nm in size. The important message to emerge
from the silica pore simulation results in Fig. 5 is that if the factor F
can be estimated, then this paves the way to estimating the H12 in
micro-pores.

A representative selection of the MD simulation results obtained
for the H12 for diffusion of equimolar Ne–Ar, C1–Ar, C1–C2, and
Ne–CO2 mixtures in zeolites, MOFs, and COFs are summarized in
Fig. 6. It is remarkable to note the parallelism in the loading depen-
dence of H12 for structures of such diverse topologies; in all cases
the H12 is related to the corresponding fluid H12,fl by a constant fac-
tor F, which depends on the particular guest–host combination. This
is already a useful result because the loading dependence of H12 is
the same as that for the fluid phase H12,fl and therefore this can be
estimated in an independent manner. Let us examine whether the
trend in the factor F can be understood and rationalized.

Open structures such as COFs, IRMOF-1, and CuBTC with high
fractional pore volume, �, in the range 0.7–0.93 and cavity sizes
larger than about 0.8nm, have F> 0.55. Generally speaking, for such
open structures with wide windows separating cavities, H12 is easy
to estimate but such materials are mainly destined for storage appli-
cations (Czaja et al., 2009; El-Kaderi et al., 2007; Férey, 2008; Yaghi,
2007), where diffusion issues are not entirely relevant.

Zn(bdc)dabco and Co(bdc)dabco are iso-structural and consist of
a set of intersecting channels with two different channel sizes, large
channels of 0.75×0.75nm, and small channels of 0.38nm×0.47nm
(Bárcia et al., 2008; Dubbeldam et al., 2008; Wang et al., 2008)
(cf. Fig. 3). The stronger confinement in the smaller channels leads to
a low value of F< 0.3. Cobalt formate (Co-FA), that consists of one-
dimensional zig-zag channels of 0.5–0.6nm size, has extremely low
value of F = 0.04. Correlations in molecular jumps are particularly
strong due to both strong confinement of guest molecules, and the
poor connectivity of 1D channels of Co–FA; these two factor com-
bine to yield low H12 and F values.

For zeolites, the general trend is that F is higher for large-pore FAU
and AFI, than for medium pore MFI. BEA, that consists of intersecting
channels of two different sizes, large pore and medium pore, has F
values higher than for MFI but lower than that of FAU.

Drawing clues from the results in Fig. 5 for cylindrical silica pores,
we anticipate the factor F to correlate with characteristic size of the
channels or windows in the micro-porous structures. We also ex-
pect the characteristic size of the guest molecules to be influential;
for this purpose we take the Lennard-Jones size parameter � to be
characteristic of the size of the guest species. For C1, Ar, and Ne the
values of � are 0.37, 0.34, and 0.28nm, respectively; see force field
details in the Supplementary material. For the equimolar Ne–Ar and
C1–Ar mixtures we take the arithmetic average of the constituent
species �'s as the characteristic measure of guest size. Using the
characteristic channel dimensions listed in Table 1 we constructed
the plot in Fig. 7a, wherein F is plotted against the degree of con-
finement, defined as the ratio of the average � to that of the channel
dimension. Generally speaking, F is seen to decrease with the degree
of confinement This is a rational result because it is to be expected
that in more confined spaces, the molecules will “interact” more
strongly with one another, leading to stronger correlations in molec-
ular jumps, and consequently a lower exchange diffusivity H12. The
exception to the general trend in Fig. 7a is the “rogue” behavior for
diffusion in LTA, CHA and DDR (the data points are encircled). These
three zeolites have cages separated by narrow 0.36–0.44nm sized
windows that allow only one molecule at a time to hop from one
cage to another. The inter-cage hopping is therefore poorly corre-
lated (Krishna and van Baten, 2008a,b), resulting in a much higher
H12, and therefore F, than anticipated for the narrow window size.
As pointed out in earlier publications, for all such zeolite structures
correlations are weak, though not of negligible importance for mod-
eling experimental mixture permeation across zeolite membranes
(Krishna et al., 2008; Li et al., 2007b). We dwell further on correla-
tion effects in more detail later in this paper.

