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Abstract—The limitations of the Fick’s law for describing diffusion are discussed. It is argued
that the Maxwell-Stefan formulation provides the most general, and convenient, approach for
describing mass transport which takes proper account of thermodynamic non-idealities and
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INTRODUCTION iety of species transport mechanisms are involved:

Chemical engineers need to describe diffusion within
fluid phases, across phase interfaces, within gels, por-
ous catalysts and adsorbents, and across porous
membranes; see Fig. 1. As portrayed in Fig. 2, a var-
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-+——— gas-liquid contacting ———

sprays film flow

film resistance..

bulk gas diffusion, bulk liquid diffusion, Knudsen
diffusion inside pores, solid-phase diffusion and diffu-
sion inside pores of molecular dimensions (Xiao and
Wei, 1992). Traditionally chemical engineers have de-
veloped their design procedures for separation and

diffusion in pores
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Fig. 1. Typical mass transfer situations.
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Fig. 2. Various diffusion mechanisms. Adapted from Xiao and Wei (1992).
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reaction equipment using Fick’s law of diffusion as
a basis. Fick’s law postulates a linear dependence of
the flux J;, with respect to the molar average mixture
velocity u, and its composition gradient Vx;:

J,' = Ci(lli - ll) = - CiDiVXi. (1)

The molar flux N; with respect to a laboratory-fixed
coordinate reference frame is given by

N,- = cu; = ctxn; = J,' + X,-Nl = — CtDiin + xiN,,

N,=Y N. ®)
i=1

The constitutive relation (1} is strictly valid only under
the following set of conditions: (i) for binary mixtures
or (ii) for diffusion of dilute species i in a multicompo-
nent mixture, and (iii) in the absence of electrostatic or
centrifugal force fields. If one takes the view that
eq. (1) provides a definition of the effective Fick diffus-
ivity of component i in a multicomponent mixture,
then this parameter shows a complicated, often un-
predictable, behaviour; this is illustrated by means of
four examples.

Diffusion in an ideal ternary gas mixture

Let us first consider a simple and illuminating set of
experiments conducted by Duncan and Toor (1962).
These authors examined diffusion in an ideal ternary gas
mixture hydrogen (1)-nitrogen (2)-carbon dioxide (3).
The experimental set-up consisted of two-bulb diffusion
cells, pictured in Fig. 3. In an experiment that we shall
highlight here the two bulbs, bulb 1 and bulb 2, had
the initial compositions (mole fractions) given below:

Bulb I x; =000000, x,=0.50086, x;=049914
Bulb2: x; =050121, x,=049879, x;=0.00000.
)

The two bulbs were connected by means of a 86 mm
long capillary tube. At time ¢ = 0, the stopcock separ-
ating the two composition environments at the centre
of the capillary was opened and diffusion of the three
species was allowed to take place. From the informa-
tion given in the paper by Duncan and Toor it is
verifiable that the diffusion in the capillary is in the

hydrogen (1) |

4 0.6
Bulb 2
X
Bulb 1
L i 1 0.0
0 time/[h) 20

bulk diffusion regime. Further, the pressure differ-
ences between the two bulbs are negligibly small im-
plying the absence of viscous flow. Since the two bulbs
are sealed there is no net transfer flux out of or into
the system, i.e. we have conditions corresponding to
equimolar diffusion:

u=0, N; +N,+N;=0. 4)

The composition—time trajectories for each of the
three diffusing species in either bulb has been present-
ed in Fig. 3. Let us first examine what happens to
hydrogen (1) and carbon dioxide (3). The composi-
tion—time trajectories are as we should expect; hydro-
gen diffuses from bulb 2 to bulb 1 and the two
compositions approach each other, albeit slowly. Car-
bon dioxide diffuses from bulb 1 to bulb 2 in the
expected normal fashion. The diffusion behaviour of
these two species hydrogen and carbon dioxide may be
termed to be Fickian, i.e. down their respective com-
position gradients; there is nothing extraordinary here.

If we examine the composition—time trajectory of
nitrogen (2) we see several curious phenomena. Ini-
tially, the compositions of nitrogen in the two bulbs
are almost identical and therefore at this point the
composition gradient driving force for nitrogen must
vanish. However, it was observed experimentally by
Duncan and Toor that the diffusion of nitrogen does
take place decreasing the composition of bulb 1 at the
expense of bulb 2; this is contrary to the Fickian
expectations for we have

Vx, =0, J,#0, t=0. ®)]

The bulb 1 composition continues to decrease at the
expense of bulb 2 composition of nitrogen between
t =0 and t = ty; this diffusion of nitrogen is in an
up-hill direction, i.e.

J2
— Vx,

<0, 0<r<ty. (6)

Up-hill diffusion of nitrogen continued to take place
until the time ¢ = t, is reached when the composition
profiles in either bulb tend to plateau. This plateau
implies that the diffusion flux of nitrogen is zero at
this point despite the fact that there is a large driving

t=t,
i

H
H
H
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i
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Fig. 3. The two-bulb diffusion experiment with the system hydrogen (1)}-nitrogen (2)—carbon dioxide (3).
Adapted from Duncan and Toor (1962) and Taylor and Krishna (1993).
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force existing. At t = t, we have

szyﬁ(), J2=0, t

t.

(7

Beyond the point t = ¢, the diffusion behaviour of
nitrogen is ‘normal’, i.e. the composition of nitrogen in
bulb 2 with a higher concentration decreases while the
composition of nitrogen in bulb 1 with the lower
concentration increases.

Toor (1957) in a classic paper had anticipated these
curious phenomena and assigned the following names
to them:

Osmotic diffusion: This is the phenomenon observed
at t = 0 and described by eq. (5), namely diffusion of
a component despite the absence of a driving force.

Reverse diffusion: This phenomenon is observed for
nitrogen in the time interval 0 <t < ¢; and described
by eq. (6): diffusion of a component in a direction
opposite to that dictated by its driving force.

Diffusion barrier: This phenomenon is observed at
t =t, and is described by eq. (7): here a component
diffusion flux is zero despite a large driving force.

The above three phenomena are pictorially represent-
ed in Fig. 4, which sharply contrasts the diffusion
behaviour of a binary mixture from a ternary mixture.

It should be clear that the use of the Fick formula-
tion, eq. (1), will be totally inadequate to describe
these anomalies described above because in order to
rationalize the experimental observations we must
demand the following behaviour of the Fick diffus-
ivity for nitrogen:

e D, — oo at the osmotic diffusion point; cf. eq. (5)

e D, <0 in the region where reverse diffusion oc-
curs, cf. eq. (6) and

e D, =0 at the diffusion barrier; cf. eq. (7).

It must be emphasized that this strange behaviour
of the Fick diffusivity for nitrogen has been observed
experimentally for an ideal gas mixture at constant
temperature and pressure conditions and for a situ-
ation corresponding to equimolar diffusion.

(a) binary

J

-Vx,
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Diffusion in mixed ion system

Let us now consider diffusion of ionic species. Vino-
grad and McBain (1941) investigated the diffusion of
electrolytes and using a two-compartment diffusion
cell, shown schematically in Fig. 5. The top compart-
ment contained pure water while the bottom one
contained an aqueous electrolyte solution. Diffusion
takes place through the pores of a sintered glass disk
that separated the two compartments. In one set of
experiments the top compartment contained an aque-
ous solution of HCI and BaCl,, the composition of
which was varied. On complete ionization the mixture
consists of the ionic species H*, Cl~, Ba?* and un-
ionized H,O. By monitoring the concentrations of the
three ionic species as a function of time, Vinograd and
McBain obtained the effective ionic diffusivities D; for
H*, CI” and Ba?". The experimentally observed
ionic diffusivities are shown in Fig. 5 as function of the
square root of the ratio of the initial ionic concentra-
tions of H* and Ba?* in the top compartment
/ cut/cea2+. With increasing values of /cyt/cga2*, it
is observed that both Dy+ and Dg,2+ decrease while
D¢~ increases. During the start of the diffusion pro-
cess, the highly mobile H* diffuses ahead of its com-
panion ions into the pure water compartment,
creating an excess of positive charge. This induces an
electrical potential which acts in such a way as to
maintain electro-neutrality. The consequence of this is
that the Cl~ experiences an extra electrostatic ‘pull’,
enhancing its effective diffusivity value. The electrical
potential gradient also serves to retard the motion of
the positiveions H* and Ba®™ or in other words these
ions experience a ‘push’ in a direction opposite to that
dictated by their composition gradient driving forces.
For /cy+/cpa2+ = 2 the electrostatic *push’ on Ba?*
is such as to result in a vanishing value for Dg,2+. For
</ Cut/crazt > 2, negative values of Dyg,2+ can be ex-
pected, as predicted by simplified Maxwell-Stefan dif-
fusion model to be discussed later. The Fick diffusivity
concept breaks down for describing transport of indi-
vidual ionic species.

(b) ternary

osmotic
diffusion J

diffusion

barrier 4
“normal”

diffusion

-Vx,

“normal’
diffusion

reverse
diffusion

Fig. 4. The diffusion flux as a function of the composition gradient for (a) binary system and (b) ternary
system. Adapted from Taylor and Krishna (1993).
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Fig. 5. Effective ionic diffusivity in the mixed ion system. Data from Vinograd and McBain (1941). Adapted
from Taylor and Krishna (1993)
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Fig. 6. Polyethylene glycol (PEG) rejection from PEG/
water and PEG/dextran/water solutions. Adapted from Van
Oers (1994).

Ultrdfiltration of an aqueous solution of polyethylene
glycol and dextran

Let us look at a study by Van Oers (1994) of the
ultrafiltration of polyethylene glycol (PEG)/water
mixtures in the presence of varying concentration of
dextran; see Fig. 6. In the absence of dextran the
rejection of PEG, defined on a dextran-free concentra-
tion basis, is always positive and practically constant.
Addition of dextran to the solution influences the
rejection of PEG significantly and negative rejections
are observed! Negative values for the rejection imply
that the permeate concentration is larger than the
bulk concentration. Clearly, the mutual interaction of
dextran and PEG needs to be accounted for in the
modelling of membrane transport.

Transport of n-butane and hydrogen across zeolite
membrane

As the last example demonstrating the inadequacy
of the Fick constitutive relation (1), let us consider

diffusion of a mixture of n-butane and hydrogen
across a silicalite-1 membrane separating two
well-mixed compartments (Kapteijn et al, 1995).
Figure 7(a) presents the development of single-com-
ponent fluxes of hydrogen and n-butane at room
temperature at 95 and 5 kPa partial pressure, respec-
tively, as a function of time upon switching the feed
gas from helium to the feed mixture. Figure 7(b) con-
tains the results of a 95: 5 feed mixture. In the single-
component experiments the steady-state hydrogen
permeation flux is about 20 times larger than that of
the n-butane at the applied conditions, whereas in the
binary experiments the hydrogen flux drops by a fac-
tor of more than a 100 while the n-butane flux
remained unaltered. In the binary experiments hydro-
gen permeates first and appears at the same time as in
the single-component experiment, but then drops
quickly and reaches its final, low value as the n-butane
appears. An n-butane selectivity of more than 100
over hydrogen is found (Kapteijn et al., 1995). The
selectivity-reversal phenomena when moving from
single component to binary mixtures cannot be sim-
ply modelled on the basis of eq. (1).

The four examples presented above serve to under-
line the shortcomings of the Fick constitutive relation
(1). It is clearly necessary to adopt a more general
constitutive relation. The essential concepts behind
such a general constitutive relation were already
available more than a century ago following the pion-
eering works of James Clerk Maxwell (1866) and Josef
Stefan (1871). Maxwell preceded Stefan in his analysis
of multicomponent diffusion and the formulation
should properly be termed the Maxwell-Stefan in-
stead of Stefan—Maxwell formulation as it is some-
times referred to in the literature (see e.g. Lightfoot,
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(a) single component experiments
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Fig. 7. Transport of n-butane and hydrogen across a silicalite membrane on stainless steel support; adapted

from Kapteijn ez al. (1995). (a) Single-component pe

rmeation fluxes for hydrogen (95 kPa upstream partial

pressure) and n-butane (5 kPa). (b) Transient permeation flux development for a mixture of hydrogen
(95 kPa) and n-butane (5 kPa). The downstream pressure was maintainted at p; = 100 kPa and a sweep gas
was used. The membrane thickness was ¢ = 40 ym. The temperature was maintained at 300 K.

1974). It is interesting to note that Stefan was aware of
Mazxwell's work but apparently found it difficult to
follow (Das Studium der Maxwell’schen Abhandlung ist
nicht leicht)!

In this paper the Maxwell-Stefan diffusion formu-
lation is developed and its superiority to the Fick for-
mulation underlined with the aid of several examples.

ISOTHERMAL DIFFUSION WITHIN AND ACROSS BULK
FLUID PHASES

Diffusion in binary mixtures

Before proceeding to the general multicomponent
case, let us start with a simple two-component system,
made up of species denoted by 1 and 2. To effect
relative motion between the molecular species 1 and
2 in the mixture we must exert a force on each of the
two species. To calculate this force that is exerted on
any molecular species i, let us consider z-directional
diffusion in the system and write down the force
balances for the control volume shown in Fig. 8. The
cross-sectional area available for diffusion is 1 m? and
the length of the diffusion path is dz. If the change in
the partial pressure of component i across the diffu-
sion distance dz is —dp;, the force acting per m? is
—dp;/dz. The concentration of species i in the mixture
is ¢; and therefore the force acting per mole of species
iis (1/¢;)(—dp;/dz). For an ideal gas mixture we have
¢; = pi/RT and therefore the force per mole of species
i can be written as (RT/p) (—dp;/dz)=RT
(—dln p;/dz) or expressed in terms of the chemical
potential gradient, at constant temperature and pres-
sure, of species i, this force is —dy;/dz. This force is
balanced by friction between the diffusing species
1 and 2 in the binary mixture; see the pictorial repres-

area =1 m? \

Piz A

z z+dz

Fig. 8. A simple force balance on a control volume contain-
ing an ideal gas mixture.

a _

dz
=Force acting per mol of species 1 = Friction between 1 and 2

©) @/\/\/\/\@

Fig. 9. Relative motion between species | and 2 is caused by
exertion of a force on each of the species. This force is
balanced by inter-species friction.

entation in Fig. 9. The force balance on the species
1 takes the form
dﬂl RT

—E = —B_ X1ty — uz). (8)
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For transport of species 1 in the positive z direction,
i.e. positive velocity u;, we must have a positive value
for (—du,/dz) and therefore the left member of eq. (8)
must be viewed as the driving force for transport in
the positive z-direction. This force is balanced by the
friction experienced between the species 1 and 2. We
may expect that the frictional drag will be propor-
tional to the velocity difference (u; — u,) and to the
concentration of the mixture, expressed in eq. (8) as
the mole fraction of component 2, x,. The term RT/P
on the right-hand side of eq. (8) may be interpreted to
be the drag coefficient. With this definition, the Max-
well-Stefan diffusivity P has the units (m?s~!) and the
physical significance of an inverse drag coefficient.

