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Describing Binary Mixture Diffusion in Carbon Nanotubes with the
Maxwell—Stefan Equations. An Investigation Using Molecular Dynamics
Simulations
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Amsterdam, The Netherlands

Adsorption and diffusion of pure components and binary mixtures containing methane, ethane, propane,
n-butane, isobutane, and hydrogen at 300 K in a variety of configurations of carbon nanotubes (CNTs) have
been investigated using configurational-bias Monte Carlo (CBMC) simulations and molecular dynamics (MD)
simulations. Both self-diffusivitied); se, and the Maxwel-Stefan (MS) diffusivities;p;, were determined

for a variety of molecular loading®, approaching saturation limits. For comparison purposes, self-diffusivities
were also determined in pure fluids of varying densities using MD. At low loadigthe D; e correspond

to the value for low-density gases. With increasing loadings, howeveBD;thgin CNTs are slightly higher

than the values in fluids when compared at the same molecular density. In CNstheés significantly
smaller in magnitude than the MS diffusivity;, signifying strong correlations between molecular jumps
along the tube. Consequently, for mixture diffusion, the component self-diffusivities are close together. MD
simulations of binary-mixture diffusion demonstrate that the mixture-diffusion characteristics can be estimated
with good accuracy from the pure-component diffusion parameters using the MS diffusion formulation. In
the estimation procedure, the binary-exchange param@ters estimated from the pure-component self-
exchange coefficient®;; andP,; using the interpolation scheme suggested earlier for transport in zeolites
(Skoulidas et alLangmuir2003 19, 7977).

1. Introduction dynamics, closely following the treatment of Skoulidas efal.
for binary diffusion through zeolite membranes. The matrix of

Carbon nanotubes (CNTs) consist of a graphite sheet rolled onsager coefficientsL| describing binary diffusion was ob-
up into a cylinder with a diameter on the order of a nanometer tained by fitting of the MD simulation data for binary diffusion.
and a length of several micrometers; see Figure 1 parts a and | recent years, the MaxwellStefan (MS) diffusion formula-
b. Since their discovery in 1991 by lijifhas nested structures  tion has been used with considerable success to describe mixture
of concentric shells, carbon multiwall and single-wall nanotubes (iffusion in zeolite<t0-47 Adopting this formulation for one-
have been synthesized using a variety of technigdesNTs dimensional (1D) transport within a CNT tube, the flutgof
possess potential as a stable and effective adsorbent materiadpecied, expressed in molecules per second per square meter
for hydrogen storage and for separation of a variety of mixttires, of cross-sectional area, can be related to the chemical potential

including nitrogen and oxygetf, alkanes® enantiomers, gradients by

carbon monoxide and hydrogéhhydrogen isotope¥, and

alkanes and hydrogéa.2 1 6 n ON; — ON, N N; 1 @)
| t , molecular simulations techniques, such ‘——W‘:Z— o =40
n recent years, molecular simulations techniques, such as Ay ke T i & 0P )

(configurational-bias) Monte Carlo (CBMC) and molecular
dynamics (MD), have proved to be potent tools for exploring ) ) o )
the adsorption and diffusion characteristics of a variety of 'N€d 1,0iis the loading within the CNT expressed in molecules
molecules in CNTs, and a large number of publications on this P€r unit tube length®; s represents the saturation loading of

subject have emerged from a number of research groupsSPecies, nis the total number of diffusing species, akglis
including those of ShoR~18 Sinnott27.19-22 Sandlef; 6823 the Boltzmann constant. Equationd&finestwo types of MS

Bhatial”-24Keil,25-30 Seator?! Garberoglic233Sheintuct?435 diffusivities: B; and Bj. If we have only a single sorbed
Jiang?® Nicholson3’ and Nittal® component, then only onB; is needed, and in this casb; is
equivalent to the “corrected” diffusivit§ The binary-exchange
coefficientsby reflectcorrelationeffects in mixture diffusiort?

For mixture diffusion, the correlation effects tend to slow the
more-mobile species and speed up the relatively sluggish ones.
A lower value of the exchange coefficieBy; implies astronger
correlation effect. For two-component mixture diffusion within
MFI zeolite, a logarithmic interpolation formula has been
suggested?

