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The channels of the cobalt formate frameworks consist of one-dimensional channels that have a zig-zag configuration.
Propane (C3) has a length that commensurates with the channel segment length; longer n-alkanes such as n-butane (nC4),
n-pentane (nC5) and n-hexane (nC6) have conformations that straddle two channel segments. Configurational-bias Monte
Carlo (CBMC) simulations show that the adsorption strength of C3 is higher than that of n-butane (nC4) and n-pentane
(nC5); this unusual hierarchy is a direct consequence of the commensurate–incommensurate adsorption. CBMC simulations
also reveal the possibility of separating C3–nC6, C3–nC4, nC4–nC6 and nC4–nC5 liquidmixtures for which the adsorbed
phase contains predominantly the shorter alkane. Molecular dynamics simulations show that the hierarchy of
self-diffusivities is non-monotonic and is the mirror image of the hierarchy of adsorption strengths.
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1. Introduction

In recent years, there has been a remarkable upsurge in

research activity on metal-organic frameworks (MOFs), in

view of several potential applications in the field of storage

[1–4], and also separation of a variety of mixtures [5–21].

Due to the wide variety of pore sizes and pore geometries,

several interesting separation possibilities are possible with

MOFs. For example, Finsy et al. [11] have reported a

significantlyhigher adsorption capacity for xylene isomers in

MIL-47, than for its isomers, n-octane (nC8) and ethyl

benzene(EtBz).Thehighercapacity forxyleneisomers isdue

to their improved ‘stacking efficiency’within the channels of

MIL-47, as illustrated in the snapshots in Figure 1(a), (b) for

p-xylene and nC8, respectively; see also the pure-component

isotherms in Figure 2. Bárcia et al. [7] report the results of an

experimental study to show the feasibility of separating

alkane isomers by adsorption within the framework of

Zn(bdc)dabco (see the structure in Figure 3). In a subsequent

study, Dubbeldam et al. [21] have used molecular

simulations, which shown that the principle behind alkane

isomers separation using Zn(bdc)dabco framework is based

on the differences in ‘efficiency’ with which the isomer

molecules can interact with the dabco linker atoms.

The current investigation focuses on another unusual

separation potential of MOFs and has its genesis in the

recent work by Li et al. [22], which reported adsorption

isotherms for n-alcohols in cobalt formate (Co-FA)

framework structure. The metal network exhibits

diamondoid connectivity, and the overall framework

gives rise to zigzag channels along the b-axis, where

guest dimethylformamide molecules reside. The effective

pore size of these one-dimensional channels is 5–6 Å.

The unit cell and pore landscape of Co-FA is depicted in

Figure 4; one unit cell of Co-FA comprises a total of four

distinct channel ‘segments’; each channel segment forms

part of the repeat zigzag structure. The experimental

adsorption data of Li et al. [22] for propanol and n-butanol in

Co-FA are particularly intriguing (see Figure 5). We note

that the adsorption strength of propanol is higher than that of

n-butanol over the entire range of experimental pressures.

The first major objective of the present communication is

to show, with the help of molecular simulations, that this

unusual hierarchy in adsorption strength is caused by

commensurate–incommensurate molecular lengths of

linear molecules within the one-dimensional channels

of Co-FA. For this purpose, we have carried out a set of

Configurational-bias Monte Carlo (CBMC) simulations to

determine the adsorption isotherms of linear alkanes:

methane (C1), ethane (C2), propane (C3), n-butane (nC4),

n-pentane (nC5), n-hexane (nC6) and n-heptane (nC7)

in Co-FA. The second objective is to demonstrate the

exploitation of commensurate–incommensurate molecular

lengths to adsorb a shorter linear alkane preferentially from

a liquid mixture with a longer linear alkane. The third

objective, using molecular dynamics (MD) diffusion of

n-alkanes in Co-FA, is to show that the non-monotonous

hierarchy of adsorption strengths is accompanied by a

non-monotonous hierarchy in diffusivities.
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2. Simulation details

The structural information for Co-FA is from Li et al. [22].

The adsorption isotherms were computed using CBMC

simulations in the grand canonical ensemble. The united-

atom force field for alkanes, developed by Dubbeldam

et al. [23], is used to describe alkane–alkane, Lennard-

Jones, interactions. For alkane–alkane interactions, the

tabulated force fields are available in Dubbeldam et al.