Multiplying both sides of eq. (8) by x{/RT we get

X 91‘_1 _ X1XaUy — Xy XUy )
RT dz b '
Rearranging eq. (9) using the definition for the fluxes
N; = cxqu, [cf eq. (2)] we obtain after vector gener-
alization

X1 XNy — x1N;

S v = 1
RT VT,p.ul CtD ( 0)

For a non-ideal fluid mixture we may introduce the
component activity coefficients to express the left
member of eq. (10) as

dln;
— (1 + X, 6n/1>Vx1 = - erl

X1

X1
RT VTt =

(11)

where I is the thermodynamic correction factor por-
traying the non-ideal behaviour. For highly non-ideal
mixtures the thermodynamic factor I' is usually
a strong function of the mixture composition and
vanishes in the region of the critical point. This behav-
iour has been illustrated in Fig. 10 for the system
methanol (1)-n-hexane (2). For the temperature under
consideration the system tends to undergo phase
splitting at x; & 0.5; at this mole fraction we note that
I' tends to vanishingly low values. Combining eqs (2),

T

System:
methanol (1)-
n hexane (2)

—
|
—

T T T 1777

0.01 | S| ] 1 1 L I 1 t
mole fraction of ethanol

Fig. 10. Thermodynamic factor for the system methanol-n-
hexane. Adapted from Taylor and Krishna (1993).

(10) and (11) after introducing x, = (1 — x;) we obtain
Ji=N; —x;N, = —¢,PI'Vx,. (12)

Comparison of eq. (12) with Fick’s law, eq. (1)
applied to the binary system of 1 and 2 yields the
following relationship between the Fick diffusivity
D and the Maxwell-Stefan diffusivity b:

D =Pr. (13)

For gaseous mixtures at low to moderate pressures
and for thermodynamically ideal liquid mixtures, the
thermodynamic factor I’ =1 and, furthermore, the
Maxwell-Stefan diffusivity is independent of com-
position; for this limiting case the Fick and Max-
well-Stefan diffusivity are identical to each other. The
Maxwell-Stefan diffusivity has the physical signifi-
cance of an inverse drag coefficient and is more easily
interpretable and predictable than the Fick diffusivity;
the latter parameter is a conglomerate of two separate
concepts: drag effects and thermodynamic non-ideal-
ity effects.

For highly non-ideal liquid mixtures, because of the
strong composition dependence of the thermodyn-
amic factor I', we should expect the Fick diffusivity to
also exhibit a corresponding strong composition de-
pendence; this is indeed borne out by experimental
evidence available in the literature and is illustrated in
Fig. 11 for the system methanol (1)-n-hexane for
which we note that the Fick diffusivity tends to ap-
proach zero in the region of the phase transition point
near x; = 0.5 (Clark and Rowley, 1986). The Max-
well-Stefan diffusivity, calculated from the Fick dif-
fusivity and thermodynamic data, shows only a mild
composition dependence. An empirical formula for
the composition dependence is due to Vignes (1966):

D= (Dmpl))x‘(D(xI»O))kxl (14)

where the bracketed terms are, respectively, the infi-
nite dilution values of the Maxwell-Stefan diffusivity
at either ends of the composition range. The Vignes
relation (14) implies that the logarithm of P should be
linear in the mole fraction x,. From the data in Fig. 11

Vignes relation (14)

100
F Maxwell-Stefan D (o)
L o O o v 08 O——Q
L . 000 a °
Diffusivity | o R
Moo mest F
 methanol- a Fick D (=)
I nhexane @8 e
1 [T Y SR (NN SN EOUR N T B
0

mole fraction of methanol

Fig. 11. Experimental data for the Fick and Maxwell-Stefan
diffusivity for the system methanol-n-hexane. Data from
Clark and Rowley (1986).
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(a) System:
n hexane (1)-
nitrobenzene (2)
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Fick
Diffusivity
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"l water (1)-
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0
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Fig. 12. Fick diffusivity as a function of temperature tends to vanish as the (a) upper and (b) lower critical
solution temperature is approached. Data from Haase and Siry (1968).

1.5[-

D
[10° m? /5]

glycine-water; |
T=308.15K

concentration / [10° mol/m3]

Fig. 13. Fick diffusivity for the system glycine-water as
a function of concentration. Data from Chang and Myerson
(1986).

we see that this empirical model of Vignes holds
remarkably well, considering the large variation of the
Fick diffusivity. For further information regarding the
prediction of the Maxwell-Stefan diffusivity for gas-
eous and liquid mixtures the reader is referred to
Taylor and Krishna (1993) and Wesselingh and
Krishna (1990).

Binary liquid mixtures are thermodynamically
stable provided du;/0x; > 0 and the thermodynamic
stability bounds are given by the spinodal curve for
which 0y;/0x; = 0. From eqgs (11) and (13) we may see
that the Fick diffusivity D = 0 at the spinodal curve.
The only points of this curve that are accessible to
experiment are critical (consolute) points. Experi-
mental data for water—triethylamine and n-hexane—
nitrobenzene do indeed show that the Fick D vanishes
as the critical solution temperatures are approached
(Haase and Siry, 1968; Pertler et al., 1996); see Fig. 12.
The diffusivity of glycine in water plummets to vanish-
ingly low values as supersaturation concentration
values are reached (Chang and Myerson, 1986); see
Fig. 13. A lucid discussion on diffusion near critical or
consolute points is given by Cussler (1984). The
proper driving force for the description of crystalliza-
tion kinetics is the chemical potential difference

Fig. 14. The Maxwell-Stefan diffusion equations for ternary

mixtures. The force exerted on 1 is balanced by friction

between species 1 and 2 and the friction between species
1 and 3.

between the supersaturated solution (the transferring
state) and the crystal (the transferred state) and Gar-
side (1985) has shown that this difference can be
simply related to the more commonly used ‘super-
saturation’ driving force.

Generalization to multicomponent mixtures

The mechanistic picture developed above for diffu-
sion in a two-component system can be extended to
the general multicomponent cases quite easily. The
force exerted on species 1 is balanced by the friction
between species 1 and each of the other species in the
mixture, pictured in Fig. 14 for a ternary mixture. The
generalization of eq. (8) for multicomponent mixtures
is thus

d — _
_di = RTx, (uy — uy) + RTx, (ug — us)
dZ 12 13
+RTx4M+ e (15)
D4

The terms on the right-hand side of eq. (15) represent,
respectively, the friction between 1-2, 1-3, 1-4 and so
on. Expressed in vector notation, eq. (15) is
2oxi(u— g
Vo= RT Y MW
; D

=1 ij
j#1

i=12, ..., (16)
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By multiplying both sides of eq. (16) by x;/RT and
introducing the definition of the molar fluxes N; [cf.
eq. (2)] we obtain the following equation, analogous
to eq. (9), for the binary case:

X "ox;N; — xN;
_ N gy = S MY
RT jgl Dy
j#1
" X‘J,'—X,‘J‘ .
=y 2= i=1,2..,n (17)
=1 by
J#1

where the second equality holds irrespective of the
reference velocity frame chosen for the diffusion pro-
cess. Let us define a quantity d;:

d= - il Voru;.

RT (18)

We note that ¢,RT4d; is the force acting per volume of
the mixture and that (d;/x;} is the force acting per
mole of component i. Only n — 1 of the eqs (17) are
independent because of the Gibbs—Duhem restriction

n

Z ¢V = Vp.

i=1

(19)

Constraints imposed by the second law

The occurrence of the phenomena of reverse or
uphill diffusion observed in the experiments of Dun-
can and Toor (1962) is not in violation of the second
law of thermodynamics; the second law requires that
the total rate of entropy produced by all diffusing
species should be positive-definite (Standart et al.,
1979):

M=

c=/T) ) Ji*(=Vru) 20 (20

i=1

which for ideal gas mixtures simplifies to

6=RY J(—Vxy/x) =0 (ideal gas mixtures). (21)
i=1

Equation (21) allows a component k in the multicom-
ponent mixture to consume entropy by undergoing
uphill diffusion, i.e. J; /(— Vx;) < 0, provided the other
components produce entropy at such a rate that the
overall rate of entropy production ¢ remains positive
definite. Put another way, the other components
(i # k) pump component k uphill.

Insertion of the Maxwell-Stefan diffusion (16) into
eq. (20) we obtain on re-arrangement (Standart et al.,
1979)

Xixj' 2
u; —u;|* = 0.
Bl uf? >

(22)

1 n n
o ==¢R Z Z
2 i=1j=1
For mixtures of ideal gases for which the B;; are
independent of composition the positive-definite con-
dition (22) can only be satisfied if

P;; > 0 (ideal gas mixtures). (23)

Equation (23) was first derived by Hirschfelder et al.
(1964). For non-ideal liquid mixtures the P;; are

composition dependent in general and a result ana-
logous to eq. (23) cannot be derived.

Generalized Fick’s law

1t is helpful to express the left member of eq. (17) in
terms of the mole fraction gradients by introducing an
(n — 1)x(n — 1) matrix of thermodynamic factors

rl:
Xi Jdlny;

RT

- ’

n—1
Vo = Z TyVx;, Ty=0;+x
j=1 0Xj

Lj=12...,n—1 (24)

Combining eqs (17) and (24) we obtain the multi-
component analog of eq. (12),

—¢[T1(Vx) = [B1Q) or (J) = —c,[B] " '[I1(Vx)(25)

where we use (n — 1)-dimensional matrix notation; (J)
represents the column vector of (n — 1) diffusion
fluxes defined by the first equality in eq. (1). The
elements of the matrix [ B] can be derived from eq. (17)
in terms of the Maxwell-Stefan diffusivities D;; as
follows:

X n

i Xk 1 1
B; = + —> Bijizrp=—xil——%1J
Bin kgl Bik 12D (Dij Din)

k#i

ij=12 ...,n—1 (26)

It is common to define a matrix of Fick diffusivities
[D] analogous to the binary case [cf. eqs (1) and (12}]
by using (n — 1) x (n — 1) matrix notation:

(D] =[B1"'[T].

For the general multicomponent mixture it is difficult
to ascribe simple physical interpretations to the
elements of [D]; it is for this reason we prefer the
Maxwell-Stefan formulation that also aids in the pre-
diction of the elements of [D]. Specifically, the ad-
vantage of the M-S formulation is that the we
decouple the drag effects (portrayed by [B]) from
thermodynamic effects (portrayed by [I']). Compar-
ing eq. (25) with eq. (27) we see

() = — a[D](Vx)

27

(28)

which is the proper generalization of the Fick formu-
lation (1) to multicomponent mixtures. There are
a few limiting cases in which the use of the simplified
formulation (1) with a constant value for the effective
Fick diffusivity D; is justified; these are discussed
below.

Limiting and special cases

When (i) the binary pair Maxwell-Stefan diffusivi-
ties H;; are equal to one another (= D) and (ii) the
mixture is thermodynamically ideal, ie. I';; =1, we

obtain the simplification
J,‘ = - C,DVX,' (Bij = D, Fij = 1) (29)

and each of the species in the mixture has the same
transfer mobility.
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Fig. 15. Comparison of the chemical vapour deposition rate predicted by the Maxwell-Stefan and effective
Fick diffusivity formulations with experimental data. Adapted from Kuijlaars (1996).

When the components 1,2,3,...,n—1 are all
present in small amounts in excess of a ‘solvent’ spe-
ciesn(i.e. x; = 0, x, — 1), we see from eqgs (24) and (26)
that I';; =1 and B;; = 1/D;, and therefore eq. (28)
collapses to

Ji=—chVx; (x;-0, x,—1) i=12,...,n—1

(30)

and each of the (n — 1) species ‘sees’ only the solvent
species n during its transport. Equation (30) is useful
in e.g. absorption of dilute gaseous components in
a solvent liquid.

Traditionally, in chemical engineering operations
the concept of what constitutes a ‘dilute’ species is
based on the species mole fraction in the mixture. For
chemical vapour deposition processes, in which the
proper description of diffusional transport in multi-
component gaseous mixtures is vital, there could be
significant differences between the species mole frac-
tions and the species mass fractions. For example, for
deposition of tungsten, by surface reaction on a wafer

WF¢ + 3H, > W, + 6HF (1)

the gaseous system consists of three species WFg,
H, and HF, whose molar masses are in the ratio
300:2:20. If the H, inlet mole fraction to the CVD
reactor in a WF¢—H, mixture is 90%, its mass fraction
is only about 5%. In other words, from a mole frac-
tion point of view WF¢ and HF are to be considered
‘dilute’, whereas from a mass fraction point of view
H, and HF are to be considered dilute and there is no
consistent procedure for calculation of the Fick effec-
tive diffusivity D; in such cases (Kuijlaars et al., 1995).
The deposition rate predicted by the Fick effective
diffusivity approach is significantly poorer than that
predicted by the Maxwell-Stefan model; see Fig. 15
(Kuijjlaars, 1996).
The Wilke formula (Wilke, 1950)

[
D;=(1 - x| (32)

i

Z Xi/Pi)

n

(
=1
#i

L

is often used to calculate the effective diffusivity of
component i in a multicomponent mixture, even

107
[ H, @)
HF (3)
1021
p=102Pa; T=673K;
D X%, = 5; X, =0.1 WFs (1)
ST
10-‘ - [PRU— SPp—— I —— ]
{ WFg(1) - H, (2) - HF (3) - Ar (4) |
10§ I - | 1 1
0 0.02 0.04 0.06 0.08 0.1

X

Fig. 16. Calculation of the effective diffusivities in the gas-
eous mixture WFg, ~H,~HF-Ar at a temperature of 673 K
and pressure 100 Pa. Data from Kuijlaars et al. (1995).

though its general validity is restricted to the situation
wherein the species i diffuses in a mixture of stagnant,
non-transferring, species, ie. when N; (j # i) = 0 (El-
nashaie et al., 1989; Krishna, 1989).