=1

Diffusion in CNTs has been shown to be much more rapid
than in other nanoporous structures such as zedfité438
While a majority of the published studies relate to single-
component adsorption and diffusion, a few papers have also
addressed adsorptibhand diffusiot?13 of mixtures.

From the viewpoint of design of separation devices such as
CNT membranes for separation of mixtures, it is essential to
use the proper set of diffusion equations. Chen and Stralve
adopted the Onsager formulation based on irreversible '[hermo-@)z’sa.ll.)12 =[0,..P1 ]]91/(®1+®z)[@1‘5a£2 ;] BAEr+ed =

. . ®l,saﬂ921 (2)
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Figure 1. Two configurations of CNTs, (a) zigzag, CNT (20, 0), and (b) armchair, CNT (10, 10).

Table 1. MD Simulation Campaigns with Various Alkanes in Table 2. Lennard-Jones Parameterd
Various CNT Topologies site o (clks)
CNT n components campaign H2 0.296 34.0
zigzag (20,0) 1 C1,C2,C3,nC4,iC4 pure, varyiBg C(wall) 0.34 28
2 Ci1/C2,C1/Cs3, 50—-50 mixtures, varyind@® .
C1/nc4, cl/ica aThe units ofo are nm, and those ot/kg) are K.
2 Cl/c2 varyings, keeping® constant . . . . . .
armchair (10,10) 1 C1, H2 pure, varyiy Table 3. Dimensions (in nm) of CNTs Used in the Simulations.
2 Cl/H2 56-50 mixtures, varyingd CNT diameterx unit cell length
_ 2 Cl/H2 varyingx, kgepmg@ constant Zigzag (20,0) 15674 0426
zigzag (17,0) 1 C1 pure, varying .
: ) zigzag (17,0) 1.3328 0.426
zigzag (15,0) 1 C1 pure, varying .
zigzag (11,0) 1 C1 pure, varyir@ zigzag (15,0) 1.1765 0.426
' ’ zigzag (11,0) 0.8641 0.426
aEach simulation was run for 5 ns, and the MSD data were fitted for armchair (10,10) 1.3579 0.246

the 0.5-5 ns time range. aThe diameter represents the center-to-center distance of C atoms on

. - the CNT wall.
tion on the pure-componeselfexchange coefficient®;; and

P, The self-exchange diffusivitie®; are determined from 107 g

information on MSand self-diffusivities*? 105k g g; %gggg O@&
An important advantage of the MS formulation is that mixture E|l O €3, CNT(20,0)

diffusion can be estimated on the basis of pure-component 10° | A nC4, CNT(20,0) [&9@

diffusion and adsorption data. The major objective of the present e L| © H2CNT(10.10) ;%

communication is to examine the extent to which the MS theory % e

is successful in describing mixture diffusion in CNTs. For this 3 10F é&?@

purpose, we use MD simulations to study diffusion of both pure E 102 L o

components (methane (C1), ethane (C2), propane (&8)tane é&)

(nC4), isobutane (iC4), and hydrogen (H2)) and binary mixtures 0 J

(C1-C2, C1-C3, C1-nC4, C1iC4, and C1H2) for a variety 100 L

of loadings in CNTs of both zigzag ((20, 0), (17, 0), (15, 0), ﬁ

and (11, 0)) and armchair (10, 10) configurations. Additionally, 10'110_2 o 160 161 152 163

CBMC simulations were carried out to determine the sorption

isotherms for pure components and binary mixtures; this o oo 1ol MsD data for C1, G2, C3, and nC4 in CNT (20, 0) at

'nformat'on is required for 'nterpretat'on of the diffusion data. a loading of 1.956 molecules/nm. Also shown is MSD data for H2 in CNT
We aim to show that correlation effects are very strong for (10, 10) at a loading of 2.25 molecules/nm. Diffusivities were determined

diffusion in CNTs, much stronger than for diffusion within by linear regression in the time range of SG800 ps.

zeolites. Furthermore, we aim to show that such strong . . .

correlation effects have a significant impact on mixture diffusion P€Nding between three neighboring beads; a Ryckdstie-

behavior that has hitherto not been fully appreciated. The second™ans potjer;)tial contro':s thehtorsilc))n ‘an!e' The beaﬁs in % Chﬁin
major objective is to test the applicability of the interpolation separated by more than three bonds interact with each other