[23]; the potential for the n-alkanes includes bond

stretching, bending and torsion. The framework was

assumed to be rigid in the simulations.

Figure 1. Snapshots showing the location and conformations
of (a) p-xylene and (b) nC8 within the pores of MIL-47.
The structural and simulation details are available in the
supplementary material accompanying this publication.

Figure 2. CBMC simulations of pure-component isotherms for
nC8, EtBz, o-, m- and p-xylenes (oX, mX and pX) in MIL-47
at 343K.

Figure 3. Pore landscape and structure of Zn(bdc)dabco.
The structural and simulation details are available in the
supplementary material accompanying this publication.
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For the atoms in the guest metal-organic framework,

the generic UFF [24] was used. The DREIDING [25] force

field was used for the organic linker atoms. The Lorentz–

Berthelot mixing rules were applied for calculating s and

1/kB for guest–host interactions.

Further simulation details, including structural infor-

mation, CBMC and MD simulation methodologies,

tabulated force fields, pore landscapes, snapshots showing

the location and conformation of n-alkanes within the

pores and simulation data are available in the Supplemen-

tary material accompanying this publication.

3. Adsorption of linear alkanes in Co-FA

Consider the CBMC simulations of the adsorption

isotherms of linear alkanes in Co-FA at 300K (see

Figure 6(a)). The hierarchy of adsorption strengths for C1,

Figure 4. Pore landscapes and structure of Co-FA.

Figure 5. Adsorption isotherms for propanol and n-butanol in
Co-FA. Experimental data of Li et al. [22]. See supplementary
material for the unit cell dimensions and the conversion of
loadings to units of molecules per unit cell.

Figure 6. (a) CBMC simulations of adsorption isotherms for
C1, C2, C3, nC4, nC5, nC6 and nC7 in Co-FA at 300K. (b) Henry
coefficients as a function of C number.
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C2 and C3 is as expected; increasing chain length results

in higher adsorption strength; see Henry coefficient data

in Figure 6(b). However, with increasing chain lengths

beyond C3 we note an unusual adsorption hierarchy:

C3 . nC4 . nC5. Further increase in chain lengths

result in the expected hierarchy, i.e. nC7 . nC6 . nC5.

The saturation capacity for C1, C2 and C3 is found to be

four molecules per unit cell, corresponding to one

molecule per channel segment. Snapshots of the location

of molecules along the one-dimensional zigzag channels

of Co-FA confirm that each channel segment contains

no more than one molecule each of C1, C2 and C3

(see Figure 7). nC5, nC6 and nC7 have conformations that

make these molecules straddle two channel segments, and

this is also reflected in the saturation capacities of these

molecules of two molecules per unit cell, i.e. correspond-

ing to one molecule in two channel segments. nC4 has an

intermediate character; at low pressures, the nC4 has a

conformation with a tendency to occupy a small portion of

the adjoining segment. At very high pressures, nC4 adopts

a more ‘cramped’ configuration, with each molecule

occupying one channel segment and yielding a saturation

capacity of four molecules per unit cell. When a molecule

has a tendency to straddle two channel segments (nC4 at

low pressures, nC5, nC6 and nC7), not all of the C atoms

can effectively interact with the atoms of the framework;

this leads to lower adsorption strength and a non-

monotonous adsorption hierarchy witnessed in the Henry

coefficient data in Figure 6(b). It is interesting to note that

non-monotonous behaviour of the Henry coefficient for

n-alkanes has also been observed for cage-type zeolites

such as CHA, ERI and LTA, caused by commensurate–

incommensurate adsorption within cages [26–28].

The non-monotonous adsorption characteristics, along

with differences in saturation capacities, can be exploited

to achieve unusual separation possibilities. Consider a

mixture of C3 and nC6. From the pure-component

adsorption isotherms in Figure 6 we note that at low

pressures the adsorption strengths of C3 is nearly the same

as that of nC6. However, the saturation capacity of C3 is

twice that of nC6. We can device a strategy for separating

C3 from nC6 by exploiting the differences in the saturation

capacities. CBMC simulations of the component loadings

for a mixture with equal partial fluid phase fugacities,

f1 ¼ f2, are shown in Figure 8(a). When operating at partial

fugacities in excess of 1MPa, with a bulk liquid phase, we

note that the adsorbed phase contains practically no nC6

and is predominantly C3.