For diffusion with a heterogeneous reaction

VlAl + VzAz + V3A3 + -+ V,,A,, =0 (33)

the flux ratios are fixed by the reaction stoichiometry
and so

N
_IE &:&z...=_". (34)

Vi V2 V3 Vu

An effective diffusivity can be defined for component i,

X 1 " Xj xiNj
N: CtDl (RT VTH() > Di -;1 Dij (1 XjN,‘)
i#i
L X:V;
=Yy —’(1 —-‘—’>, i=1,2 ... (35)
j.=1_Bij X;Vi
J#i

In a tungsten CVD reactor, for example, with the
species WF¢ (1), H; (2), HF (3) and inert Ar (4) the flux
ratios are v,/v; =3, va/v; = — 6, v,/n; = 0. Calcu-
lations of the effective diffusivities according to eq.
(35) are illustrated in Fig, 16 for typical conditions.
Interestingly, the effective diffusivity of HF in the
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mixture can even exceed that of hydrogen for a certain
composition range.

When none of the above four special situations
apply and the multicomponent mixture is made up of
molecular species of different sizes, shape and polarity
we have to reckon with the complete form of the
Maxwell-Stefan relations (17), (24)+28). To illustrate
the importance of adopting the complete Max-
well-Stefan formulation for bulk fluid diffusion we
consider some examples below.

Non-ideal ternary mixtures

Firstly, let us consider bulk diffusion in a non-ideal
liquid mixture made up of the components acetone
(1)-benzene (2)-carbon tetrachloride (3) at a temper-
ature of 25°C. At the composition of x; =0.35,
x; = 0.35 and x5 = 0.3, the Maxwell-Stefan diffusivi-
ties P;; are estimated to be Py, =34x107°,
Di3=25%x10"% and P,3=17x10""m?s™ !, re-
spectively. The matrix [B] can be calculated from the
pair Maxwell-Stefan diffusivities using eq. (26):

0.363 —0.036
[B] = x 10°.
0.107 0.495

The matrix of thermodynamic factors is estimated
from activity coefficient data to be

] 069 —0.13
o007 ros)
The matrix of Fick diffusivities can then be calculated
as
192 —-0538
[D] = x107°,
~0.28 225

The two independent diffusion fluxes J; for compo-
nents 1 and 2 can now be expressed explicitly in terms
of the composition gradient driving forces using

eq. (28) as
J 192 —0.58
( 1>= —c,[ }xlO”(VXI)
J; —0.28 2.25 Vx,
10° water in
|_ malto dextrin
(a)
D L
s -
i acetone in malto dextrin
10°15 t | 1 ] ]

0 water composition/ [% wi]

100
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which shows that there is a strong influence of the
driving force of component 2 on the flux of compon-
ent 1. This coupling is caused by two effects: (i) the
thermodynamic non-idealities in the system (note that
[T7] is significantly non-diagonal) and (i) the differ-
ences in the Maxwell-Stefan diffusivities (this implies
that the frictional drag of the pairs 1-2, 1-3 and 2-3
are all significantly different from one another).

A positive value of the off-diagonal coefhicient
D,, implies that the flux of component 1 will be
enhanced if the composition gradients of components
and 2 are of the same sign. Cussler and Breuer (1972)
discuss techniques for such flux enhancement by de-
liberate addition of a third component to a binary
mixture.

At the critical point or at the spinodal curve the
determinant of the Fick diffusivity matrix vanishes, i.e.
|D| = 0, which implies that one of the eigenvalues of
[D] has a zero value (Taylor and Krishna, 1993); this
has interesting consequences for the composition tra-
jectory in e.g. liquid extraction (Krishna et al., 1985).
Lo and Myerson (1989) and Vitagliano et al. (1978)
have experimentally demonstrated the rapid decline
of |D| as the critical solution concentration is ap-
proached.

In highly non-ideal liquid mixtures, the effective
Fick diffusivity D; can be expected to be a function not
only of the composition but also of the composition
gradients of the various species in the mixture. The
strong composition dependence of the effective Fick
diffusivity D; in a non-ideal ternary mixture is the
basis of a commercial process for spray drying of food
liquids such as orange juice while retaining the aroma
compounds. A food liquid typically consists of aroma,
water and sugar. Consider acetone to represent
a model aroma compound with malto dextrin repres-
enting the sugar compound. Analogous to Fig. 13, we
note that with decreasing water concentrations there
is a strong decrease in the diffusion coefficients both
for acetone and water, with a much stronger decrease
of acetone diffusivity; see Fig. 17. At water concentra-
tions lower than 15 wt% the ratio D,ccione/Dwater DE-
comes so small that the system can be considered

0 water compasition/ [% wt] 100

Fig. 17. (a) Effective Fick diffusivity of water and acetone in agueous malto dextrin solutions as a function
of water content. (b) Ratio of diffusivities of acetone and water in aqueous malto dextrin solutions as
a function of water content. Adapted from Coumans et al. (1994).
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impermeable to acetone. In spray drying operation it
is essential to ensure a rapid decrease of water concen-
tration at the outer surface of the food liquid droplet
(see Fig. 17) and if the surface water is very quickly
lowered to below 15 wt%, aroma retentions up to
100% are possible (Coumans et al., 1994). For rigor-
ous modelling of the transport processes during the
drying process, see Chandrasekaran and King (1972),
Coumans et al. (1994) and Etzel (1993).

Meerdink and van ’t Riet (1993) have modelled the
drying of a liquid food mixture containing water,
sucrose and sodium caseinate by making use of
eq. (26) for estimation of the matrix [D]. The experi-
mentally observed segregation of solute material dur-
ing drying could be modelled successfully.

The solution to eq. (17) in combination with homo-
geneous chemical reactions can lead to negative
values for the enhancement factors (Sentarli and Hor-
tagsu, 1987) and exhibit complex spatiotemporal
behaviour (Othmer and Scriven, 1969). Strong liquid-
phase thermodynamic non-idealities could have a sig-
nificant effect on mass transfer with chemical reaction
(Frank et al., 1995a; Valerio and Vanni, 1994; Vanni
et al., 1995).

Diffusional coupling effects can be expected to be
particularly strong for mixtures of polymers and
monomers (Sundeldf, 1979). Cussler and Lightfoot
(1965) found that for the ternary system consisting of
two monodisperse polystyrenes in toluene the four
elements D;; of the matrix [D] can be of the same
order of magnitude! Curtiss and Bird (1996) have
developed the Maxwell-Stefan description of diffu-
sion in polymeric liquids by modelling the polymer
molecules as bead-spring structures. To obtain the
Maxwell-Stefan equations explicit account must be
taken of bead-bead interactions between different
molecules.

The generalized Fick formulation (28) has been
applied to the describe diffusion of particles in a fluid,
i.e. diffusiophoresis (Shaeiwitz, 1984; Shaeiwitz and
Lechnick, 1984).

Ideal ternary gas mixtures revisited

Let us now consider the case of an ideal gas mixture
for which the matrix of thermodynamic factors
[[] - [1], the identity matrix; eq. (17) simplifies in
this case to

o XjN,' — X,'Nj

—in = Z ’
=1 aby

J#I

=1,2,....,n. (36)

With the aid of eq. (36) we shall explain the curious
diffusion phenomena observed by Duncan and Toor
(1962) for the system hydrogen (1)-nitrogen (2)-car-
bon dioxide (3); cf. Fig. 3. For this ternary mixture the
Mazxwell-Stefan diffusivities of the three binary pairs
can be estimated from the kinetic gas theory to be
P; =833x107°, P;3=68x107° P,y =168x
10~° m?s™ . The compositions in the two bulbs equi-
librate after several hours to x; = 0.25, x, = 0.5 and
x5 = 0.25. At this equilibrium composition the ele-
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ments of the matrix [ B] can be estimated from eq. (26):

0.134 0.007
[B] = x 10°
0.237 0476

and the matrix of Fick diffusivities is therefore

768 —0.11
[D]= x 1073,
—3.832 2.16
Let us estimate the flux of nitrogen J,=

—¢,D2,Vxy — ¢,D,,Vx, in bulb 1 during the initial
stages of the experiment. The composition gradients
Vx; can be calculated from the differences between the
equilibrium composition and the initial bulb 1 com-
position, Vx; = Ax;/Z, where ¢ is the length of the
capillary tube connecting the two bulbs and so
Ja =~ (c:/f)(D1Axy + DpyAxz) = —(¢,/f)(—3.83
X Axy 4+ 216 x Ax,) x 1075, Initially Ax, =0 (cf.
Fig. 18), but the nitrogen flux remains non-zero and
equals J; = — (¢;/£)(—3.83 x Ax;)x 1073, Since the
driving force Ax; = — 0.25, this causes a large posi-
tive flux for nitrogen, directed from bulb 1 to 2,
causing its composition in bulb 1 to decrease. Between
t =0 and ¢ = t; the direction of nitrogen transport is
against its intrinsic gradient; this is reverse or uphill
diffusion; notice in Fig. 18 that the signs of J, and Ax,
are the same! At the point r=t;, we have
Jy = — (c/) (=383 xAx; + 216 x Ax;)x 107° =0
despite the existence of a significant driving force Ax,;
nitrogen experiences a diffusion ‘barrier’. Beyond the
point t = t,, the diffusion behaviour of nitrogen is
‘normal’, directed from bulb 2 to bulb 1.

As an alternative to the matrix algebra develop-
ment, the Maxwell-Stefan diffusion concept, pictor-
ially represented in Fig. 14, can be used to provide
a rationalization of the ‘curious’ behaviour of nitrogen
in Figs 3 and 18. Firstly we note that in the initial

t=t
100 reverse | |
diffusion
Jlt/e)
m diffusion barrier
-2 1 1 l i A - B — L l
03 r
hydrogen (1),
F nitrogen (2) and
» carbon-dioxide (3)
AX “AX, :
AX,
r e
0 i ! 1 1 Fiiihd LS T Y G |
0 time/[h] 20

Fig. 18. Maxwell-Stefan calculations of the (a) flux of nitro-
gen and (b) driving forces as a function of time for the
two-bulb diffusion experiment of Duncan and Toor (1962).
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stages the driving force of nitrogen is much smaller
compared with that of hydrogen and carbon dioxide:
Axy = —0.25, Ax, =0, Ax; =0.25. The frictional
drag exerted by carbon dioxide (3) on nitrogen (2)
transport is considerably larger than the frictional
drag exerted by hydrogen (1) on nitrogen (2) trans-
port; this can be seen from the fact that
(1/D33)>(1/Py,). During the time interval ¢t = 0 and
t = t, the direction in which the driving force of car-
bon dioxide acts is opposite to that in which the
driving force of nitrogen acts. The much larger flux of
carbon dioxide drags nitrogen against its intrinsic
gradient, 1.e. uphill. On a triangular composition dia-
gram, the phenomenon of uphill diffusion manifests
itself by causing a non-monotonous equilibration
path; examine the equilibration paths for N, in bulbs
1 and 2; cf. Fig. 19.

In diffusion processes in lung airways normally at
least four gases are involved O,, CO,, N, and H,O
vapour and the Maxwell-Stefan eqs (36) are

nitrogen

carbon ©
dioxide

" hydrogen

Fig. 19. Triangular diagram representation of the composi-
tion profiles in the two-bulb diffusion experiment of Duncan
and Toor (1962).

commonly used to model pulmonary gas transport
(Bres and Hatzfeld, 1977; Chang and Farhi, 1973; Chang
et al., 1975; Gibbs et al., 1973; Modell and Farhi, 1976;
Tai and Chang, 1979; Worth and Piiper, 1978).

For diffusion with a heterogeneous surface reac-
tion, Lowe and Bub (1976) have shown that the solu-
tion of eq. (36), when coupled with the stoichiometric
constraints (34), can yield multiple steady states.

Curvilinear composition trajectories

For diffusion in glasses, Varshneya and Cooper
(1968) have experimentally verified the phenomena of
uphill diffusion. Two ‘semi-infinite’ glass slabs with
different compositions of K,0-SrO-SiO, were
brought into contact at time ¢t = 0 and the transient
compositions distributions determined. The non-
monotonous equilibration trajectory observed for
SrO in Fig. 20 in either slab signifies the occurrence of
uphill diffusion; such phenomena are of importance in
the processing of ceramics, cements and liquid metals
(Christensen, 1977, Cooper, 1974; Johansen et al.,
1978). Analogous results have been observed by
Krishna et al. (1985) for interphase mass transfer in
a stirred cell with the liquid-liquid system glycerol
(1)-water (2) and acetone (3). As seen in Fig. 21 the
equilibration trajectory within the glycerol-rich phase
is non-monotonous and a non-diagonal matrix of
intraphase transport coefficients is required to suc-
cessfully model the diffusion process (Krishna et al.,
1985; Taylor and Krishna, 1993). The correct descrip-
tion of the mass transfer trajectories in a ternary
mixture of polymer/solvent/non-solvent is of the es-
sence in the phase-inversion technique for membrane
formation (Van den Berg and Smolders, 1992; Mul-
der, 1991).

Interphase mass transfer
For transfer within a fluid phase in practical opera-
tions such as distillation, extraction and drying the

Interface
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Fig. 20. Spatial composition profiles for the system K,0-SrO-SiO; when two 6 mm thick glass samples of
different compositions are brought into contact with each other. Adapted from Varsheya and Cooper
(1972).
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Fig. 21. Equilibration paths in the glycerol-rich phase for the system glycerol (1}-water (2}-acetone (3)
measured in a stirred cell by Krishna er al. (1985). Adapted from Taylor and Krishna (1993).