- . L : through a Lennard-Jones potential. The force field for the CNT
f I 2) f t lat ffects in b -mixt ) : :
doi;ngign(.eq ) for capturing correlation effects in binary-mixture wall and H2 are given in Table 2. The force field for the C

wall is the same as that developed for grapkit&:27.51The
: . . force field for H2 is taken from the literatuP8 The force fields
2. CBMC and MD Simulation Methodologies for alkanes have been given in detail in an earlier public&fon.
Simulations have been carried out for diffusion, and adsorp- The solid-fluid potentials were derived from the Lorentz
tion, of pure componentsi(= 1) and binary f = 2) mixtures Berthelot combining rulesi; = (01 + 65)/2; € = \/?ej The
containing C1, C2, C3, nC4, iC4, and H2 in both zigzag and Lennard-Jones potentials are shifted and cut at 1.2 nm. We
armchair CNT configurations; the various campaigns are assume that the nanotubes are completely rigid, with all carbon
specified in Table 1. We use the united atom model. The force atoms fixed in their ideal lattice positions. The recent study of
field for the alkanes are the same as those reported byChen et al® has confirmed that the accounting for the flexibility
Dubbeldam et at® We consider the CiHgroups as single, for the CNT tube wall has only a small influence on the
chargeless interaction centers with their own effective potentials. diffusivities when the pressure is abovel bar.
The beads in the chain are connected by harmonic bonding Pure-component adsorption isotherms were determined using
potentials. A harmonic cosine bending potential models the bond configurational-bias Monte Carlo (CBMC) simulations follow-

time / ps
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Figure 3. CBMC simulated isotherms (a) for C1 in CNT (11, 0), CNT (15, 0), CNT (17, 0), and CNT (20, 0); (b) for C1, C2, C3, nC4, and iC4 in CNT
(20, 0); and (c) for C1 and H2 in CNT (10, 10).

Table 4. Pure-Component Saturation Capacities and Diffusion Data

parameters describing self-exchange, Reed-Ehrlich model parameters

defined by eq 9 ineq 10 and (11)
saturation capacity, inflection,
component and CNT O sat Oini bi(0) a b y [
C1lin CNT (20, 0) 20 2 7500 0.0006 0.037 0.04 3.3
C1lin CNT (17, 0) 13 2 7500 0.0005 0.032 0.04 3.2
C1in CNT (15, 0) 10 2 7500 0.0003 0.03 0.04 25
Clin CNT (11, 0) 2.75 2 7500 0.0002 0.025 0.3 0.5
C2in CNT (20, 0) 14 2 2500 0.0012 0.03 0.17 3.0
C3in CNT (20, 0) 9 2 950 0.0032 0.023 0.7 2.0
nC4in CNT (20, 0) 8 2 720 0.0033 0.0282 0.9 15
iC4 in CNT (20, 0) 7 2 720 0.0033 0.024 0.9 15
Clin CNT (10, 10) 13 2.2 7500 0.00035 0.028 0.35 2.5
H2in CNT (10, 10) 40 2.2 9200 0.0005 0.032 0.2 2.6

aThe data or®; sarand Oy are in molecules per nm. The zero-loading diffusivit®g0) are in units of 108 m2 s™1,

ing the procedure described in earlier publicatf8i$>*and a minimum tube length of 72 unit cells was used. To get accurate
simulation box consisting of a single CNT, with the length of statistics for diffusivity determinations at low loadings, a min-
36 unit cells; the unit-cell dimensions for the various CNTs imum number of 40 molecules was used, resulting in simulation
simulated are specified in Table 3. boxes with tube lengths of a few hundred unit cells for low
Diffusion is simulated using Newton’s equations of motion |oadings. All simulations were carried out on clusters of PCs
until the system properties, on average, no longer change inequipped with Intel Xeon processors running at 3.4 GHz on
time. The Verlet algorithm is used for time integration. The the Linux operating system. Each MD simulation, for a specified
energy drift of the entire system is monitored to ensure that the loading, was run for 72 h, determined to be long enough to

time steps taken were not too large. A time step of 5 fs was gpiain reliable statistics for determination of the dif-
used in all simulations. For each simulatiamtializing CBMC fusivities.