Analogously, for nC4–nC5 liquid mixtures, the

adsorbed phase contains the shorter alkane, almost

exclusively (see Figure 8(b)). For the C3–nC4 and

nC4–nC6 mixtures the separation is somewhat less

selective. The CBMC simulation results in Figure 9

show that at high loadings the adsorbed phase is not

exclusively the shorter alkane but also contains a small

proportion of the longer alkane. The separations indicated

in Figures 8 and 9 have possible industrial potential, and

needs to be experimentally confirmed. It is perhaps

relevant to point out here that earlier we had used

molecular simulations to demonstrate the feasibility of

separating n-alkane mixtures by exploiting differences in

the saturation capacity in cage-type zeolites such as CHA,

ERI and AFX zeolites [29]. More recently, the

experimental work of Denayer et al. [30] has provided

experimental confirmation of the separation potential

anticipated by the molecular simulations.

4. Diffusion of linear alkanes in Co-FA

MD simulations of self-diffusivities of C1, C2, C3, nC4,

nC5, nC6 and nC7 in Co-FA are shown in Figure 10(a) for

a variety of loadings. At a loading of one molecule per unit

cell, the values of the self-diffusivities are plotted in

Figure 10(b) as a function of C number. The hierarchy of

diffusivities of C1, C2 and C3 is as expected; the molecule

with the longer chain length has the lower diffusivity. With

increasing chain length, we observe a non-monotonous
Figure 7. Snapshots showing the location of C1, C2, C3, nC4,
nC5, nC6 and nC7 molecules in Co-FA.
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behaviour with the hierarchy: nC5 . nC4 . C3 < nC6.

The hierarchy of diffusivities is an exact mirror image of

the hierarchy of Henry coefficients (compare Figures 6(b)

and 10(b)). Put another way, if the molecular length is

incommensurate with the channel segment length, the

adsorption strength is low, but its diffusivity is high.

In the context of separation process development, it

must be emphasized that since adsorption and diffusion

run counter to each other, we should aim for either an

equilibrium- or a diffusion- (i.e. kinetic) based separation.

A combination of the two, for example, in a MOF

membrane separation will not work, as the two effects may

cancel each other out.

5. Conclusions

CBMC and MD simulations of adsorption and diffusion of

linear alkanes within the one-dimensional channels of

cobalt formate frameworks have revealed a non-mono-

tonic behaviour in Henry coefficients and diffusivities as a

function of the n-alkane chain length. The non-

monotonicity is caused due to commensurate–incommen-

surate effects in adsorption; C3 has a molecular length that

Figure 8. CBMC simulations of component loadings for
(a) C3–nC6 and (b) nC4–nC5 mixtures in Co-FA at 300K.

Figure 9. CBMC simulations of component loadings for
(a) C3–nC4 and (b) nC4–nC6 mixtures in Co-FA at 300K.
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commensurates with the channel segment length. nC4,

nC5, nC6 and nC7 have conformations that make these

molecules straddle two channel segments; this leads to

lower adsorption strength due to inefficient interaction

with the framework atoms. The hierarchy of diffusivities is

inverse of the hierarchy of adsorption strengths.

CBMC simulations also reveal the possibility of

separating C3–nC6, C3–nC4, nC4–nC6 and nC4–nC5

liquid mixtures for which the adsorbed phase contains

predominantly the shorter alkane.

Manganese formate frameworks are isostructural to

Co-FA, and a similar non-monotonicity in adsorption and

diffusion behaviours is observed from molecular simu-

lations; details are available in the supplementary material.

Our study underlines the ability of molecular

simulations to provide a molecular-level understanding

of observed experimental phenomena, and also to unravel

novel separations with structured nanoporous materials

such as MOFs.

Supplementary material

Supplementary material associated with this article

can be found with the online version at the journal’s

website.
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[5] L. Bastin, P.S. Bárcia, E.J. Hurtado, J.A.C. Silva, A.E. Rodrigues,
and B. Chen, A microporous metal-organic framework for
separation of CO2/N2 and CO2/CH4 by fixed-bed adsorption,
J. Phys. Chem. C 112 (2008), pp. 1575–1581.