Maxwell-Stefan diffusion equations need to be solved
along with the equations of continuity (Bird et al.,
1960)

6c,»

—+V'Ni=%i,

i=1,2,...,n—1
A i n

(37)
Solutions to eq. (37), in combination with eq. (17), are
available for a variety of models describing the phase
hydrodynamics: e.g. film model (Krishna and Stan-
dart, 1976; Krishna, 1977a), penetration model
(Krishna, 1978a), film-penetration model (Krishna,
1978b), turbulent boundary layer model (Krishna,
1982). The solution for the interphase molar transfer
fluxes N; can be expressed in (n — 1)-dimensional
matrix notation as

(N) = — a,[k](Ax) + ()N, (38)

where the composition difference driving forces are
defined as (cf. Fig. 22)

i=12..,n—1 (39

Axi = X — Xy,

The (n — 1)x(n — 1)-dimensional matrix of multi-
component mass transfer coefficients [k] is express-
ible in the same form as the corresponding matrix of
Fick diffusivities

[k]=[R]'[I]

where the matrix [R] is

(40)

Rii=ﬁ+ Y ﬁ9 Ri;= *Xi(l*i), i#]
Kin  x=1Kik Kij Kin

k#i (41)

in which «;; represent the mass transfer coeflicients of
the binary pairs in the multicomponent mixture; these
coefficients can be estimated using the methods found
in standard texts such King (1980) and Sherwood
et al. (1975). Use of the bulk phase mole fractions
Xi in eq. (41) is sufficiently accurate for most engineer-
ing purposes (Krishna, 1979). Equations (38){41)
provide a procedure for predicting interphase mass
transfer in multicomponent mixtures on the basis of

vapour

Yo

Fig. 22. Interphase mass transfer in vapour-liquid system.

information on the transport coefficients of the corres-
ponding binary pairs in both phases. This procedure
has been experimentally verified by Tuohey et al.
(1982) to be of reasonable accuracy for vapour—liquid
transfer in the system methanol-2-propanol-ethanol
in a stirred cell. The applicability of the suggested
procedure has also been demonstrated for multicom-
ponent distillation in a wetted-wall column by
Dribika and Sandall (1979) and Krishna et al. (1981b).

Diffusional coupling effects in distillation

When the matrix of diffusivities within a phase [D]
is strongly non-diagonal, [k] will also be strongly
non-diagonal and phenomena such as osmotic
transfer, reverse transfer and transfer barrier can be
expected to occur. For distillation of methanol (1)-2-
propanol (2)-water (3) in a packed column, Gorak
(1991) has provided data on the vapour-phase driving
force for 2-propanol, Ay,, along with the correspond-
ing interphase molar flux N,; see Fig. 23. It is seen
that the driving force of 2-propanol Ay, changes sign
along the packing height, typical for a component
with intermediate volatility. Even when Ay, = 0, the
corresponding flux of 2-propanol is non-zero; this
is osmotic transport. The system also exhibits the
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phenomena of transport barrier and reverse transport.
These phenomena occur routinely in multicomponent
distillation. As a consequence, in tray columns, the
component point Murphree efficiencies are un-
bounded and could have values ranging from — oo to
+ o0. Figure 24 shows the experimental results ob-
tained by Vogelpohl (1979) for the system acetone—
methanol-water in a sieve tray column. We note that
the component Murphree efficiency of water on tray
10 is —150%. Such ‘odd’ behaviours as negative
efficiencies are quite common in multicomponent dis-
tillation, especially for components which have inter-
mediate volatility; for such components the driving
force Ay; changes sign along the column, and, conse-
quently should assume vanishingly small values at
some location, i.e. Ay; —» 0. When this is the case, its
flux will be influenced strongly by the other compo-
nents, leading to component efficiency values greater
than 100% and of either sign. Usually, a high negative
efficiency value will follow a high positive efficiency

methanol (1) - 2-propanol (2) - water (3) “

0.7 -1
0 reverse

transport

-0.3

875

value; these values should also necessarily pass
through zero. The experimentally measured column
composition profiles are more accurately simulated
allowing for unequal component efficiencies (cal-
culated using the Maxwell-Stefan model) than by the
more commonly used approach in which component
Murphree efficiencies are assumed to be all equal to
one another; see Fig. 24.

For total reflux distillation in a packed column,
Ronge (1995) has shown that the Maxwell-Stefan
mass transfer model is able to simulate the measured
composition trajectory quite accurately, whereas the
equilibrium stage model follows a significantly differ-
ent trajectory; see Fig. 25. This implies that the values
of the individual height of a theoretical plate (HETP)
or height of a transfer unit (HTU) are all different
from one another (Krishna et al., 1981b). Heights of
transfer units for individual components are un-
bounded (Olano et al., 1995). The use of the classical
HETP-NTP method for packed-column design could

chlorobenzene

experimental data

4 4 N,, molar flux

PNTAR ] e—— )

0.3

of isopropanol
1-1 [mmol m?s7]

‘ barrier

osmotic 4.5
transport

] TR BN S | 1

0.4 0.8
Height of packing/[m]

Fig. 23. Driving force for 2-propanol and its corresponding
flux during distillation of methanol (1)-2-propanol (2)-water
(3) in a packed column. Data from Gorak (1991).
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Fig. 25. Comparison of measured composition profiles with
simulations for distillation in the system chlorobenzene—cyc-
lohexane-toluene in a packed column. Adapted from Ronge

(1994).
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Fig. 24. Composition profiles and component efficiencies for distillation in the system acetone-meth-
anol-water. Data from Vogelpohi (1979).
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lead to poorer results than a more rigorous approach
using the complete Maxwell-Stefan model for inter-
phase mass transfer (Gorak, 1995). Accurate predic-
tion of column composition profiles are essential in
complex distillation column design involving multiple
feeds and side streams.

Zimmerman et al. (1995) have shown how the Max-
well-Stefan formulations for liquid-liquid mass trans-
fer can be incorporated into a rigorous model for an
extractor taking due account of drop size distribu-
tions, axial mixing, drop breakage and coalescence.
The important and challenging problem of modelling
mass transfer in distillation columns operating with
two liquid phases is considered by Lao and Taylor
(1994).

SIMULTANEOUS HEAT AND MASS TRANSFER

Perfectly isothermal systems are rare in chemical
engineering practice and many processes such as dis-
tillation, absorption, condensation, evaporation and
drying involve the simultaneous transfer of mass and
energy across phase interfaces. Representative tem-
perature profiles in some non-isothermal processes
are shown in Fig, 26.

Mass transfer affects heat transfer in two ways.
Firstly, due to the species fluxes there is an additional
enthalpy transport in addition to the conductive heat
flux q:

n
E=q+ ) N:A. (42)
i=1

Secondly, there is a direct contribution to the heat flux
induced by species diffusion; this is termed the Dufour
effect (Kuiken, 1994). The Dufour effect is usually not
of importance in chemical engineering applications.

Heat transfer affects mass transfer in a variety of
ways. Temperature gradients in the region of the

Y- S
vapor phase EN
Tesveneesl
condensation %
drying

evaporation
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phase interface affect phase equilibria and chemical
reaction rates. Enthalpy changes accompanying the
mass transfer process can have profound effects as
illustrated in below.

Non-isothermal gas absorption

Consider the absorption of ammonia from air into
water in a packed column (von Stockar and Wilke,
1977). We assume counter-current operation, with
fresh water entering at the top (Fig. 27). The rich
ammonia/air mixture enters at the bottom where the
ammonia is absorbed. The enthalpy change due to
absorption causes a rise in temperature of the liquid.
As a result, water vaporizes. The mass transfer process
in the vapour phase therefore involves three species:
ammonia, water and (stagnant) air. Ammonia and
water vapour diffuse against each other at the bottom
of the column (Grenier, 1966). Towards the top of the
column the vapour encounters cold incoming water.
Therefore, water vapour condenses near the top of the
column and we have co-diffusion of ammonia and
water vapour through air towards the liquid phase.
Water vaporization at the bottom and vapour con-
densation at the top cannot be ignored in the analysis.
The resulting temperature profiles along the column
show a pronounced bulge towards the bottom of the
column (Raal and Khurana, 1973). Such temperature
bulges are common in absorption of CO, and H,S in
amine solutions (Kohl and Riesenfeld, 1985; Yu and
Astarita, 1987).

The need for a proper simultaneous heat and mass
transfer analysis, incorporating the Maxwell-Stefan
mass transfer model, has been dramatically empha-
sized by Krishna (1981a) by reanalysing the published
experimental results of Modine (1963). Modine meas-
ured vapour-liquid mass transfer rates in a wetted-
wall column for the system acetone—benzene—helium;
see Fig. 28. The Maxwell-Stefan mass transfer

Fig. 26. Typical temperature and composition profiles in simultaneous heat and mass transfer processes.
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Fig. 27. Absorption of ammonia from air into water in a packed column. Data from Raal and Khurana
(1973).
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Fig. 28. Mass transfer in a wetted-wall column. The vapour phase consists of acetone-benzene-helium and

this phase is brought into contact with a downward flowing liquid film of acetone and benzene. The

Maxwell-Stefan diffusion model predicts condensation of acetone at the bottom of the column and

vaporization at the top of the column. A pseudo-binary diffusion model based on effective diffusivities

predicts that acetone will condense everywhere in the column. Experiments of Modine (1963) showed that

for these conditions net vaporization of acetone occurs, validating the Maxwell-Stefan model. Adapted
from Taylor and Krishna (1993).

approach predicts that the flux of acetone should
change sign along the height of the column, whereas
the conventionally used Wilke effective diffusivity
model predicts that the acetone flux is always posi-
tive (i.e. condensation of acetone everywhere along
the height). Experimentally, for the particular run,
net evaporation of acetone was observed. This means
that the effective diffusivity approach fails even
at the qualitative level to describe the mass transfer
process.

Rigorous design procedures for the design of
mixed-vapour condensers incorporating the Max-
well-Stefan mass transfer formulations are available

(Furno et al., 1986; Taylor et al., 1986). Conlisk (1996)
has modelled absorption heat pumps using such an
approach.

In a computational study of non-isothermal mass
transfer across a vapour/liquid interface, followed by
exothermic liquid-phase chemical reaction, Frank
et al. (1995b) have demonstrated the importance of
proper coupled heat and mass transfer modelling us-
ing the Maxwell-Stefan formulation. It is now com-
monly accepted that for design of sour gas absorption
units involving concentrated gas mixtures such ap-
proaches are essential (Al-Ghawas and Sandall, 1991;
Katti, 1995).
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Breaking azeotropes with an inert gas

Multicomponent ‘interaction’ effects can be used to
devise novel separation techniques. Condensation of
an azeotropic mixture of 2-propanol (1) and water
vapour (3) in the presence of air (3) will lead to
a condensate composition which is richer in the faster
diffusing species water vapour; see Fig. 29. The fluxes
of 2-propanol and water are unequal due primarily to
the differences in the values of the pair diffusivities:
P, =105x10"% D3, =26x10"°m?s" ! and
since the condensate composition x; = N{/(N; +
N,), the condensate will be richer in water. There
is thus a possibility of ‘breaking’ azeotropes by de-
liberate introduction of an inert gas. This diffusion
selective separation concept has been verified experi-
mentally by Fullarton and Schlunder (1986) and the
process aspects have been investigated by McDowell
and Davis (1988). Conceptually speaking the function
of the inert gas in this separation process is analogous
to that of an ‘inert’ membrane and this phenomenon
has been termed sweep diffusion in the literature
(Cichelli et al., 1951). Indeed, we shall see a bit later
that the most convenient way of modelling membrane
transport is to view the membrane as a pseudo-
species.

Drying, crystallization

In drying operations the selectivity of the process
can be significantly influenced by appropriate adjust-
ment of the temperature and the humidity of the air
used. Riede and Schliinder (1990a, b) and Martinez
and Setterwal (1991) underline the need for using the
Maxwell-Stefan approach in gas-phase controlied
convective drying of solids wetted with multicompo-
nent liquid mixtures.

Matsuoka and Garside (1991) emphasize the need
for a proper simultaneous heat and mass transfer

analysis of crystallization operations; the enthalpy
changes accompanying crystallization have a signifi-
cant influence on the rate of crystal growth.

Heat and mass transfer in distillation

Traditionally, in distillation operations the inter-
phase mass transfer is assumed to be equimolar. Ap-
plication of the proper energy balances to the vapour
and liquid phases, it can be shown that the proper
constraint on the interfacial molar fluxes is (Krishna,
1977b)

Y N(H B = 0.

i=1

(43)

Only when the molar enthalpies of vaporization of the
individual species are equal to one another does
eq. (43) reduce to the requirement of equimolar trans-
port across the vapour-liquid interface

Y N;=0 (equimolar transport). 44

i=1
Consider the reactive distillation process for the
manufacture of methyl tert-butyl ether (MTBE) by
heterogeneously catalysed reaction of isobutene with
methanol. The molar heats of vaporization of the
species involved are (at 40°C): isobutene: 19.6 kJ/mol;
methanol: 36.5 kJ/mol; MTBE: 29.5 kJ/mol. In the
mass transfer modelling of this process a proper ac-
count is to be taken of these differences (Sundmacher
and Hoffmann, 1994b).

Rigorous stagewise design software for multicom-
ponent distillation columns incorporating eqs
(38)—41), along with the interfacial energy balance
(43), are available (RATEFRAC™ from ASPEN
Technology, Boston, U.S.A.; ChemSep from CACHE
Corporation, U.S.A.); see Seader (1989) and Taylor

2 3

2-propanol (O) + water ( @ ) + air (O)

coolant

condensate

Fig. 29. Condensation of an azeotropic mixture of 2-propanol (1}-water (2) in the presence of air (3) results

in a condensate which is richer in water. This is due to the fact that water vapour molecules diffuse faster in

the ternary vapour—gas mixture. Experimental confirmation of this separation idea was obtained by
Fullarton and Schiunder (1986).
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and Lucia (1995) for a brief introduction and to Krish-
namurthy and Taylor (1985a,b) and Taylor and
Krishna (1993) for further details.

Thermal diffusion

When steep temperature gradients are encountered,
such as in chemical vapour deposition processes, we
need additionally to take account of the thermal diffu-
sion (Soret effect) contribution to the molar fluxes.
Equations (16) can be augmented in the following
form (see Kuiken, 1994 for detailed derivations):

" xx;(af — uj)
——V ; o L i=12,...,n (45
RT T le Dy 43)
i#i

where u] is the augmented species velocity incorporat-
ing the thermal diffusion contribution

DINVT
u{:ui+<—‘>—, i=12 ..,n (46)
pi) T

The thermal diffusion coefficients Df have been de-
fined in the manner of Hirschfelder et al. (1964) and
have the units kg™ m®s™!. In CVD processes, ther-
mal diffusion causes large, heavy gas molecules like
WF,, whose DI > 0, to concentrate in cold regions
whereas small, light molecules like H,, whose DI < 0,
concentrate in hot regions. Kleijn and Hoogendoorn
(1991) have demonstrated the importance of the ther-
mal diffusion contribution in the modelling of CVD
processes.