moves are used to place the molecules in the domain, minimiz-

ing the energy. Next, follows aequilibration stage. Like the The self-diffusivities D ser in single-component and binary

initialization stage, this consists of CBMC moves, but now using Mixtures were computed by analyzing the mean square dis-

velocity scaling; at each cycle, all adsorbent pseudo-atom placement of each component:

velocities are scaled to match the specified temperature. After

a fixed number of initialization and equilibrium steps, the MD N

simulationproductioncycles start. For every cycle, the statistics D — i i i ' t+ AL — 1 (D)2 3

for determining the mean square displacements (MSDs) are i.self ™ 2N_AIITWA»[[(;U”( )~ )91 @)

updated. The MSDs are determined for time intervals ranging ! -

from 2 fs to 1 ns. To do this, an ord&ralgorithm, as detailed

in Chapter 4 of Frenkel and Sniftjs implemented. The Nose In this expressionN; represents the number of molecules of

Hoover thermostat is applied to all the diffusing particles, species andr;(t) is the position of moleculé of species at

ensuring that the dynamical properties correspond to that of angny timet. Typical MSDs are shown in Figure 2. For short

NVE ensemblé> . _ times, the MSDs vary a#, suggesting ballistic motion of
The MD simulations were carried out for a variety of molec-  ,5ecules. Diffusive motion is realized wher 100 ps. The

ular loadings within the CNT. For 1D transport of molecules it gjyities were determined by linear regression of the MSD
within CNTs of different configurations, it is convenient to data in the time interval 5665000 ps

express the loadings in terms of molecules per tube lel@yth,
This also makes it more convenient to compare with transport  In the work of Chen and Shéf on diffusion of CH—H,
within zeolites having 1D channels, e.g., AFl, MTW, MOR, binary mixture in CNT, the Onsager matrix][ defined by \)
FER, and TON. For zigzag CNTs, a minimum tube length of = [L](Vu), was determined from the MSDs. From the viewpoint
36 unit cells was used, and for the armchair configuration, a of the application of the MS diffusion formulation, we find it
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Figure 4. Diffusion of C1 in CNT (20, 0) at 300 K. The MD simulation results (open symbols) foB&Xadr, i, Pii and (b)Pii/Bi. The continuous solids

represent calculations using eqs B with parameters specified in Table 4.
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Figure 5. Ratio of self-exchange to MS diffusivity;/B; from MD simulations (open symbols) (a) for C1 in CNT (11, 0), CNT (15, 0), CNT (17, 0), and

CNT (20, 0); (b) for C1, C2, C3, nC4, and iC4 in CNT (20, 0); and (c) for C1 and H2 in CNT (10, 10). The continuous solids represent calculations using

eq 9 with parameters specified in Table 4. Also shown in (a) are the valubg/Bf for C1 in AFI at 300 K.

Figure 6. Snapshots of location of methane molecules in CNT (20, 20) at
loadings of (a)®; = 1.11 and (b)®; = 4.62 molecules/nm.

more convenient to define a matriA],

2
N, =— @@i;mj Vug 1=1,2 4)
and determine the elements of this matrix from
11 N N
Ay = Z_I\IiAIItTwZ[[(;(rI’i(t + At) — rl,i(t)))(kZ(r Kt + A —

N1 (5)

In this expression; andN; represent the number of molecules
of speciesi andj, respectively, and;(t) is the position of
moleculel of specied at any timet. From the definition®; =
NiAcnt/V, whereV is the volume of the simulation box, we see
that p®iA; = LjjkgT, and therefore, the Onsager reciprocal
relationsL; = L; yields

®iAij = ®jAji (6)
For single-component diffusiom = 1, A;; can be identified
with the MS, or “corrected”, diffusivityb;.

3. Results for Single-Component Sorption and Diffusion

CBMC simulation results for pure-component sorption of C1,
C2, C3, nC4, iC4, and H2 in various CNT configurations are
summarized in Figure 3. From these isotherms, we determine
the saturation capacitie®; ;5 as listed in Table 4 for each
specied in a particular CNT configuration.