[6] L. Pan, D.H. Olson, L.R. Ciemnolonski, R. Heddy, and J. Li,
Separation of hydrocarbons with a microporous metal-organic
framework, Angew. Chem. Int. Ed. 45 (2006), pp. 616–619.
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Supplementary Material

A molecular simulation study of commensurate–incommensurate adsorption
of n-alkanes in cobalt formate frameworks

R. Krishna, J.M. van Baten

Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands

1. MOF structures

Besides cobalt formate frameworks, simulations were also carried
out for manganese formate (Mn-FA), Zn(bdc)dabco and MIL-47.
The structural information for the metal-organic frameworks have
been taken from various publications on the respective frame-
works: cobalt formate (Co-FA) from Li et al. [1]; manganese
formate (Mn-FA) from Dybtsev et al. [2]; Zn(bdc)dabco from
Bárcia et al. [3] and Lee et al. [4]; and MIL-47 from Alaerts et al.
[5], Finsy et al. [6] and Barthelet et al. [7]. The structure data files
we used in our simulations are available on our web site [8].

2. Monte Carlo simulation methodology

The adsorption isotherms were computed using Configurational-bias
Monte Carlo (CBMC) simulations in the grand canonical ensemble.
The united-atom force field for alkanes, developed by Dubbeldam
et al. [9], is used to describe alkane–alkane, Lennard-Jones,
interactions. For alkane–alkane interactions, the tabulated force
fields are available in Dubbeldam et al. [9]; the potential for the
n-alkanes includes bond stretching, bending and torsion. Some
simulation results have also been reported for aromatics and alkyl
aromatics in MIL-47. The force field for benzene follows the work of
Ban et al. [10], and is extended to alkyl aromatics by combining with
the force field of Dubbeldam et al. [9].

The metal-organic framework structures of Co-FA, Mn-FA,
Zn(bdc)dabco and MIL-47 were considered to be rigid in the
simulations. For the atoms in the guest metal-organic framework,
the generic UFF [11] was used. The DREIDING [12] force fields
were used for the organic linker atoms. The Lennard-Jones
parameters are summarised in Table S1. The Lorentz–Berthelot
mixing rules were applied for calculating (s and 1/kB for guest–
host interactions. For simulations with linear and branched alkanes
with two or more C atoms, the Configurational-bias Monte Carlo
(CBMC) simulation technique [13,14] was employed. The beads
in the chain are connected by harmonic bonding potentials.
A harmonic cosine bending potential models the bond bending
between three neighbouring beads, a Ryckaert–Bellemans
potential controls the torsion angle. The beads in a chain separated
by more than three bonds interact with each other through a
Lennard-Jones potential. The Lennard-Jones potentials are shifted
and cut at 12 Å. The CBMC simulation details have been given in
detail elsewhere [9,13–15]. The CBMC simulations were
performed using the BIGMAC code developed by Vlugt [16] as
basis.

3. MD simulation methodology

Diffusion of linear alkanes in Co-FA and Mn-FA were
investigated and simulated using Newton’s equations of motion

until the system properties, on average, no longer change in time.
The Verlet algorithm is used for time integration. A time step of
1 fs was used in all simulations. For each simulation, initialising
CBMC moves are used to place the molecules in the domain,
minimising the energy. Next, follows an equilibration stage. These
are essentially the same as the production cycles, only the statistics
are not yet taken into account. This removes any initial large
disturbances in the system that does not affect the statistics on
molecular displacements. After a fixed number of initialisation and
equilibrium steps, the MD simulation production cycles start. For
every cycle, the statistics for determining the mean square
displacements (MSDs) are updated. The MSDs are determined for
time intervals ranging from 2 fs to 1 ns. In order to do this, an
order-N algorithm, as detailed in Chapter 4 of Frenkel and Smit
[13] is implemented. The Nose–Hoover thermostat is applied to
all the diffusing particles.

The DLPOLY code [17] was used along with the force field
implementation as described in the previous section. DLPOLY is a
molecular dynamics simulation package written by Smith,
Forester and Todorov and has been obtained from CCLRCs
Daresbury Laboratory via the web site [17].

The MD simulations were carried out for a variety of molecular
loadings. All simulations were carried out on the LISA clusters of
PCs equipped with Intel Xeon processors running at 3.4 GHz on the
Linux operating system [18]. Each MD simulation, for a specified
loading, was run for 120 h, determined to be long enough to obtain
reliable statistics for the determination of the diffusivities. In many
cases, several independent MD simulations were run and the results
were averaged.