3. M–S diffusivity Hi

Though Eq. (1) are applied in the current paper to describe diffu-
sion in both meso- andmicro-pores, there are a number of important
differences in the underlying physics that determine the Hi, repre-
senting molecule–wall interactions. We now compare and contrast
the characteristics of this parameter in micro- and meso-pores.
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lines that are a fraction F times H12,fl . The data for 1–4nm are from Krishna and
van Baten (2009a); simulations for the 0.6, and 0.75nm pore were carried out using
the same strategy, details are available in the Supplementary material.

For micro-pore diffusion, previous work (Chempath et al., 2004;
Krishna and van Baten, 2005b, 2008a,b; Skoulidas et al., 2003) has
shown that the Hi in Eq. (1) for mixture diffusion can be identified
with the corresponding value for unary diffusion provided the latter
is evaluated at the total mixture occupancy

� = �1 + �2 = c1
c1,sat

+ c2
c2,sat

(10)

For meso-pores, the Hi in the mixture can be identified with the
unary Hi evaluated at the total mixture loading ct (Krishna and van
Baten, 2009a).

Fig. 8a and b shows the M–S diffusivities Hi, for methane in (a)
zeolites, (b) MOFs, and COFs as a function of the concentration, ci.

The zero-loading value Hi(0) decreases strongly, by a few orders of
magnitude, with increasing the degree of confinement. The wide va-
riety in Hi − ci dependencies in the various structures is worthy of
note. Generally speaking, Hi decreases with increase in the loading
ci; this is due to the reduction in the number of vacant sites that
molecules can hop to. As the saturation loading ci,sat is approached,
the Hi tends to decrease sharply. A similar sharp decline is also ob-
served for the self-diffusivities of pure fluids, Hii,fl. This implies that
the self-diffusivity of densely packed fluid phase is the lower limit-
ing value forHi as ci,sat is approached. Indeed, Barrer and Sutherland
(1956) and, subsequently, Golden and Sircar (1994) have used the
molar density of the liquid phase as an estimate of ci,sat for a variety
of guest species in zeolites. This procedure is particularly useful, and
necessary, for the estimation of ci,sat for light gases that have poor
adsorption strength; in such cases it is difficult, if not impossible, to
attain saturation conditions in adsorption isotherm measurements
even when operating at high pressures (Li et al., 2007a,b).

For methane the saturation capacity in different micro-porous
structures ci,sat ≈ 31kmolm−3, with about a 15% variation; this is
evidenced by comparing the isotherms for C1 for a wide variety of
structures; see Fig. 9. Expressed in terms of mol per kg of framework,
the saturation capacities of C1 in various zeolites show a significantly
wider variation, ranging from 4 for MFI to 11.5 for FAU (Krishna and
van Baten, 2008a). Adopting Eq. (1) with ci in terms of accessible pore
volumes is advantageous from the point of view of estimating the
ci,sat , required in the use of the Reed and Ehrlich model for modeling
the Hi − ci dependence (Krishna and van Baten, 2008b; Reed and
Ehrlich, 1981); this model has also been used to describe the surface
transport resistance of MOF crystals (Heinke et al., 2009; Tzoulaki
et al., 2009).

In some cases the isotherm shows inflection behavior. For Co–FA
and Mn–FA, inflection occurs at a loading corresponding to one
molecule of methane per channel segment of the one-dimensional
zig-zag channels of these structures (Krishna and van Baten, 2009c);
see Fig. 9d. To attain higher loadings two methane molecules need
to occupy one channel segment; this requires an extra “push” and
results in inflection. The consequence of creating additional adsorp-
tion sites is an increase in the Hi at loadings > 1 molecule per chan-
nel segment, which corresponds with ci ≈ 12 and 16kmolm−3 for
Mn–FA and Co–FA, respectively; see Fig. 8b.

There is experimental evidence of the strong influence of
isotherm inflection onHi−ci dependence inMFI and CuBTC (Chmelik
et al., 2008, 2009; Jobic et al., 2006). For MOFs and COFs, frame-
work flexibility could be of special importance and MD simulations
have shown a significant influence on both the magnitude and the
loading dependence of the diffusivities (Amirjalayer et al., 2007;
Greathouse and Allendorf, 2008; Seehamart et al., 2009). Generally
speaking, framework flexibility issues are of lesser importance in
zeolites (Zimmermann et al., 2007).

For diffusion in LTA, CHA, and DDR that consist of cages separated
by narrow windows,Hi increases with ci because of the reduction in
the free-energy barrier for inter-cage hopping (Beerdsen et al., 2005,
2006). Experiments for permeation across DDR and CHA membranes
can be properly interpreted only if the increase in the Hi is properly
accounted for (Krishna and van Baten, 2008c; Krishna et al., 2007;
Li et al., 2007b; van den Bergh et al., 2008, 2007).