Wong and Denny (1975) have shown that thermal
diffusion effects can be important for transport and
reaction of gaseous mixtures inside catalyst particles
and the importance of this increases when there is
a large difference in the molar masses of the compon-
ent species.

DIFFUSION UNDER THE INFLUENCE OF EXTERNAL
BODY FORCES

Generalized driving force

When the system is subject to external body forces
such as electrostatic potential gradients and centrifu-
gal forces we need to extend the Maxwell-Stefan
relations to take these into account. Let F; represent
the force acting per kg of species i. Expressed per
volume of mixture the driving force d; for diffusion is
to be extended as follows [cf. eq. (18)]:

c¢RTd; = — ¢ Vyu; + piF;. 47

Under the action of external body forces, linear mo-
mentum will be conserved

1 " - dv
—EVp+ZwiFi=——+V'1 (48)

a

where v is the mass average mixture velocity, 7 is the
stress tensor and w; is the mass fraction of species i. In
diffusion processes of relevance to chemical engineer-
ing mechanical equilibrium is established far quicker

than thermodynamic equilibrium and we may safely
assume

d
Ty r~0———Vp+ Zw

a Z (49)

It is convenient to incorporate the mechanical equilib-
rium constraint (49) by redefining the generalized
driving force in eq. (47) as follows:

k=1

RTd; = — Vo + piF; + Pi(

1 " -
; Vp— Z kak>
(50)

where we add a vanishing vector (Lightfoot, 1974;
Taylor and Krishna, 1993) to the driving force defined
by eq. (47). The chemical potential gradient term may
be expanded to explicitly include the contribution of
the pressure gradient

Vot = Voo + ViVp. (5D

Inserting eq. (51) into eq. (50) and rearranging we
obtain

¢RTd; = — ¢V pu; — (¢;Vi — @;)Vp

+ Pi(Ft - i wkik>

k=1

(52)

where we note that ¢;V; is the volume fraction of
species i. The Maxwell-Stefan equations (17) can be
generalized as follows:

X 1 _
di=-—— i — ——= eV — o)V
RT VTt T gy @V @V
F;, - F 53
+C,RT< kz Wy k> (53)
5 xd — x.J
= Z N_exdizxd o
cDu =1 by
J#x J#i
For ideal gas mixtures eqs (53) reduce to
—Vx; ——(xl—w)Vp+p< Z F)
& XN — xiN;
=y BN 12, (54)
=1 by
J#i

If the body forces F; represent the force acting per
mole of species i, the corresponding relations are

X;

1
diE__ S — ll— IV
RT ot T g @Y @)V
! <F o3 F> (55)
Gy — W €
¢RT =k
Sy NN
= CtDij > Rt ]

i#i
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and

1 1 i
—Vx; ——{x; —w)Vp + *(CiFi —w; ) Cka)
p p

k=1

_ i x,»Ni - X,‘Nj
- —_—,

j=1 ey
J#i

i=12...,n (56)

Diffusion under the influence of two important
body forces: electrostatic potentials and centrifugal
forces are discussed below.

Transport in ionic systems

For isothermal, isobaric transport in electrolyte
systems we must reckon with an additional force
caused by the electrostatic potential gradient V@

Fi = - zi?V(I) (57)

where z; is the ionic charge of species i and % is the
Faraday constant. Except in regions close to electrode
surfaces, where there will be charge separation (the
double-layer phenomena), the condition of electro-
neutrality is met

Z Ciz; = 0 (58)
i=1
and therefore
Y oF, = < ¥ ckzk> FVO =0. (59)
k—1 k=1
Incorporating eqgs (57)«59) into eq. (55) yields
X Z " x.x.(uA — u.)
Y — xz v = Y M T
RT VTH TR VO S LT
j#i
z 'Ni - iN' .
=y BETNNo 12 n (60)
i=1 (27
ii

For aqueous electrolyte solutions the nth component
is usually taken to be water (subscript w). Equa-
tions (60) can also be expressed in terms of the diffu-
sion fluxes relative to the neutral solvent water

X; F zox It - xJ7
V= xiz e VO = Yy T X
RT VT XA RTY ,.; Dy
P
i=12 ..,n—1L (61)
The total current carried by the electrolyte is
i=FY zN. 62)
i=1

In many chemical engineering applications such as
ion exchange, no external electrical field is imposed on
the system and also there is no flow of current, i.e.

27 = 0. (63)

VP

Z ZiNi = 0,
i=1

1

Il

i

Krishna (1987) has discussed a simple matrix method
for calculation of the diffusion fluxes in such cases.

As an illustration let us consider diffusion in an
aqueous solution of H,SO,; the transport properties
for this system have been collected by Umino and
Newman (1993). The system consists of three species:
H" (=°+"), SO (=°-") and H,0 (=‘w’). The
charges are z, =1, z_ = —2 and z,, = 0. Let ¢, rep-
resent the concentration of the electrolyte or ‘salt’ in
the aqueous solution and c¢,, the molar concentration
of water. The concentrations of the ions are ¢+ = 2¢;
¢ = ¢ and the corresponding mole fractions are
X+ = 2¢4/(3¢s + ¢,); X = ¢5f(3¢cs + ¢,,). Equation (60)
can be written explicitly for the ionic species in the
system as follows:

x4+ = 2¢,/(3¢s + ¢v); x— = ¢s/(3¢; + ¢y)

X
—E%Vﬂu — X4Zy —

B xix_(uy —u) + XiXp(uy —uy,)

= 64
D+~ D+w ( )

g

" RT

x_
RT

Voo —x-z Vo

x,xw(u_ - uw)
Dy

_x-x4(u- —uy)
B Dy

The values of the three Maxwell-Stefan diffusivities
P.,,P_, and P, _ as functions of the sulfuric acid
concentrations are shown in Fig. 30. The diffusivity of
HY ion in water, D, is about 10 times higher than
that of the SO%~ ion, D_,. However, due to the
requirement of electroneutrality (58), an electric field
¢ is set up, called the diffusion potential, which tends
to slow down the H* ions and accelerate the SO;~
ions so that they move in unison. The effective Max-
well-Stefan  diffusivity of H,SO,, considered as
a whole, can be defined by

1 xw(us - uw)
DSW

Vi = (65)

RT

10°

10°®

2]
10
[m?s7] 10
10" | 9‘
1012 1 | ] 1
1 10 102 108 104

Fig. 30. Maxwell-Stefan diﬁusi\\'igies in the aqueous sulfuric
acid system. Data from Umino and Newman (1993).
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where the chemical potential of the ‘salt’ is
Bs = (2us + (Dp-

where the individual ionic chemical potentials have
been multiplied by the corresponding stoichiometric
coefficients for the H™ and SO~ ions, respectively.
Combining eqs (64)-(66) allows us to obtain the fol-
lowing expression for the Maxwell-Stefan diffusivity
b;,.:

(66)

_ Db ylzy —z)

Dsw
z.bi,—z_D_,

(67)
whose value lies between P, and P_,,; see Fig. 30.

It is interesting to note from eq. (67) that the
ion—ion interaction coefficient D, _ has no influence
on the diffusivity of the neutral electrolyte. The values
of b, _, which represents the long-range cation—anion
interaction, are typically one or two orders of magni-
tude lower than the ion-water diffusivities (cf. Fig. 30)
and vanish as the concentration approaches
zero with a \/c: dependence in accordance with De-
bye-Hiickel-Onsager theory for ion—ion interactions
in dilute solution (see Newman, 1991). The diffusivity
D, _ value decreases strongly with increasing charge
numbers of the ions (Kraaijeveld and Wesselingh,
1993b); see Fig. 31. Estimation procedures for the
D;; are discussed by Pinto and Graham (1986, 1987a)
and Wesselingh et al. (1995).

For aqueous solutions of two electrolytes with
a common anion we have to additionally reckon with
the coefficient P ,. The behaviour of the D, .. coeffi-
cients in solutions of chloride salts is shown in Fig. 32
and it is observed that these coefficients are negative!
This is not in violation of the second law of thermo-
dynamics, eq. (22), as has been argued by Kraaijeveld
et al. (1994) and Kuiken (1994). The absolute values of
the P, , coefficients roughly follow those of the
D _ coefficients; they also increase as the inverse of
the square root of the electrolyte concentration and
decrease strongly with higher charge numbers. Wes-
selingh et al. (1995) have presented a tentative physical

1090
O HCI
o)
o 0
100k o & Nacl
<O
o
o © o © o LaCly
B, ik O &
s g © Y O A CuSO,
<& o A &
<& N
o © a =
102 4 a N A
! A
Rt A A
10—11 4 1 1 1
10t 1 10 102 10°
<,
[molm*]

Fig. 31. Maxwell-Stefan plus—minus diffusivities for various
electrolyte systems. Data from Wesselingh et al. (1995).
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Fig. 32. Maxwell-Stefan plus—plus diffusivities for various
electrolyte systems. Data from Wesselingh et al. (1995).
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Fig. 33. Maxwell-Stefan minus—minus diffusivities of chlor-
ide ion in solutions of different salts. Data from Wesselingh
et al. (1999).

argument to rationalize the negative P, .. At high
salt concentrations, the P, . may become positive.
The hydrogen ion is an exception; in all cases that
have been examined by Wesselingh et al. (1995) it has
a positive P, , coefficient. Available data on the
D_ _ coefficients also indicate negative values; see
Fig. 33.

For hydrogen ion in aqueous sulfuric acid solu-
tions, the relative friction experienced with the sulfate
ions to that with water is (x-/Py _)/(xn/P+w)
similarly, for the sulfate ion the relative friction
experienced with the hydrogen ion to that with water
is (x+/Py Y(x,/P-,). These relative values have
been calculated using the data of Umino and New-
man (1993) and presented in Fig. 34. We see that for
electrolyte concentrations smaller than about
2 mol/m? the cation—anion friction is less than 10% of
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Fig. 34. Relative contributions of ion-ion friction and
ion-water friction in aqueous solution of sulfuric acid. Cal-
culations using data from Umino and Chapman (1993).

the ion—water friction and the first right members of
eq. (64) can be ignored giving for ionic species i:

F
N; = — Dy, Ve, — cizibyy = VO itln,
Ve, — ¢z RTV + ciu
i=12..,n-1 (68)

which is the Nernst-Planck equation and the three
contributions to the molar flux of ionic species i are
usually termed ‘diffusion’, ‘migration’ and ‘convec-
tion’. In deriving eq. (68) we additionally assume that
the ionic activity coefficients are unity. The ion-water
diffusivities are practically independent of electrolyte
concentration for dilute solutions.

For diffusion in mixtures of HCI and BaCl,, dis-
cussed earlier, the Nernst—Plank equations (68) for the
three ionic species can be combined with the no-cur-
rent relation (63) to calculate the individual fluxes J7:

Ju+ /Dy w 0 0
J'él" 0 I/DCI‘,W 0
St | 0 0 1/Ppe
(#/RT)VO Zu* Zc1” ZBa2t
VCH+
Vea-
e L I I
Vcliaz+
0

where [B] is an augmented coefficient matrix. Equa-
tion (69) can be used to calculate the Fick effective
diffusivity of an individual ion D;

Ji
Di’
and these values are plotted in Fig. 5. The agree-
ment with the experimental data is good. Each ion

— V¢; = i=12 ....,n—1

(70)

W
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experiences a ‘pull’ or ‘push’, depending on the direc-
tion of ¢;z;(Z/RT )V® where VO is the diffusion po-
tential which can be calculated using eq. (69):

(gF/RT)V(D = BZJVCH* + B;ZIVCCl‘ + B231VC532+.
71

The Nernst-Planck model calculations anticipate
negative values of Dg,2+ for /cy+/cp.2+ > 2 due to
a strong electrostatic ‘push’; see Fig. 5. In view of the
fact that the effective ionic diffusivities can assume
negative values, calculations of liquid-phase mass
transfer coefficients in multicomponent ion exchange
using these lead to unsatisfactory results (Frey, 1986).

It should also be clear from eq. (71) that the sign of
diffusion potential is dictated by the concentration
gradients of the individual ions and is therefore
dependent on the signs (i.e. directions) of the concen-
tration gradients. This directional influence of the
diffusion potential is illustrated clearly by the experi-
ments of Kraaijeveld and Wesselingh (1993a) for ex-
ternal mass transfer limited ion exchange. Exchanging
Na™* within the ion exchange bead with H* from the
bulk chloride solution proceeds at a significantly
higher rate than for the reverse exchange process; see
Fig. 35. Smith and Dranoff (1964) report similar re-
sults. Analogous asymmetric exchange kinetics is
found for the Ca?*/H*/Cl~ system (Kraaijeveld and
Wesselingh, 1993a).

The influence of the electrostatic potential created
by ionic diffusion on mass transfer in liquid-liquid ion
exchange operations is discussed by Van Brocklin and
David (1972) and Tunison and Chapman (1976). The
effect of ionic interactions is indicated qualitatively in
Fig. 36 for the case of metals extraction. The difference
in the mobilities of M2* and H* gives rise to a net

cytzyt |71 Ve
CaZar” Vea-
Cpa2*2Zpy2* Vegaz+
0 0

(69)

gradient of positive charge density which must be
balanced by a non-uniform distribution of the
counterion, for example SO3 ~. The counterion must
have a zero flux at the interface, however, so that
an electric field ¢, or a diffusion potential, must be
established in the diffusion layer to balance this con-
centration gradient of the counterion. This potential
gradient will have two effects on the metal transfer
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Conv-
ersion

time/[s]

Fig. 35. External mass transfer limited transfer rates to and
from ion-exchange particles are direction dependent. Experi-
mental data of Kraaijeveld and Wesselingh (1993a).