Consider diffusion of C1 in CNT (20, 0); the MD simulation
results for self-diffusivityD1 seif and the MS diffusivity D;
are shown in Figure 4a for a range of molecular loadings
approaching saturation limits. Also shown is the self-exchange
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Figure 7. M-S diffusivity, B;, from MD simulations (open symbols) (a) for C1 in CNT (11, 0), CNT (15, 0), CNT (17, 0), and CNT (20, 0); (b) for C1,

C2, C3, nC4, and iC4 in CNT (20, 0); and (c) for C1 and H2 in CNT (10, 10). The continuous solids represent calculations using eq 9 with parameters
specified in Table 4. Also shown in (a) are the value®pfor C1 in AFI at 300 K.

coefficient®1; calculated from

For describing the loading dependence of the MS diffusivity,
we use the model attributed to Reed and Ehtfiéhthat has

. = 0 ) been applied in the case of zeolite diffusityrt®>’even though
1 1 1 a physical justification for employing this for CNTs is not
D, Se”_ 51 available as yet. In the Reedthrlich model, the presence of
’ neighboring molecules is assumed to influence the jump
whered is the fractional occupancy: frequencies by a factdr= exp@E/ksT), wheredE represents
the reduction in the energy barrier for diffusion. This model
® leads to the following expression for the MS diffusivity as a
0= 0. (8) function of the fractional occupancy,
: - , 1+e
The ratio of the self-exchange coefficient to the MS diffu- P, =P,(0y——— (10)
sivity, P14/B;, shown in Figure 4b, increases linearly with 1+ elf)*

loading until a loadin®in = 2 molecules/nm is reached. For
values® > Oy, P12/B; is practically loading-independent. The
self-exchange data were correlated in the form

'Dll_
——=a+hf for® <O,

wherezis the coordination number, representing the maximum
number of nearest neighbors; for 1D transport within CNTSs,
we takez = 2. The other parameters are defined as follows
(see Krishna et &l for more detailed discussions and deriva-
tions):

b, !

9 — 0)f
Py Ow o O SO peimwa-aa-1h
E— o, or® = B,

and the values of the fitted parameterandb are given in
Table 4. Snapshots obtained from CBMC simulations, showing
the siting of methane molecules in CNT (20, 20) at loadings of
©® = 1.11 and® = 4.62 molecules/nm, are shown in Figure 6

The parameter§ have been fitted with the occupancy depen-
dence
f=y exp(©0) 12)

The fitted parametery and 6 for various molecule CNT

parts a and b. From examination of these and several othercombinations are listed in Table 4. Partscof Figure 7 show

snapshots for all molecHeCNT combinations, it appears that,
for ® > Oy, there is a distinct layer of adsorbed molecules
concentric to the CNT tube, whereas f&@ < Oiy, the

that the loading dependence & in CNTs is adequately
captured by the ReeeEhrlich model, which must be considered
to be an empirical fit at this stage. The MS diffusivities in CNTs

molecules appear to be randomly distributed inside the inner are about 23 orders of magnitude higher than the value for

core, indicative of gaslike motion inside the tube. Equation 9
was found to be a good representation for all molee@&T
combinations studied in this work; see Figure 5. The values of
P1/P; in CNTs are about 2 orders of magnitude lower than
those in zeolite425657 this can be seen by comparison with
the value for C1 in AFI zeolite that has 1D channels of 0.73
nm size (the simulation methodology used for AFl is identical
to that employed in our earlier work on diffusion in 1D MOR

diffusion in AFI zeolite; see comparison in Figure 7a.
From egs 9-12, we are able to calculate the self-diffusivity
as a function of loading usifg

(13)

channel®); see Figure 5a. As a consequence, correlation effects Figure 8 demonstrates the good agreement between the MD

on mixture diffusion are much stronger in CNTs than in zeolites.

simulatedD1 seif Values (open symbols) with calculations fol-
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parameters specified in Table 4.
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Figure 9. Energy landscapes for (a) CNT (20, 0), (b) CNT (17, 0), (c)
CNT (15, 0), (d) (11, 0), and (e) AFI zeolite. The energy landscape diagrams
were obtained by using a CH2 cutoff potential of 20 kJ and using the
methodology of Clark et &°

E

lowing eq 13 for the various molecul€CNT combinations. At
a loading of 2 molecules/nm, corresponding@gs, there is a
slight inflection in the loading dependence Dfsqr. In Figure
8a, theD;seif Values for C1 in various zigzag CNTs are also
compared with the corresponding value in 1D channels of AFI
zeolite. The self-diffusivities in CNTs are about 2 orders of
magnitudes higher than that in AFI.