The presence of cations such as Na+ and Ca++ in LTA leads to a
significant reduction in diffusivity; this is illustrated in Fig. 8c that
compares the diffusivities of LTA (all-silica), with LTA-5A (96 Si, 96
Al, 32 Na+, 32 Ca++) at three different temperatures for a range of ci
values. Generally speaking, cations occupy sites that partially block
the 8-membered ring window (Fritzsche et al., 1995; Hedin et al.,
2008, 2007). The activation energy for C1 diffusion in LTA-5A is also
significantly higher than for LTA (all silica); see Fig. 8d. The reason
for this is the significantly higher adsorption strength in LTA-5A due
to the presence of cations.
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The presence of cations also causes a significant reduction of Hi
in MFI because the channels become more constricted. On the other
hand, for diffusion in more open structures such as FAU there is
a relatively small influence due to the influence of cations. More
detailed data and information on the influence of cations is available
in the Supplementary material.

Since the Hi for micro-pore diffusion reflects an activated sur-
face diffusion process, the zero-loading diffusivities Hi(0) follow

an Arrhenius temperature dependence (Kärger and Ruthven, 1992;
Krishna and van Baten, 2009b). The activation energy is, in general,
dependent on the loading (Krishna and van Baten, 2009b).

TheHi−ci dependence for meso-pores is fundamentally different
from that for micro-pores. This is underlined in the MD simulations
results for diffusion of methane in cylindrical silica pores of diame-
ters dp = 0.6, 2, 3, 4 and 5.8nm as a function of the fluids concentra-
tion, ci; see Fig. 10a. For the 0.6nm micro-pore Hi declines linearly
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with ci due to a reduction the number of vacant adsorption sites; this
is a characteristic feature of surface diffusion, which is an activated
process. For the meso-pores Hi increases with ci due to the addi-
tional contribution of viscous flow: d2pciRT/32�i, which contribution
increases with the square of the pore diameter.

Consider the cylindrical 3nm silica pore; from Fig. 10a we note
thatHi(0)=16×10−8 m2 s−1, which value is significantly lower than
the Knudsen diffusivity Di,Kn =32×10−8 m2 s−1; the lowering is due
to significant adsorption of methane. In order to underline the strong
influence of adsorption we carried out MD simulations for methane
diffusion in the 3nm pore in which the Lennard-Jones parameter for

energy of interaction between C1 and the O atoms of the silica pore
are varied from the base case value of 115K in five steps: �/kB=64.6,
91.4, 115 (base case), 129, and 158K; see Fig. 10b (in these sen-
sitivity studies, the Lennard-Jones size parameter � was held con-
stant). With increased �/kB the adsorption strength increases, and
consequently the contribution of surface diffusion increases at the
expense of the Knudsen contribution; this leads to a strong decrease
in the Hi. For the lowest value �/kB = 64.6K, signifying negligible
adsorption, we note that Hi(0) ≈ Di,Kn = 32× 10−8 m2 s−1. Engineer-
ing design calculations assuming predominantly Knudsen transport
become progressively worse as the strength of adsorption increases.

Increasing temperature reduces the adsorption strength, and
therefore a reduction in �/kBT results in a closer match of Hi(0)
with Di,Kn; this is confirmed by the data for C1 and Ar in 2 and 3nm
pores; see Fig. 10c. It is interesting to note the overlap in the data
for C1 and Ar, suggesting that the graph has a generic character. In
Fig. 10d we plot Hi(0) vs. Di,Kn for C1 and Ar in 2 and 3nm pores
at various T; we note that for high T, the two sets coincide with
the parity line, and that the deviations are higher at lower T. We
also note that the data do not run parallel to the parity line, sug-
gesting that for meso-pore diffusion, the Hi(0) − T dependence is
complex. For non-adsorbing molecules we have a

√
T dependence

as a consequence of Knudsen behavior, but for cases with significant
adsorption the T-dependence has an Arrhenius character (Bhatia
and Nicholson, 2003; Krishna and van Baten, 2009a).