M + 2H" + SOi > MSO, +2H |

aqueous phase

Fig. 36. Schematic indication of the concentration profile
distortions caused by ionic interactions during metals ex-
traction. Dashed profiles indicate corrected profiles taking
the influence of ionic transport and the induced diffusion
potential. Adapted from Tunison and Chapman (1976).

process: it will alter the metal flux directly by causing
metal ion migration, and it will distort ionic concen-
tration profiles, thus changing the surface concentra-
tions, and hence the individual driving forces. Yoshida
and Kataoka (1985) have analysed the entire fabrica-
tion process of an optical waveguide in soda-lime
glass substrate by giving due consideration to differ-
ences in ionic mobilities and the engendered diffusion
potential; see also Kapila and Plawsky (1995). Strictly
speaking, the absorption of CO, and H,S in al-
kanolamine solutions requires consideration of diffu-
sion and reaction between ionic species (Glasscock
and Rochelle, 1989) but Littel et al. (1991) have con-
cluded that conventional approaches ignoring the in-
fluence of electric field on ion transport is not likely to
lead to serious errors.

Deliberate use of electric fields can enhance mass
transfer rates across liquid-liquid interfaces. This
technique can be used for the recovery of fuchsine acid
(a dye) or citric acid from water by extraction with
n-butanol and applying an electric field across the two
phases to enhance interphase mass transport (Stichl-
mair et al., 1992). A survey of the use of electric fields

to enhance separationsis given by Muralidhara (1994)
and Ptasinski and Kerkhof (1992).

Extension of the Maxwell-Stefan formulation to
include thermoelectric effects is developed by New-
man (1995).

Diffusion under the influence of a centrifugal force field

Consider a cylindrical centrifuge rotated subject to
an angular velocity Q. The centrifugal force experi-
ence per unit mass of each component i is

Fi=0n (72)

and so

Z (,()ka = Z kaZr = Qzl', (73)
k=1 k=1
The pressure gradient caused by the centrifugal force

is [cf. eq. (48)]

Vp=—p) wf,= - pQ%r

i—-1

(74)

and the generalized driving force simplifies for non-
electrolyte systems to [cf. eq. (52)]

&=~ Vo — (Vi — o) L. (75)

P
RT oRT
We note that the contribution of the centrifugal force
to the overall driving force is effective only when there
is a difference between the volume fraction of com-
ponent i, ¢;V;, and its mass fraction, w;; for a mixture
where these differ the centrifugal force will cause rela-
tive motion of species. Components with a higher
molar mass and mass density will experience a greater
force and will therefore tend to congregate towards
the periphery; this will cause a composition gradient
Vr, 1 directed inwards tending to cause redistribu-
tion; see Fig. 37. At equilibrium the net driving force
on the system will vanish:

X; _
h—f Vr‘pﬂi = —(c;iVi — wy)

c; = (equilibrium),
(76)

For separation of an equimolar gaseous mixture of
U?3F¢ (M, = 034915 kg/mol) from U2*®F, (M,
= 0.35215 kg/mol) the difference between the mole
fraction and mass fraction, (¢;V; — @), is only 0.0021.
In order to achieve a reasonable separation high rota-
tional speeds, of the order of 700 rotations per second,
will be required. Even so the separation achieved per
stage is small and a few million centrifuges are re-
quired on a commercial scale (Van Halle, 1980;
Voight, 1982)! Centrifugation techniques are also used
in practice for separation of proteins from dilute aque-
ous solutions for which there is a large difference
between the volume fraction and mass fractions of the
protein molecule (¢;V; — @;) & — 1000x, (Lee et al.,
1977).

An interesting alternative for effective separation by
creating high-pressure gradients is the use of axisym-
metric supersonic gaseous jets and this technique has
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Fig. 37. Ultracentrifugal separation of a binary mixture.

been suggested for the separation of uranium isotopes
(Mikami, 1970).

DIFFUSION INSIDE POROUS STRUCTURES

Diffusion mechanisms

Diffusion of fluid mixtures inside a porous matrix is
important in catalysis, adsorption and membrane sep-
arations. Let us consider the example of gas adsorp-
tion. Most commercial adsorbents consist of small
microporous crystals (e.g. zeolites) formed into a mac-
roporous pellet (Ruthven, 1984). The molecular spe-
cies constituting the fluid mixture have first to be
transported from the bulk fluid phase to the external
surface of the adsorbent. Within the particle there are
two distinct diffusional resistances to mass transfer:
the macropore (inter-crystalline) diffusional resistance
of the pellet and the micropore (intra-crystalline)
diffusion resistance. A schematic of a catalyst or
adsorbent particle is given in Fig. 38. The relative
importance of macropore and micropore diffusion
resistances depend inter alia on the pore size distribu-
tion within the catalyst or adsorbent particle. Micro-
pores have diameters smaller than 2 nm; macropores
have sizes greater than 50 nm and mesopores are in
the size range 2-50 nm. Figure 39 shows typical pore
size distributions for three common adsorbent par-
ticles.

Within a pore we may, in general, distinguish three
fundamentally different types of diffusion mecha-
nisms, as depicted pictorially in Fig. 40:

o Bulk, ‘free space’ or free molecular diffusion that
are significant for large pore sizes and high system
pressures; here molecule-molecule collisions domin-
ate over molecule-wall collisions.

e Knudsen diffusion becomes predominant when
the mean-free path of the molecular species is much
larger than the pore diameter and hence molecule-
wall collisions become important.

micropores
(pore diameters

macroporeg X
§ % less than 2 nm)

idealized
. representation

sxternal fluid
film resistance ..,

Fig. 38. Schematic diagram of adsorbent or catalyst particle
depicting the three main diffusion resistances. Adapted from
Ruthven (1984).

100 r Zeolite-X
-~
molecular

9% of sieve carbon

pores | % activated
carbon

o
0 ]
0.1 10 1000

pore diameter/[nm]

Fig. 39. Pore size distribution of zeolite-X, molecular sieve
carbon and activated carbon. Adapted from Yang (1987).

e Surface diffusion of adsorbed molecular species
along the pore wall surface; this mechanism of trans-
port becomes dominant for micropores and for
strongly adsorbed species.

Bulk and Knudsen diffusion mechanisms occur to-
gether and it is prudent to take both mechanisms into



The Maxwell-Stefan approach to mass transfer 885

Bulk diffusion

Knudsen diffusion

Micropore diffusion

vacancies

Fig. 40. Three distinct mechanisms by which molecular species get transported within an adsorbent or
catalyst particle; (a) bulk diffusion; (b) Knudsen diffusion; and (c) surface diffusion of adsorbed species along
the surface of the pores.

bulk diffusion + Knudsen diffusion

AN

urface diffusion
total flux surface diffu

H,S flux across
membrane
NS/ Ax

. otal
0.1

viscous flow

Fig. 41. Electric analogue circuit picturing the flux of the
diffusing species within a porous medium. Adapted from
Mason and Malinauskas (1983).

account rather than assume that one or other mecha-
nism is ‘controlling’. Surface diffusion occurs in paral-
lel to the other two mechanisms and its contribution
to the total species flux may be quite significant in
many cases, as we shall see later in this paper. Within
the micropores the dominant mechanism is surface
diffusion. It is for this reason that surface diffusion is
also referred to as micropore diffusion in the literature
(e.g. Ruthven, 1984). For zeolitic structures micropore
diffusion is also referred to as configurational diffu-
sion. The pressure gradient inside the particle is not
always negligible and this pressure gradient gives rise
to viscous, or Darcy flow. Figure 41 shows the various
contributions to the flux of the species inside the
particle. The surface diffusion contribution can be
important for components with high adsorption
strength. Sloot (1991) has shown that the surface diffu-
sion contribution to the total flux of H,S through
a membrane can be quite significant even though the
pore size was as large as 350 nm; see Fig. 42. For
separation of H,/CH,/CO, by pressure swing ad-
sorption using activated carbon, Doong and Yang
(1986) determined the contribution of the surface dif-
fusion flux to be comparable in magnitude to the
Knudsen flux.

//bulk + Knudsen
e -~ surface

[mmot m*s7] 0.05

| 1 | 1 | ] |

pressure/[bar}

Fig. 42. Contributions of bulk, Knudsen and surface diffu-

sion for transfer of H,S across a catalytic membrane carrying

the Claus reaction: 2 H,S + SO, =% Sg + 2 H,O. After
Sloot (1991).

Keil (1996) presents an up-to-date review of the
modelling techniques used in practice for describing
transport in porous media.

We first develop the Maxwell-Stefan formulation
for combined bulk and Knudsen diffusion.

The dusty gas model

It is now generally agreed that the most convenient
approach to modelling combined bulk and Knudsen
diffusion is the dusty gas model; see Jackson (1977),
Mason and Malinauskas (1983) and Wesselingh and
Krishna (1990). The principle behind the dusty gas
model is quite simple indeed and is really a straight-
forward application of the Maxwell-Stefan diffusion
equations developed earlier. What we do is to con-
sider the pore wall (‘medium’) as consisting of giant
molecules (‘dust’) uniformly distributed in space.
These dust molecules are considered to be a dummy,
or pseudo, species in the mixture; see Fig. 43. To
develop the transport relations we adopt the Max-
well-Stefan approach and use eq. (56) as a start-
ing point and apply it for a (n+ l)-component
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Fig. 43. Schematic picture of the dusty gas model in which the pore wall is modelled as giant dust molecules
held motionless in space.

mixture:
x:. _ w; 1 n+1
~Vx; — (————, )Vp' +-= <CiFi - ) CiFf)
p P i=1
n+1xr_N _ X,N
=YL= i=12 .0+l (7D
j=1 D

It is important to bear in mind that the pressure, total
concentration, mole fractions and mass fractions ap-
pearing in eq. (77) will now refer to the pseudo-mix-
ture which includes the dust molecules, and not to the
gas itself. This distinction will be maintained by writ-
ing p, ¢, x; and i for the quantities referred to the
pseudo-mixture and p, ¢, x; and ; for the same
quantities referred to the gas. The latter quantities are
of physical interest. In the case of species concentra-
tions ¢;, partial pressures p; and flux vectors N; there is
no distinction between the two. The Maxwell-Stefan
diffusivities in the pseudo-mixture are also primed to
emphasise that their values differ from their ‘free gas’
counterparts.

To obtain equations describing the dusty gas
model, the following set of assumptions must be ap-
plied:

(a) the dust concentration ¢, is spatially uniform
(b) the dust is motionless, so that N,,; =0
(c) the molar mass of the dust particles M, ; — oc.

In order to satisfy requirement (b) the dust molecules
must be constrained by external forces F, .. Phys-
ically, these represent the support forces exerted on
the dust molecules by an external agency which
‘clamp’ the molecules preventing it from moving in
response to gas pressure gradients, i.c.

Vp =cys1Fn+1. (78)
We assume that there are no external body forces on
the species i = 1,2, ... ,n

F; =0,

i=1,..,n (79

With the above assumptions we may write out the
first n equations as

Xi — CU; ,
_VX; ( - ) —_,cn+1Fn+1
4 14
POoxIN; — xiNs x4 NG )
=y N Tl = 1,2, ., (80)
i=1 Dij Clin+1

Translating from the primed variables associated with
the pseudo-mixture to the unprimed variables asso-
ciated with the gas and defining effective transport
parameters:

ii/Ces Div = (81)

s /!
U - Ct Di,n+1//-xn+1

we obtain (see Jackson, 1977 for detailed derivations)

1 " XN, —
_ﬁvpi— )

i=1

X,‘Nj Ni R
2 Dy

i=1.2,...,n
(82)

The BY; represent the effective binary pair diffusion
coefficients in the porous medium, while D, represent
the effective Knudsen diffusion coefficients. The
D; are related to the corresponding free space values
by

By = (¢/1)B (83)
where the porosity-to-tortuosity factor (¢/t) character-
izes the porous matrix and is best determined by
experiment; for a proper interpretation of ¢ and 7 see
the paper by Epstein (1989). For a cylindrical pore we
have

7 =1 (cylindrical pore). (84)
The free space diffusivities D;; can be estimated from
the kinetic gas theory (see e.g. Reid et al., 1987). The
effective Knudsen diffusivities are (Jackson, 1977; Ma-
son and Malinauskas, 1983)

8RT

v (85)

=(g/ T) =
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where d, is the pore diameter and the square-root
term represents the velocity of motion. Burganos and
Sotirchos (1987) and Sotirchos and Burganos (1988)
have analysed gaseous diffusion in pore networks of
distributed pore size and length and obtained expres-
sions for the effective diffusivities.

Equations (82) can be cast into n-dimensional
matrix notation to obtain the following explicit ex-
pression for the fluxes:

1
N) = — 2= [BT” '(Vp) (86)

1 i helium (1)-
neon (2)-
argon (3)
10!
_N‘,N_zz,l\l_31 102
[mol m? &7
10° dy =39 um; §= 9.6 mm;
Ap=0; T=300.1 K
X, =0.51; x,=0.27;
A x,=0.901; Ax,=-0.486
10+ ! 1 _ |
10 102 10° 104 10°

p/lPa]

Fig. 44. Comparison of dusty gas model predictions with

experimental data for diffusion of helium (1)-neon (2)-argon

(3) through a bundle of capillaries. Data from Remick and
Geankoplis (1974).
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where the n-dimensional square matrix [B¢] has the
elements

1 n Xy X;
Bi=—+ Y ==, Bfjusp= ——»
Yt k; by YT b
k#i
ij=1,2,....n (87)

The diffusivities Pf; are inversely proportional to the
pressure and independent of pore size and so in the
bulk diffusion controlled regime the fluxes N; are
independent of system pressure and pore size. On the
other hand, the Knudsen diffusivities Pjy are indepen-
dent of the pressure and directly proportional to the
pore size and so the fluxes N; are directly proportional
to the system pressure and pore size.

Figure 44 shows the calculation of the fluxes using
€q. (86) for diffusion of helium (1}-neon (2) and argon
(3) across a bundle of parallel capillaries with varying
system pressures. With increasing pressure the system
moves from Knudsen diffusion control to bulk diffu-
sion control. The model calculations simulate the
experimental results of Remick and Geankoplis (1974)
very well. For a system at constant pressure, increas-
ing the pore size produces analogous results; see
Fig. 45.

Ofori and Sotirchos (1996) have presented simula-
tion results to demonstrate the importance of using
the complete form of the dusty-gas model in many
applications.