The explanation for the higher MS and self-diffusivities in
CNTs is that the walls of the CNTs are much smoother than in

To gain further insights into the loading dependencBt
in CNTs, we also performed MD simulations to determine self-
diffusivities in pure fluids (i.e., without restraining walls) at
various molecular loadings; the simulation methodology for pure
fluids is that described in an earlier publicat®nFigure 10
compares th®; serin CNTs and those in pure fluids where the
comparison is made at the same loading expressed in molecules
per cubic nanometer. For this purpose, the cross-sectional area
of the CNT was taken to bed?cnt/4, where thedent Values
are specified in Table 3; these correspond to the center-to-center
distance of the C atoms on the wall. The accuracy of the MD
simulations for pure fluids is evidenced by the very good
agreement with the experimental data of Greiner-Schmid@t al.
for C1, C2, and C3; compare the crosses with pluses in Figure
10 parts a-c. At low loadings, there is good agreement between
the self-diffusivities in pure fluids and in CNTs, implying that
the motion inside the tube is fluid(gas)-like. At higher loadings,
the Diseirin CNTs are slightly higher than those in pure fluids.
One possible reason for the higher diffusivities in CNTs could
be due to the assumption of a rigid wall. Jakobtorweihen et
al2% have compared diffusivities of C1 in CNT (20, 0) for
flexible and rigid walls and shown that the assumption of rigid
walls leads to a slightly higher diffusivity value.

4. Results for Binary Mixture Sorption and Diffusion in
CNT

First let us consider sorption of a binary mixture of C1 and
C2 in CNT (20, 0) at 300 K; CBMC simulations fqi = p;
are shown in Figure 11a. At high system pressures, the loading
of C2 reaches a maximum and then falls down; this is due to
size entropy effects as explained by Jiang et alch entropy
effects are entirely analogous to that observed for mixture
sorption within 1D channels of zeolité%53

MD simulation results foAj and D; seif for equimolar Ct-

zeolites, as evidenced by the energy landscapes for various CNTC2 binary mixture diffusion in CNT (20, 0) for a variety of
zigzag configurations which are compared with that in AFI in total mixture loading® = ©; + ©; are shown by the symbols
Figure 9; see Clark et &.for description of landscape diagrams in Figure 11b. For estimations of diffusivities in binary mixtures
for zeolites. The same conclusion was reached by Skoulidas eton the basis of pure-component diffusivity data, we combine
al.»* by comparing diffusion in CNT with that in MTW zeolite. eqs 1 and 4 to obtain an expression that allows calculation
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of the elements); eq 2, with the pure-component self-exchanBe and b,
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1 2
The self-diffusivitiesD; seir in the mixture can be calculated Orsat O sa
from?*®

using the parameters from Table 4. Similarly, the MS diffu-
sivities in the binary mixtureb; and®,, are obtained from the
Reed-Ehrlich formula (eq 10), using the total occupancy in
the mixture. Calculations using eqgs 14 and 15 are shown by
Following the work of Skoulidas et &f. for diffusion in the continuous solid lines in Figure 11b; the agreement is very
zeolites, we estimate the binary-exchange param®@igfrom good. Because of strong correlation effects, contributionstf 1/

1 1,6 % 1 _1
Dl,self Dl Dll 'Dlz D2,se|f DZ

0 0
L2, 0

2
2+ 15
DZZ DZl ( )