Within regular micro-porous structures there is a possibility of a
non-monotonous dependence of the diffusivity with molecular chain
length of n-alkanes due to incommensurate–commensurate adsorp-
tion effects; this has been demonstrated both in MD simulations
(Dubbeldam et al., 2003; Dubbeldam and Smit, 2003; Krishna and
van Baten, 2009c) and experiment (Jobic et al., 2004). Correspond-
ing incommensurate adsorption effects have not been reported in
meso-porous materials; these are also not expected to occur.

Inmeso-porousmaterials the phenomenon of capillary condensa-
tion, and adsorption hysteresis are commonly observed; these have
an impact on the diffusion process (Naumov et al., 2007; Valiullin
et al., 2006). For diffusion of n-alkanes in CuBTC crystals, there is
some experimental evidence of diffusion being influenced by phase
transition phenomena (Chmelik et al., 2009).

4. Self-exchange coefficient Hii

Let us apply Eq. (1) to equimolar diffusion (N1+N2=0) in a system
consisting of two species, tagged and un-tagged, that are identical
with respect to diffusional properties:

− c1
RT

∇�1 = (x1 + x2)N1

H11
+ N1

H1
=

(
1
H11

+ 1
H1

)
N1 (11)

Eq. (11) defines the self-diffusivity Di,self within a pore

− ci
RT

∇�i =
Ni

Di,self
(12)

and so we derive the expression

1
Di,self

= 1
Hi

+ 1
Hii

; i = 1, 2 (13)

TheHii in Eq. (13) is the self-exchange coefficient within the pore
and can be evaluated fromMD simulations of bothHi, and Di,self . The
Hii is related toH∗

ii, defined in the earlier publishedM–S formulations
in terms of the vacancy �i (Krishna and van Baten, 2005b)

H∗
ii/�i =Hii (14)
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Fig. 11a shows the self exchange coefficients Hii, for diffusion of
methane in cylindrical silica meso-pores with dp = 2, 3 and 4nm
as a function of the fluids concentration, ci. The Hii,fl for fluid phase
self diffusion, obtained from independent MD simulations, is also
presented in square symbols. We note the good agreement of Hii
withHii,fl for the entire range of ci; similar agreement holds for larger
meso-pore sizes ranging to 30nm. For the 0.6, 0.75 and 1nm pore
sizes, the Hii are lower than the Hii,fl values by a constant factor Fi
defined by

Fi ≡ Hii/Hii,fl (15)

as shown in Fig. 11b. The factor Fi = 0.15, 0.32, and 0.8 for dp = 0.6,
0.75, and 1nm pores, respectively, implying that the narrower the
pore the larger is the departure from the fluid value Hii,fl; this par-
allels the results for mixture diffusion presented in Fig. 5b. An anal-
ogous picture holds for Ar; see Fig. 11c and d. The Fi values for
dp = 0.6, and 0.75nm pores are higher than for C1 because of the
smaller degree of confinement within the silica pores.

The convenient relation Hii = Fi × Hii,fl is found to hold for all
guest–host combinations investigated, and is illustrated by a selec-
tion of Hii data for pure Ne, C1 and Ar in zeolites, MOFs, and COFs;
see Fig. 12. It is remarkable to note the parallelism of the Hii − ci de-
pendencies in various structures despite the strong differences in the
corresponding Hi − ci relations. In open structures such as FAU, the
presence of cations has no significant influence on the Hii, whereas
there is a significant reduction inHii in MFI due to the higher degree
of confinement caused by the presence of cations. For diffusion of C1

in LTA-5A, the differences between the self- and M–S-diffusivities
were indistinguishable and therefore theHii are indeterminate. More
information on the influence of cations onHii is available in the Sup-
plementary material.

The factor Fi determined from unary simulations are collated
and plotted against the degree of confinement in Fig. 7b. The
trend is similar to those obtained from binary mixture simulations
(cf. Fig. 7a), as is to be expected. The results for LTA, CHA and DDR
(encircled symbols) exhibit rogue behavior, the reasons for which
have already been discussed earlier.

Diffusion in carbon nanotubes (CNTs) is a special case; the walls
of CNTs are smooth and Hi?Di,self yielding Di,self ≈ Hii,fl ≈ Hii,fl for
CNT(20,0) that has a diameter of 1.56nm (Krishna and van Baten,
2006).

5. Degree of correlations Hi/Hii

The Hii encapsulate the influence of correlation effects in unary
diffusion. The larger the value of the M–S diffusivity Hi with respect
to self-exchangeHii the stronger are the consequences of correlation
effects, and we may consider the ratio Hi/Hii as a measure of the
degree of correlations.