Generalization to non-ideal fluid mixtures

The dusty gas model can be paralleled for diffusion
of non-ideal fluid mixtures inside porous media fol-
lowing the treatment of Mason and Malinauskas

He

Ne
Ar

L5 s st R
s o)
[oaaiiatmss)
Lo i aiivisiiniiiiiil
O 555355 v 2

p=1000 Pa; §=9.6 mm;
Ap=0; T=300.1 K
X, =

A x, =0.901; A x, =-0.486;

0.51; x, =0.27;

1
helium (1)-
neon (2)-
argon (3)
107!
-N,,N,,N,
[mol m? 57
102
103 '

1 10

102 108

ay/(um]

Fig. 45. Influence of pore size on the fluxes during diffusion of helium (1}-neon (2)-argon (3) through
a bundle of capillaries; calculations using the dusty gas model.
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(1983) to get

x.
— =V i ——— VVp — = z,ZV®
RT Vot~ gy VP RTZ
" XjN,'—X,'Nj N,' .
E S + . z=l,2,.,.,n (88
12:1 ¢Dy; cDim )
J#i

which differs from its free-space counterpart, eq. (55),
by the absence of the ®;Vp term in the second left
member. In deriving eq. (88) we have also assumed
that both the solution and the matrix are electrically
neutral and that the only external body force acting
on the system is the electrostatic potential; these as-
sumptions hold for the applications discussed in this
paper. For high-pressure synthesis of ammonia the
description of the transport processes within the cata-
lyst particle requires that the chemical potential gradi-
ent be evaluated from a knowledge of the fugacity
coefficients (Burghardt and Patzek, 1983).

An alternate form is to write eq. (88) in terms of the
diffusion velocities u; (Mason and del Castillo, 1985)

1 1 _ 1
Vi — = VNP — — 2, F
RT T.p M RT VVP RT 2, F VD
1(“1_ ' u; .
_Z B, Bag i=12...n (89
i=1 i
J#i

The curious experimental results of Van Oers (1994)
shown in Fig. 6 for the transport of PEG/dex-
tran/water through an ultrafiltration membrane can
be understood from the influence of the presence of
dextran on the activity coefficient of PEG. High dex-
tran concentrations upstream of the membrane re-
sults in a high chemical potential gradient driving
force for PEG causing it to diffuse across the mem-
brane reducing the rejection to even below zero. For
ultrafiltration of mixtures of potassium phosphate
and PEG, Vonk (1994) found that PEG at high con-
centrations tends to ‘push’ the phosphate through the
membrane leading sometimes to negative rejections.

Heintz and Stephan (1994) have demonstrated that
for pervaporation of ethanol and water across a poly
(vinyl alcohol}-poly (acrylonitrile) composite mem-
brane it is important to use the complete eqs (88) to
calculate the fluxes. A typical result shown in Fig, 46
demonstrates the superiority of eq. (88) over an effec-
tive Fick diffusivity model for each component ignor-
ing the mutual interaction between ethanol and water.

The intracatalyst transport during synthesis of
methyl tert-butyl ether from isobutene and methanol
has been modelled by Berg and Harris (1993) and
Sundmacher and Hoffmann (1994a) using eq. (88) and
taking proper account of thermodynamic non-ideality
effects.

For the description of diffusion in ion exchange and
electrodialysis we have to contend with at least five
species, pictured in Fig. 47 for the case of a cation-
exchange particle or membrane; these species are
(i) the exchanger matrix with fixed charges (M),
(ii) counterion initially present within membrane,
(iii) counterion present in the adjacent bulk solution,
(iv) solvent (usually water) and (v) co-ion (having the
same charge as the fixed charge m). The co-ion, pres-
ent in the bulk solution, is excluded from the mem-
brane and for the description of transport within the
particle or membrane we have to consider four species
and the corresponding six Maxwell-Stefan diffusivi-
ties: (i) water-matrix: Py, (i) two water counterion
diffusivities P%, ., (iii) two matrix counterion diffusivi-
ties Py + and (iv) the pair diffusivity of the two-
counterions P% ,. Pinto and Graham (1987b) discuss
estimations of the ionic diffusivities in ion-exchange
resins, while some indications of the order of magni-
tudes of these coefficients are available in Wesselingh
et al. (1995).

Since the behaviour of P, , is poorly understood it
is usually ignored and eq. (88) reduces to the
Nernst—Planck relation (68); see Graham and Dranoff
(1982) and Helfferich (1962) for more detailed consid-
erations. For ion exchange with particle diffusion con-
trolling, the use of the Nernst-Planck equation
predicts that the forward and reverse exchange of the

effective Fick
diffusivity

4 “_:—————— eq. (88)
a
Q
B
a b
r water-.,
N, | )
[kgh*m*]|.
o
N ethanol o
laminar active g, L oo o \&
layer layer layer permeate o e - ...a.,,.?“_é._b Y
0 0 1

mass fraction ethanol in feed

Fig. 46. Pervaporation of an ethanol-water mixture through a membrane. Comparison of Maxwell-Stefan
and effective Fick formulations. Adapted from Heintz and Stephan (1994).
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Fig. 47. Cation exchanger and the species involved in the transport process.

same counterions of different mobilities should occur
at different rates. The exchange rate is higher if the
counterion present initially in the ion exchanger is the
faster of the two; see Fig. 48 (Helfferich, 1983). A fur-
ther point to note is that when mass transfer external
to the particle is limiting, the reverse trend is observed;
compare Figs 35 and 48. Hu et al. (1992) consider both
intraparticle and film diffusion in modelling the diffu-
sion of bovine serum albumin in the presence of buffer
electrolytes within a porous particle and emphasize
the need for a proper modelling of ionic transport
using the Nernst-Planck equations; a simple Fickian
approach fails except for small protein concentra-
tions. It is interesting to note that Anand et al. (1994)
have analysed intraparticle diffusion in an acidic ion
exchanger without any consideration being given to
electrostatic potentials created by ion transport; it is
small wonder that their effective Fick diffusivity
values defy simple interpretation.

Kraaijeveld et al. (1995) have modelled electrodialy-
sis of NaCl-HCl and amino acid mixtures using
eq. (88) as a basis. Grimshaw et al. (1990) have demon-
strated that protein transport across a polymethac-
rylic acid membrane can be enhanced significantly by
the application of a transmembrane electric field.

Viscous flow

Under the action of fluid-phase pressure gradients
viscous flow will occur within the porous matrix; see
Fig. 49. If v represents the (mass-) average velocity of
this flow it is usual to relate this to the pressure
gradient by

B,

v=——Vp (90)
n

r Nernst-Planck
model

Conv-
ersion

Ao bl Ll lLL L

10
time/[s]

0.4 PR
1

Fig. 48. Intra-particle diffusion limited ion-exchange rate
asymmetry. Adapted from Helfferich (1983).

where the permeability B, is characteristic of the
membrane structure and has to be determined experi-
mentally, along with the porosity—tortuosity factor
(/7). The permeability coefficient B, can be calculated
for some typical structures portrayed in Fig. 49. For
a cylindrical pore the permeability is calculated from
the Poiseuille flow relationship

Bo = d3/32. 1)

For a suspension of spheres of diameter do, the
Richardson-Zaki correlation gives

Bo = (d3/18)e*” (92)

where ¢ is the porosity of the suspension. The Car-
man-Kozeny relation for an aggregated bed of
spheres is

By = (dg/180)(e/(1 — &)%) ©3)
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Fig. 49. Viscous flow of fluid through a suspension, bed of aggregated particles, bed of fibres and pores.

and for a corresponding bed of fibres

Bo = (d5/80)(*/(1 — &)?). %4
The viscous flow contribution is important for trans-
port in membranes with open structures, such as in
microfiltration and ultrafiltration. Viscous flow is
relatively unimportant for transport in membranes
with dense structures, such as present in gas per-
meation, pervaporation and reverse osmosis mem-
branes.

Viscous flow tends to move the component species
in the mixture along with it. In the original formula-
tions of the dusty gas model (Mason and Malinaus-
kas, 1983), this viscous flow has been assumed to
non-separative. Thus, any viscous flow furnishes
a permanent leak for all species and it is impossible to
have the resulting transport equations describe
semipermeable behaviour solely by the manipulation
of the relative magnitudes of the transport coefficients
By; and Dy To overcome this dilemma we may allow
viscous flow to have a separative character and intro-
duce viscous selectivity factors ;:

93)

The v; represent the contribution of viscous flow to
the velocity of species i. Relatively large molecules
within narrow pores would tend to congregrate near
the centre giving viscous selectivity factors exceeding
unity, %; > 1, whereas for species which stick and slip
at the pore walls we have o; < 1; see Fig. 50. Any
species that cannot squeeze through the matrix of say
a membrane by a viscous flow mechanism must have
a; = 0. The viscous selectivity factors o; must depend
on the structure both of the matrix and the species.

In the presence of viscous flow the total species
velocity is

w,=u+ v (96)
and the total species flux is therefore
N; = ci(u; + vi) = ciw;. o7

Fig. 50. Viscous selectivity effects for (a) large molecules
moving close to the centreline and (b) strongly adsorbed
species sticking to the walls.

Introducing
B
=W 44— Vp (98)
n
into eq. (89) and rearranging we obtain
1 [ 0By F
—— Vi ——V.Vp — Vp — z; —=V®
RT Vol TR VP T op VP T ERT
2x(w; w;
_ Z 1( w;) L (99)

iM

with the following modification of viscous selectivity
factors
tM

X; De (100)

— ;).

<—a+z

ji=1

The final working form of the Mason formulation
for intraparticle diffusion (Mason and del Castillo,
1985; Mason and Lonsdale, 1990) in terms of the
fluxes is obtained by incorporating eq. (97) into
eg. (99):

Ci C; — BO F
Yt — LN — e —> Vp — iz VD
RT TP T Rp P T MGy P T GERT

" YN —xN. N,
_ oy XN N (101)

e e
Bij iM
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Equation (101) has been derived from statistical—
mechanical considerations by Mason and Viehland
(1978) and is equally applicable for the description of
aerosol transport (Mason and Malinauskas, 1983). By
defining augmented species velocities according to
eq. (46), we can extend eq. (101) to include thermal
diffusion effects; this equation is then applicable for
the description of thermophoresis. In the description
of transport across membranes it is convenient to
define further the total volumetric flux

Ny = z ViNi~

i=1

(102)
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Figure 51, adapted from Lakshminarayaniah (1969),
summarizes the various transport mechanisms, driv-
ing forces and fluxes in membrane transport, and the
importance of the individual terms in eq. (101) is
indicated in Fig. 52.

Viscous selectivity effects are important for trans-
port of large molecules such as proteins across e.g.
ultrafiltration membranes. If these large molecules
can be modelled as spheres, the theory of Deen (1987)
when combined with that of Bungay and Brenner
(1973) shows that «; depends on the ratio of the sphere
diameter to the pore diameter; see Fig. 53. We see that
the convective selectivity tends to unity for very small

diffusion

streaming potential

electroOSm osis

.
M)
4 6.

vol

streaming current

Fig. 51. Driving forces and fluxes in membrane transport. Adapted from Laksminarayanaiah (1969).
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Fig. 52. Importance of individual contributions to fluxes in various membrane transport processes. Blanks
indicate: not important; one black circle: moderately important; two black circles: very important.
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0 sphere diameter/pore diameter 1

Fig. 53. Calculation of the viscous selectivity factor for
spherical species moving inside a tube.

proteins (or large pores); this is as expected. The
convective selectivity is also equal to unity in the case
that the protein just fits into the pore. Then all of the
fluid must move with the same velocity as the spheres.
In the intermediate region, the convective selectivity
of the protein has a maximum of about 1.5. For
applications other than ultra- and nano-filtration
convective selectivity effects can be ignored.

For the special case of single-component flow diffu-
sion through medium the viscous selectivity coeffic-
ient ¢y = 1 and so

$ B
N =— (24,22
1 <RT+C‘}? P

(103)

where the presence of the Knudsen term has the
significance of a ‘slip’ flux, which is of significance for
transport of gases at low pressures; see e.g. Cunning-
ham and Williams (1980) and Mason and Malinaus-
kas (1983). Within the framework of the dusty gas
model, the condition of no-slip at the walls implies

tu — 0 (no slip of component 1).  (104)
Gaseous diffusion and heterogeneous chemical reactions

For diffusion with heterogeneous chemical reaction
the flux ratios are governed by reaction stoichiometry
[cf. eq. (34)]. Summing eqgs (101) over the n species
gives after introduction of the Gibbs-Duhem relation-

ship (19) and the electroneutrality constraint (58):

2. Ni/Diu
i=1

Vp=— i ,
ﬁ 1+ Dvisc Z XEX,‘/DfM>

i=1

M:

(vifv) 1/Dhy
! (105)

— ] —
ﬁ (1 + BViSCiZ a;xl/DleM>

=1

N,

i

where we have defined the ‘viscous’ diffusivity

¢:BoRT
n

Dvisc =

(106)

for convenience. For gaseous mixtures, imposing the
constraint Vp = 0 places a special constraint on the

g

“polymerization”

“cracking”

Fig. 54. Pressure profiles within porous catalyst particle for
(a) cracking and (b) ‘polymerization’-type reactions.

fluxes [cf. eq. (85)]

Ni\//l\z =0, (Vp =0, gaseous mixtures) (107)

M=

i=1

which is Graham’s law of diffusion in gaseous mix-
tures. Finite pressure gradients can be generated in-
side a porous catalyst when there is a net change in
the number of moles, as illustrated in Fig. 54 for
cracking and polymerization-type reactions. Some-
times the pressure build-up as a consequence of reac-
tion stoichiometry is large enough to cause concerns
on mechanical strengths of the catalyst. Burghardt
and Aerts (1988) and Jackson (1977) present detailed
discussions on influence of reaction stoichiometry on
the developed pressure gradient. To give an illustra-
tion, taken from Jackson (1977), if the reaction is
a simple irreversible one involving two species A and
B: A - vgB where vy is the stoichiometric coefficient
for B, the pressure at the centre of the catalyst pellet,
assuming complete conversion of A, is py = \/»;p
where p is the pressure on the outside of the catalyst.
Thus, for vg = 2, we have a 40% increase in pressure
as we proceed towards the centre of the pellet (Jack-
son, 1977). Neglect of internal pressure gradients can
lead to inconsistencies for small pore catalysts (Hite
and Jackson, 1977; Schneider, 1975). Also, internal
pressure gradients will cause viscous flow (Unal,
1987).