The self-diffusivities, Di,self, were computed by analysing
the mean square displacement of each species i for each of

Table S1. Lennard-Jones parameters for atoms in metal–
organic host framework.

(Pseudo-) atom s (Å) 1/kB (K)

Cu 3.114 2.518
Zn 2.69 0.41
Co 2.56 7.046
Mn 2.638 6.543
O 3.03 48.19
C 3.47 47.86
N 3.26 38.95
H 2.85 7.65

For the atoms in the guest metal organic framework, the generic UFF [11] was used.
The DREIDING [12] force fields was used for the organic linker atoms.
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the coordinate directions:

Di;self ¼
1

2ni
lim
Dt!1

1

Dt

Xni
l¼1

ðrl;iðt þ DtÞ2 rl;iðtÞÞ
2

 !* +
: ð1Þ

In this expression, ni represents the number of molecules of
species i, respectively, and rl,i(t) is the position of molecule l of
species i at any time t. For one-dimensional pore structures
of Mn-FA and Co-FA, the diffusivities along the y-direction of
diffusion are reported.

4. Animations

For visual appreciation of the diffusion phenomena in Co-FA,
Mn-FA, Zn(bdc)dabco and MIL-47, animations were created on
the basis of the MD simulations; these can be viewed by
downloading the movies from our web site [8].

5. Simulation results for Co-FA

Figures S1–10 present the pore landscapes and snapshots
of n-alkanes in Co-FA. The simulation results, summarised
in Figure S11, have been discussed in the main text of the
paper.

Table S2. Dimensions of unit cell, along with factor to convert loadings from molecules per unit cell to mol per kg of framework.

MOF a (Å) b (Å) c (Å) Conversion factor

Co-FA 11.3834 9.9292 14.4324 0.56
Mn-FA 11.715 10.248 15.159 0.575
MIL-47 6.808 16.12 13.917 1.08
Zn(bdc)dabco 10.9288 10.9288 9.6084 1.75

Figure S2.

Figure S1.
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Figure S3.

Figure S5.

Figure S4.
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Figure S6.

Figure S8.

Figure S7.
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6. Simulation results for Mn-FA

Figures S12–21 present the pore landscapes and snapshots of
n-alkanes in Mn-FA. The simulation results for adsorption of
n-alkanes. As with Co-FA, the adsorbed phase is predominantly
the shorter alkane. The near-complete separation of the
nC4–nC5 mixture at high loadings is particularly noteworthy.
The diffusivity data for n-alkanes is summarised in Figure S22.
Again we note the non-monotonicity as for Co-FA.

7. Simulation results for MIL-47

Figures S24–32 present the pore landscapes and snapshots for
xylenes, nC8, ethyl benzene and benzene within the channels of
MIL-47. In Figure S33, the CBMC simulations of the pure
component isotherms for C8 isomers are compared with the
experimental results of Finsy et al. [6]. There is reasonably
good agreement in the saturation capacities, and the results
indicate the possibility of separating C8 hydrocarbon isomers
using differences in ‘stacking’ efficiency within the channels
of MIL-47.

8. Simulation results for Zn(bdc)dabco

Figures S34–45 present the pore landscapes and snapshots of a
variety of alkanes in Zn(bdc)dabco. Pure component, and ternary,
CBMC simulations of the isotherms for nC6, 3MP and 22DMB
are present in Figure S46. The simulations at 300 K are in good
agreement with the simulation results of Dubbeldam et al. [19].
Also shown in Figure S46 are the comparisons of the pure
component isotherms for hexane isomers at 313 K obtained from
CBMC simulations (top right) with the experimental data

of Bárcia et al. [3] (bottom right). The agreement is very poor.
We suspect that in the experiments the Zn(bdc) dabco structure
must have undergone phase transition because the reported
experimental loadings are about one order of magnitude lower
than the usual loading values found for MOFs.

Figure S9.

Figure S10.
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Notation

Di,self self-diffusivity (m2 s21)
fi fugacity of species i (Pa)
ni number of molecules of species i in simulation box,

dimensionless
rl,i(t) position of molecule l of species i at any time t (m)
t time (s)
T absolute temperature (K)
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