For meso-pores, i.e. dp > 2nm, the factor Fi = 1, and consequently
the ratio Hi/Hii progressively increases with increasing pore diame-
ter; see Fig. 13a. This implies that correlation effects are stronger in
larger diameter meso-pores. In separation applications, correlation
effects have the effect of slowing down the more mobile species and
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speeding-up the tardy ones; consequently the separation selectiv-
ity is reduced. Broadly speaking, therefore, smaller pore diameters
are to be preferred in separation applications. The corresponding
data for Hi/Hii for a small selection of micro-pore structures BEA,
MFI, FAU, NaX, NaY, LTA, MIL-47, CuBTC, Zn(bdc)dabco and IRMOF-
1 are shown in Fig. 13b and c. Correlation effects are stronger in
1D, and intersecting channel structures such as MIL-47, BEA, MFI,
and Zn(bdc)dabco than in “open” structures such as FAU, NaX, NaY,
CuBTC, and IRMOF-1. Correlation effects are particularly severe in
1D structures in which single file diffusion of the guest species oc-
curs (Kärger and Ruthven, 1992); generally speaking 1D structures
are not viable candidates for separation applications. It is interesting
to note that Hi/Hii is practically identical for FAU, NaX, and NaY; the
cations do not influence the degree of correlations for methane dif-
fusion in such open structures. An analogous result is also obtained
for ethane and propane. For LTA,Hi/Hii ≈ 0 for loadings below about
10kmolm−3, suggesting that correlations are of negligible impor-
tance. For LTA-5A, Hi/Hii ≈ 0 holds for the entire range of loadings.

With increasing degree of correlations, the first member on the
right side of Eq. (1) becomes of increasing importance. Conversely,
in cage structures such as LTA and CHA, the inter-cage hopping of
molecules across the narrow windows are practically uncorrelated;
for such structures the use of uncoupled flux relations, ignoring the
first right member of Eq. (1), is a reasonable approximation for en-
gineering design. The uncoupled flux relations were first suggested
by Habgood (1958) to model uptake experiments in LTA-4A. Lack
of coupling is attractive in separation applications, because there is
negligible slowing-down of the faster species (Krishna et al., 2008;
Li et al., 2007b).

Comparing the data in Fig. 13a–c we conclude that micro-porous
materials are superior in separation applications due to weaker cor-
relation effects than in meso-pores.

6. Estimation of H12 for micro-porous structures

There are two ways to estimate the H12 for micro-porous struc-
tures. In the first approach we proceed via the fluid phase Hij,fl. The
Hij,fl for fluid mixtures can be estimated from unary self-diffusivities
Hii,fl using the Darken (1948) relations (Krishna and van Baten,
2005a):

H12,fl = x1H11,fl + x2H22,fl (16)

We also note, in passing, that the formula (16) has been misprinted
in Krishna and van Baten (2009a). TheHii,fl are more accessible, both
experimentally (Bidlack and Anderson, 1964; Helbaek et al., 1996;
Shieh and Lyons, 1969) and fromMD simulations (Dysthe et al., 1999;
Fernández et al., 2004; Frenkel and Smit, 2002; Goo et al., 2002;
Merzliak and Pfennig, 2004; Wheeler and Newman, 2004; Zabala
et al., 2008) than the Hij. Procedures for estimation of the Hii,fl are
available in Poling et al. (2001) and Yu and Gao (2000). To illustrate
the accuracy of Eq. (16), Fig. 14 shows MD simulations of self diffu-
sivities Hii,fl of pure components, along with the H12 for a variety of
equimolar binary fluid mixtures as a function of the total fluids con-
centration, ct. The calculations of H12,fl according to Eq. (16), shown
by the continuous solid line, are in good agreement with the MD
simulated values of H12,fl over the entire range of concentrations.
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Fig. 12. The self-exchange coefficients Hii , for diffusion of pure Ne, pure C1, and pure Ar in zeolites, COFs, and MOFs at 300K as a function of the concentration, c1.
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An alternative to the Darken interpolation formula (16) for fluid
mixture diffusion is the logarithmic interpolation procedure due to
Vignes (1966)

H12,fl = (H11,fl)
x1 (H22,fl)

x2 (17)

This formula is also in good agreement with experimental data, as
witnessed in Fig. 14.