Ind. Eng. Chem. Res., Vol. 45, No. 6, 200@091

(a) (b) ) (©)
8 C1/C2, 50-50 mix; 300 K o C1/C3, 50-50 mix; 300 K o +  C1, fluid
T % aé o102 T T D% O C1,CNT(20,0)
@ @ B ‘» X nC4, fluid
€ X x+§+ 1 E XE*B £ 8+B+9 O nC4, CNT (20,0)
e Xx = x % o x +9%
- 1 -~ 1 ~ 1
> 10 > 10 X N 10 X
= = . : >§§$§<§++
=} . > . >
& + C1, fluid + E + C1, fluid £ il
E 0 )§ t 0 et 0
3 10 O 1, CNT (20,0) ¥ 3 10 O 1, CNT (20,0) ;;F 3 10
X €2, fluid X €3, fluid % n
O C2,CNT (20,0 O €3, CNT (20,0 + C1/nC4, 50-50 mix; 300 K &
X
10-1 1 [ 1 1ol ] 10—1 1 11l 111111l J 10—1 1 1 111l 1 1 1111l
0.1 1 10 0.1 1 10 0.1 1 10
molecular packing density / molecules nm™ molecular packing density / molecules nm? molecular packing density / molecules nm*
(d) (e)
+ 1, fluid -
F o 1, ONT (20,0) . X4 C1/H2, 50-50 mix; 300 K
Ok X iC4, fluid .
2 LO . [
. 107k Eka% O iC4, CNT (20,0) .
N E oF o
E F 3" B E 102t
Iﬁé [ X %% "io_ 2
- 1L -~ C
> 10 : X > .
= F x>§3§$<++ = i
3 r B
£ H f £ o1 + cC1,fluid %
= 100 & = F
& F % 3 F o c1,CNT (10,10)
r ' - + X H2, fluid
[ C1/iC4, 50-50 mix; 300 K L O H2 CNT (10,10)
10—1 L 1 Lol 1 Lol J 1 Lol L 1 11l 1

10°

0.1 1 10 0.1 1

molecular packing density / molecules nm?

10

molecular packing density / molecules nm*
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volumetric loadings, the cross-sectional area of the CNT was taken taldg?4, with dent values as specified in Table 3.

and 1B, can be ignored as a first approximation, making the
self-diffusivities in the mixture close to one anothBx, seis ~
Daserand A1 &~ A1z =~ Ay for an equimolar mixture (i.e@;

= @2).

For diffusion in the C+C2 mixture at a total loadin® =
2.608 molecules/nm, MD simulations were carried out with
varying mole fractions; the data (open symbols)AgrandD; sei
are shown in Figure 1lc. Again, the agreement with the

(1) The MS and self-diffusivities of pure components in CNTs
are about 23 orders of magnitude higher than those for
diffusion in 1D channels of zeolites. The higher values in CNTs
are due to the smoothness of the CNT walls.

(2) The self-diffusivities of pure components in CNTs are
quite close to that in the corresponding pure fluid, and their
dependence on the molecular packing density is nearly the same.

(3) Correlation effects are much stronger in CNTs than in

estimations from pure-component data using eqs 14 and 15,zeolites. This is evidenced by the fact tha{P; are about +2
shown by the continuous solids lines, is very good. Similar good orders of magnitude lower than for zeolites.

agreement between the predictions of the MS theory and MD

simulations was obtained for binary mixtures-813, C1-nC4,
and CLiC4 in CNT (20, 0) and for C+H2 in CNT (10, 10);

(4) The MS formulation, with the interpolation formula (eq
2), is successful in estimating the binary mixture diffusion
characteristics in all investigated cases. Since correlation effects

these results are presented in graphical form in the Supportingare extremely strong in CNTs, the estimation of the exchange

Information accompanying this publication.

Because of strong correlation effects, mixture diffusion in
CNTs is quite different from mixture diffusion in fluids, even
though there is strong agreement for self-diffusiopume fluids.

To stress this point, we also performed MD simulations to
determine self-diffusivities in various equimolar €C2, C1-

C3, C1-nC4, CL-iC4, and CX-H2 fluid mixtures (i.e., without
restraining walls); the comparison of results in CNTs and fluids
is shown in Figure 12 parts—ge. With increasing molecular
packing densityD; serin CNTs come closer together. For fluids,
the self-diffusivities are much further apart.

Conclusions

We have carried out MD simulations to study diffusion of

pure components and binary mixtures containing C1, C2, C3,

nC4, iC4, and H2, in a variety of CNT configurations. The
following insights and conclusions emerge from this study.

parameterP;, is particularly crucial. Unlike in the case of
diffusion in zeolites, contribution of #; terms in eq 14 for

[A], and in eq 15 forDjser, can be ignored without loss of
accuracy. Consequently, in CNTs, tesercome closer to one
another than in either fluids or in zeolites. This aspect has
profound implications in the development of separation pro-
cesses using, say, CNT membranes. Separation selectivities will
beloweredbecause of the strong correlation effects. This aspect
needs further investigation.
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Notations

Acnt = cross-sectional area of CNT,?2m

a = constant describing self-exchange, dimensionless
b = constant describing self-exchange, dimensionless
dent = diameter of CNT tube, m