Multiplying H12,fl with the value of F, taken from the data in
Fig. 7a yields an engineering estimate forH12. DedicatedMDmixture
simulations may be needed to getter better estimates of F for use
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in engineering design. Another approach is to determine the Fi
from MD simulations of unary diffusion for each of the constituent
species, and estimate the required value of F for the mixture using a
Darken-type interpolation formula

F = x1F1 + x2F2 (18)

or a Vignes-type interpolation scheme

F = (F1)
x1 (F2)

x2 (19)

The exchange coefficient in micro-porous materials H12 can also
estimated from information on the self-exchange coefficients Hii of
the constituent species for the specific guest–host combination using
an interpolation formula analogous to Eq. (16)

H12 = x1H11 + x2H22 (20)

The accuracy of Eq. (20) is tested in Fig. 15c for diffusion of Ne–Ar,
C1–C2, and C1–C3 mixtures in a variety of zeolites and MOFs.

Adopting the Vignes formula for micro-pore diffusion gives

H12 = (H11)
x1 (H22)

x2 (21)

As seen in Fig. 15, the calculations following Eq. (21) provides a
good estimation of the H12 in mixtures. Both the Darken and Vignes
interpolation formulae are to be preferred to the “empirical” inter-
polation formula (7), because their more transparent physical basis.
Furthermore, they have the distinct advantage that the saturation
capacities are not required. The use of Eqs. (20) and (21) requires
data on the self-diffusivity, Di,self and M–S diffusivity Hi for the con-
stituent species; such information is available only from simulations
and not from experiments; these drawbacks also hold for the appli-
cation of Eq. (7). Generally speaking, Eq. (21) is superior in its pre-
dictions when compared to Eq. (20), especially at high loadings ct;
see Fig. 15.

7. Self-diffusivities in n-component mixtures

The M–S equations (1) can be applied to derive the following
expression for the self-diffusivities in n-component mixtures inside
micro- or meso-pores:

1
Di,self

= 1
Hi

+
n∑

j=1

xj
Hij

= 1
Hi

+ xi
Hii

+
n∑

j=1
j� i

xj
Hij

; i = 1, 2, . . . ,n (22)

Invoking the Darken or Vignes interpolation schemes, allows the
estimation of the Di,self from unary diffusion data. Fig. 16 presents a
comparison of MD simulated values of the self-diffusivities Di,self in a
variety of a binary mixtures in different micro-porous hosts with the
predictions of Eq. (22), along with the Vignes interpolation formula
(21). The good predictive capability of theM–Smodel holds for all the
guest–host combinations, as evidenced in the detailed comparisons
presented in the Supplementary material.

The expression (22) is useful for the interpretation of experimen-
tal NMR data on self diffusivities (Zhao and Snurr, 2009).

8. Estimation of the matrix [D] for binary mixture diffusion

For binary mixtures the M–S equations (1) can re-written to eval-
uate the fluxes Ni explicitly

Ni = −
2∑

j=1

�ij
cj
RT

∇�j; i = 1, 2 (23)
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where the elements of 	ij of the matrix [	] are directly accessible
from MD simulations. From Eq. (1) we derive

[	] =
[ 1
H1

+ x2
H12

− x1
H12

− x2
H12

1
H2

+ x1
H12

]−1

(24)

Some representative comparisons of the MD simulated values of
	ij with estimations using MD simulated unary diffusion data on Hi
andHii at the mixture loading ct, along with the Vignes interpolation

formula (21) are shown in Fig. 17. The agreement between the two
sets is good for all the guest–host combinations investigated; see
information in the Supplementary material.

9. Conclusions

The M–S equations (1) provide an unified description of mix-
ture diffusion in both micro- and meso-porous materials. The unified
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approach uses loadings ci, expressed in terms of accessible pore vol-
ume inside the porous structures.

The major conclusions of the present study are summarized
below.

(1) For mixture diffusion inside cylindrical silica meso-pores, dp >
2nm, the binary exchange coefficient H12, is found to be equal
to the corresponding value in the binary fluid mixture, H12,fl,
over the entire range of mixture concentrations, ct.

(2) For mixture diffusion inside zeolites, MOFs, and COFs, with chan-
nel dimensions smaller than 2nm,H12 is found to be lower than
H12,fl, by a constant factor F.