Di seif = self-diffusivity, m? s71

b, = Maxwell—Stefan diffusivity of specieg m? s1
Pi(0) = zero-loading MS diffusivity of specieis m? s™1
b; = self-exchange diffusivity, s

P, = binary-exchange diffusivity, As™1

f = Reed-Ehrlich parameter, dimensionless

ks = Boltzmann constant, 1.38 10723 J molecule! K1
Ni = molecular flux of specieg molecules m? s™1
Ni = number of molecules of specigsmolecules

p = system pressure, Pa

pi = partial pressure of speciésPa

R = gas constant, 8.314 J mélK 1!

t=time, s

T = absolute temperature, K

V = volume, n?

x; = mole fraction of speciesin mixture, dimensionless
z = coordination number, dimensionless

Greek Letters

S = Reed-Ehrlich parameter, dimensionless

y = parameter describing occupancy dependende difnen-
sionless

0 = parameter describing occupancy dependende difnen-
sionless

[A] = matrix of Maxwell-Stefan diffusivities, rhs!

€ = Reed-Ehrlich parameter, dimensionless

6 = fractional occupancy, dimensionless

®; = molecular loading, molecules per unit length of CNT

O sat = saturation loading, molecules per unit length of CNT

ui = molar chemical potential, J molecuafe

Subscripts

infl = referring to inflection point in loading
sat= referring to saturation conditions

self = referring to self-diffusivity

i,j = components in mixture

Vector and Matrix Notation

(+) = vector
[-] = square matrix
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Describing binary mixture diffusion in carbon nanotubes with
the Maxwell-Stefan equations. An investigation using
molecular dynamics simulations
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Contains data on Ay, D, .o, B;, D;; for all the campaigns listed in Table 1 of the
manuscript

The symbols represent the MD simulated data

The continuous solid lines represent calculations based on the Maxwell-Stefan
theory, Egs (14) and (15), and using pure component parameters listed in Table
4.
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CNT (20,0) vs Fluid; C1, C2, and C1-C2 mixture, 300 K

i 88% 5
L . 35
e 0 C1; 300 K 102 L %{ C2; 300 K
"0 = +8 8 "0 = E %
o~ C ©) N L H
€ L € L X DD@
oob L OOO = X [l
- 1L = 1L
- S &%SE]
= r > r %&
] L + [ L
> o >
= L L= L
s T35 ;
3 100E 4+ fuid + 8 ¢ X
L r X  C2, fluid X
| © C1,CNT(20,0) | O C2,CNT(20,0) 5
10-1 Ll (| 10-1 Ll Ll
0.1 1 10 0.1 1 10
(a) molecular packing density / molecules nm™ (b) molecular packing density / molecules nm™
r . 100 -
8% C1/C2, 50-50 mix; 300 K r + 1, fluid
- 102 & - 80 - O C1, CNT (20,0)
N : @wﬁﬁ ‘o j X C2, fluid
ooE B X ; ooE i O C2, CNT (20,0)
2 o L 2 o0 8o o B
-~ = =~ L @) OJ
Z E 2 60 ©Of 5808959%88 B
= C = Lo gt O
g r S 40 O
= - + CA1, fluid + = - + +++
= X = i ++t+THT
= 100 L X = +++++ X X
3 E O C1, CNT (20,0) ¥ 2 = S¢ XXX X X X
-l x  c2 flid 20 P X XXX XXX
r O C2,CNT (20,0) - c1/C2 mix; 300K,
i i Q = 1.352 molecules/nm®
10-1 [ | I I A 0\\\\\\\\\\\\\\\\\\\\\\\\\
0.1 1 10 0.0 0.2 0.4 0.6 0.8 1.0

(c) molecular packing density / molecules nm? (d) molecular packing density / molecules nm> (b)



CNT (20,0); C1, C3, and C1-C3 mixture, 300 K
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Self diffusivity / 10 m® s™
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CNT (20,0) vs Fluid; C1, nC4, and C1-nC4 mixture, 300 K
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Self diffusivity / 10° m?s™
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CNT (10,10); pure C1 adsorption, snapshots, 300 K




CNT (10,10); pure H2 adsorption, snapshots, 300 K
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CNT (10,10); C1, H2, and C1-H2 mixture, 300 K
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CNT (10,10) vs Fluid; C1, H2, and C1-H2 mixture, 300 K
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