(3) Analogously, the self-exchange coefficient for unary diffusion
Hii inside micro-porous structures is related to the fluid phase
self-diffusivity Hii,fl by a constant factor Fi.

(4) Both factors F and Fi show similar dependences on the degree
of confinement of guest molecules within the channels of zeo-
lites, MOFs, and COFs; see Fig. 7. Cage-type zeolites with narrow
windows, such as CHA, DDR, and LTA, exhibit “rogue” behavior;
for these structures the use of uncoupled equations (1), ignoring
the first member on the right hand side, is a reasonable approx-
imation for engineering design.

(5) The M–S diffusivity Hi for micro-pores has different character-
istics than for meso-pores. The Hi − ci dependences are funda-
mentally different. Other differences have been underlined in
the text.

(6) With loadings expressed in terms of the accessible pore vol-
umes, the saturation capacities for a given guest species is ap-
proximately the same in various micro-porous host structures;
this makes the estimation of ci,sat , required in the modeling of
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Fig. 16. Comparison of MD simulated values of the self-diffusivities Di ,self in a variety of binary mixtures in different micro-porous hosts with the predictions of equation
(22), along with the Vignes interpolation formula (21). A more extensive set of comparisons is to be found in the Supplementary material.

the loading dependence of the Hi, a more tractable proposition.
(7) Correlation effects, as quantified by the ratioHi/Hii, are stronger

in meso-porous than in micro-porous structures. For zeolites,
MOFs and COFs, the strength of correlations generally decrease
in the following order: (1) 1D and intersecting channels, (2)
cavities with wide windows, and (3) cages separated by narrow
windows.

(8) Either the Darken-type equation (20) or the Vignes-type equa-
tion (21) are to be preferred to the “empirical” interpolation for-
mula (7) because of their more transparent physical basis. These
equations allow estimation of theH12 for mixture diffusion from
the unary self exchangeHii. The extensive tests presented in the
Supplementary material indicate the Vignes equation (21) to be
the preferred interpolation scheme and is recommended for use.

(9) Multiplying the F, estimated using data in Fig. 7 or from ded-
icated MD simulations, with the fluid phase H12,fl provides an
engineering estimate for the H12.

(10) The unified description seamlessly bridges the values of the ex-
change coefficient H12 for micro- and meso-porous materials as
a function of the degree of confinement.

The unified approach to modeling of diffusion in micro- and
meso-porous materials is particularly convenient for use in engi-
neering design of separation and reaction systems using hybrid ma-
terials, such as biporous adsorbents (Delgado and Rodrigues, 2001),
meso-porous zeolites (Hoang et al., 2005) and mixed matrix mem-
branes (Sheffel and Tsapatsis, 2009).

Notation

ci concentration of species i, molm−3

ct total concentration in mixture, molm−3
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dp pore diameter, m
Di,self self-diffusivity of species i within pore, m2 s−1

Hii self-exchange coefficient, m2 s−1

Hii,fl self-diffusivity of species i in fluid phase, m2 s−1

Hi M–S diffusivity for molecule–wall interaction, m2 s−1

Hi(0) zero-loading M–S diffusivity for molecule–wall inter-
action, m2 s−1

H12 M–S exchange coefficient defined by Eq. (1), m2 s−1

H∗
12 M–S exchange coefficient defined by Eq. (4), m2 s−1

H12,fl M–S diffusivity in binary fluid mixture, m2 s−1

Di,Kn Knudsen diffusivity of species i, m2 s−1

fi bulk fluid phase fugacity of species i, Pa
F factor defined by Eq. (9), dimensionless

Fi factor defined by Eq. (15), dimensionless
kB Boltzmann constant, 1.38×10−23 Jmolecule−1 K−1

n number of components in mixture, dimensionless
Ni molar flux of species i, molm−2 s−1

R gas constant, 8.314 Jmol−1 K−1

T absolute temperature, K
xi mole fraction of species i based on loading within

pore, dimensionless

Greek letters

	ij diffusivities defined by Eq. (23), m2 s−1

� Lennard-Jones interaction energy parameter,
Jmolecule−1
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�i viscosity of species i, Pa s
�i fractional occupancy of species i, dimensionless
�i molar chemical potential, J mol−1

� framework density, kgm−3

� Lennard-Jones size parameter, m
� fractional pore volume, dimensionless

Subscripts

fl referring to fluid phase
i referring to component i
t referring to total mixture
Kn referring to Knudsen
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