If the effective diffusivity of component i in the
mixture is defined by

Ci ¢ o F
N;=—Di| o= i+ ==V i2i —— V@
: '(RTVT""“ tRT Vp + ¢z RTV )
i=12,..,n (108)

its value say for component 1 can be calculated from
eqs (101) and (105}
1 1 ToX XqVj
vali

(0
j=2Di;

(vi/v1)/Piu
Dvisc igl !

Dy “ ,
1+ Bisc Z m;'xi//DieM
i=1

e
Dl 1M

’

0l Xy

(109)
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The effective diffusivity thus defined will be a strong
function of the composition and also the flux ratios of
all the species participating in say a chemical reaction
within the pellet. Schnitzlein and Hofmann (1988)
have presented calculations for the effective diffusivity
for hydrogen in a gaseous mixture undergoing cata-
lytic reforming; see Fig. 55. Use of the dusty gas model
and the classic Wilke formula [cf. eq. (32)] lead to
significantly different effective diffusivity values for
hydrogen. We also note that neglect of the viscous
flow contribution [the third term on the right-hand
side of eq. (109)] is not very serious; this result is
typical (Haynes, 1978).

For the special case of a (i) binary mixture, (i) with
no net change in the number of moles, and (iii) satisfy-
ing eq. (107), eq. (109) simplifies to

1 1 1

D, Diw ' DL’ o
a relation usually referred to as the Bosanquet for-
mula. As noted above this formula is very restricted in
its applicability. Elnashaie and Abasher (1993) and
Reddy and Murty (1995) have explored the conse-
quences of using approximate forms of eq. (109) for
the calculation of effectiveness factors and chemical
reaction rates in catalytic processes.

Kaza and Jackson (1980) demonstrate the possibili-
ty of uphill diffusion within a catalyst particle, a phe-
nomena impossible to explain with say the Bosanquet
formula (110) and Reinhardt and Dialer (1981) have
investigated several interesting features of diffusion—
reaction coupling. Veldsink et al. (1995) have shown
the importance of using the dusty gas model in favour
of the simpler Fick effective diffusivity formulation for
modelling of catalytic membrane reactors. Sotirchos
(1991), in a study of the deposition of SiC via de-
composition of methyltrichlorosilane in a porous me-
dium, concludes that simplified mass transport flux
models can lead to significantly different results from
the Dusty Gas model even if the concentration of the
reactants are low. In the hydropyrolysis of coal par-
ticles, Ward and Russel (1981) have shown that it is

16 eq. (109)

1.21

—De o8l /. eq (108"
[10°m® 5] “neglecting viscous .
' flow enE

0.4
Wilke formula, eq. (32)

radial position along catalyst pellet

Fig. 55. Dependency of the effective diffusivity of hydrogen

on the spatial position inside the catalyst particle for cata-

Iytic reforming of C; hydrocarbons. Adapted from Schnit-
zlein and Hofmann (1988).
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necessary to take account of the differences in the
component pair diffusivities Bj;.

The computational issues involved in dynamic dif-
fusion—reaction process simulations incorporating
eq. (101), along with the proper energy balance, are
addressed by Hindmarsh and Johnson (1988).

The Lightfoot formulation

An alternative to the Mason formulation is to apply
the Maxwell-Stefan equations in the form (cf. Light-
foot, 1974)

C; C; — C;
— ==Vt — o= ViVp — —— 2,7 VO
RT "M T RT VP TRTS
N —xN, N
=y I CEN L N o2, (1)
i=1 Ei; Eiym
i#i

for describing combined transport due to diffusion
and viscous flow. The transport parameters E;; and
E;\s include the contribution due to viscous tranport
and may be viewed as being ‘apparent’ transport
coefficients. Written in terms of the velocities w; [cf.
eqs (96) and (97)]:

1 1 _ F
——V i ——VVp — z; —V®
RT Tvp#l- RT le ZRT
_ ZM+£ i=1,2,...,n (112

b
ji=1 ij EiM

Equations (112) are equivalent to the frictional formu-
lation (Kedem and Katchalsky, 1961; Smit et al., 1975;
Spiegler, 1958) with the frictional coefficients defined
by

RT
o

ij

RT

11
F (113)

]
]

éij Cim

The apparent, or Lightfoot coefficients, E may be
related to the Mason coefficients D¢ (Mason and del
Castillo, 1985) as follows:

1 1 D 1
— == a; = (114)
E;; Bf DiuPiv (1 + Puise/Pur)
and
1 1 1 ~ )
—m— [ 1 + (Pyiee/ D[ | — 5
Eiy Diy (1 + Dise/Du) Dy
(115)
with the following parameter definitions:
1 _ T 00Xk 1 n Xk (116)

BM kZIBiM’ BR{ k=1DliM.
Some methods for estimation of the E;y, for polymeric
membranes are discussed by Peppas and Meadows
(1983). We note from eq. (114) that the Lightfoot
coefficients E;; are not symmetric in general, whereas
the Mason coefficients Df; obey the Onsager recipro-
cal relations

Dt = P (117)
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Inclusion of the viscous contribution into the E;; de-
stroys symmetry unless the viscous selectivity factors
are all equal to unity.

For narrow pores By — 0 the viscous contributions
vanish giving

E;; =D§;, E; =H;y (narrow pores) (118)

and there is no distinction between the Lightfoot and
Mason coeflicients. For a single component 1 diffus-
ing through a suspension of ‘dust’ molecules (species
M), we have

Eip = By + Dyiges (119)

demonstrating clearly that the Lightfoot coefficient is
a sum of diffusive and viscous contributions; cf. eqs
(103) and (119). Wright (1972) further examines
ed. (119) in the context of aerosol transport. For bi-
nary mixtures eqs (114116} simplify to

oy x
[1 + e (171 +
E.. — pe 1M

05X

e
DZiM

|
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upwind diffusion and flux reversal occurred during
the transient experiments. Scattergood and Lightfoot
(1968) have shown that the drag between counterions
and water for transport across an electrodialysis
membrane could cause a significant flux of water even
though there is a negligible pressure gradient (i.e.
negligible viscous transport of water).

In a recent paper, Kerkhof (1996) criticizes the basis
of the Mason formulation of intra-particle transport
and presents arguments in favour of the Lightfoot
formulation. In this context the reader’s attention is
drawn to the paper by MacElroy and Kelly (1985),
who use the dense fluid kinetic theory as a basis for
deriving the intraparticle transport relations.

The solution-diffusion model for intra-membrane
transport (e.g. Wijmans and Baker, 1995) views the
membrane as a pseudo-homogeneous phase. The
Lightfoot formulation (111) is equally applicable to

(120)

iMm = Dim y ;
A1 Xy U Xp ,
I+ Bvisc e + e - fXif)visc
M 2M

1

sl
1M DZM

E," =
! ] a;'Dvisc

1 (121)

—+
B Diu

A lucid explanation of the differences in the behaviour
of the E and P° coefficients is given in Mehta et al.
(1976). For dilute solutions of species 2 (say a protein)
in which there is no slip of the solvent species 1 [say
water; cf. eq. (104)] the relation between the Lightfoot
and Mason coeflicients further simplify to yield

L . (122)

Ey, Diy Diu

1 11
- xz(—DE + D“m) (123)
Eiym = Dyise (124)
i = (25 — 1)(-% - D;‘) (125)

which shows that E,, is purely viscous in nature and
that there is a possibility of obtaining negative values
for E; !

The Lightfoot formulation (111) has been used to
model transport across ultrafiltration (Robertson and
Zydney, 1988), dialysis (Keurentjes et al., 1992) and
ion-exchange membranes (Scattergood and Lightfoot,
1968; Wills and Lightfoot, 1966). The experimental
data of Keurentjes et al. (1992) for transport of sodium
oleate—isopropanol-water mixtures through a cellu-
lose dialysis membrane into a aqueous solution of
Na(l are particularly interesting because they found

(4 T ’
iM 01 Xq
! |:1 +Dvisc(8i,M

BZM

describe this model, and simplified forms of this equa-
tion are used in practice.

Diffusion within micropores

Within micropores, surface forces are dominant
and an adsorbed molecule never escapes from the
force field of the surface even when at the centre of the
pore. Steric effects are important and diffusion is an
activated process, proceeding by a sequence of jumps
between regions of low potential energy (sites); see
Fig. 56. Since the diffusing molecules never escape
from the force field of the pore walls the fluid within
the pore can be regarded as a single ‘adsorbed’ phase
(Karger and Ruthven, 1992). Diffusion within this
regime is variously known as configurational diffu-
sion, intra-crystalline diffusion, micropore diffusion or
simply surface diffusion. In this section we consider
the extension of the Maxwell-Stefan formulation,
generally accepted for description of diffusion in bulk
fluid phases to the description of diffusion inside
micropores. The treatment here essentially follows the
ideas and concepts developed first by Krishna (1990,
1993a, b).

Let us consider diffusion of n adsorbed molecular
species along a surface within the pores of a catalyst,
adsorbent or membrane. In developing our formula-
tion for surface diffusion it is convenient to have
a simple physical picture for surface diffusion in mind.
Such a simple physical model is depicted in Fig. 56
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D3

activation
energy

&

-

A

Fig. 56. A conceptual model for surface diffusion of adsorbed species 1 and 2. P}y and D5y are the
Maxwell-Stefan surface diffusivities of components 1 and 2. Pj, represents the Maxwell-Stefan counter-
sorption coefficient.

that shows molecules hopping from one adsorption
site to another. One such description of the hopping
model can be found in Gilliland et al. (1974). We can
extend the dusty gas model approach (Mason and
Malinauskas, 1983) to the description of surface diffu-
sion by considering the vacant sites to be the (n + 1)th
pseudo-species in the (surface) system

—Vu=RT }, BJ(Ui —suj)
i=1 B

int+1

i=12,....n (126)
where —Vy;, the surface chemical potential gradient,
is the force acting on species i tending to move it along
the surface. The first term on the right-hand side of
eq. (126) reflects the friction exerted by adsorbate j on
the surface motion of adsorbed species i. The second
right member reflects the friction experienced by the
species i from the vacancies. The 6; represents the
fractional occupancy of the sites by the adsorbed
species i and 8, ., represents the fraction of unoccu-
pied, vacant, sites

bp1=0,=1-0,—-8,— -~ —8,=1—10,. (127

In analogy with the definition of the Knudsen dif-
fusivity [cf. eq. (81)] we define the Maxwell-Stefan
surface diffusivity as
D;?, n+1

0,, +1

R —

iV =

(128)

The Maxwell-Stefan diffusivities Dj are entirely
equivalent to the thermodynamically corrected dif-
fusivities as defined by Ruthven (1984). Mechanisti-
cally, the Maxwell-Stefan surface diffusivity 7, may
be related to the displacement of the adsorbed mo-
lecular species, A, and the jump frequency, v;(6,), which

in general can be expected to be dependent on the
total surface coverage (Aust et al., 1989; Reed and
Ehrlich, 1981a, b; Riekert, 1971; Zhdanov, 1985)
1 2
tvo=—A%vi(0)) (129)
z
where z represent the number of nearest neighbour
sites. If the jump frequency remains constant, inde-
pendent of surface coverage, ie. vi(6;) = v;(0), the
Maxwell-Stefan surface diffusivity Pf is also inde-
pendent of surface coverage
1
vi(6) = v;(0), B =—A2v,(0). (130)
z
Another possibility is that due to interactions between
adsorbed species the jump frequency decreases with
surface coverage. If we assume that a molecule can
migrate from one site to another only when the
receiving site is vacant (Barrer, 1978; Riekert, 1971);

the chance of this is proportional to 6y =
(1-6;—86,--- —8,) so that

1
vi(0) = vi(0)0y, iy = ;izvi(o)ew (131)

Okubo and Inoue (1988) demonstrate the possibili-
ty of enhancing the diffusivity P§ by modification of
the properties of the surface, for example, by covering
with hydrophilic groups which interact with the ad-
sorbed molecules.

For zeolitic structures with interconnected cages,
such as zeolite A or X, eq. (129) can be modified to the
form

1 1
By =—i%vi(0) =—2%v,(0)(1 — 6™)
mz mz

=Dy (0)(1 —0™) (132)
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where m represents the maximum number of molecu-
les per cage and the factor mz represents the max-
imum number of nearest-neighbour sites per cage and
(1 — ™) is the probability that at least one of the
nearest neighbour sites is vacant. For pore-type struc-
tures such as ZSM-5 we may take m =1 and z = 1.
For zeolites with three-dimensional cage structures,
such as zeolite A and X, we may takem =2and z = 4
(Van den Broeke, 1995).

The coefficients Df; express the adsorbate i— adsor-
bate j interactions. We can consider this coefficient as
representing the facility for counterexchange, i.e. at an
adsorption site the sorbed species j is replaced by the
species i; see Fig. 56. The countersorption coefficient
Dj; may therefore be expected to be related to the
jump frequency of the species i and j. As a simple
(limiting case) model we can imagine that the counter-
sorption diffusivity will be dictated by the lower of the
two frequencies v; and v}, i.e.

—_—

DY =—228), v;<w. (133)

Within a single narrow pore of zeolite crystals the
mechanism of countersorption cannot prevail because
there is room for only one type of molecular species at
any given time; we refer to this situation as single file
diffusion mechanism. Strictly speaking the term single
file diffusion has to be reserved for the case in which
the molecules are too large to pass one another. If we
take into account the contribution of a bank of paral-
lel pores along with cages, the possibility of counter-
sorption cannot be ruled out; see Fig. 57.

An alternative procedure for the estimation of the
countersorption diffusivity has been suggested by
Krishna (1990) based on the generalization of Vignes
(1966) relationship for diffusion in bulk liquid mix-
tures

By = [D} (0] 2[D5(0)] O+, (134)

Micropore diffusion is an activated process and this
is evidenced by the fact that the Maxwell-Stefan
micropore diffusivity follows an Arrhenius temper-
ature dependence, as illustrated for the diffusion on

Fig. 57. Zeolitic diffusion in cage-type structures. The jump
frequency of any molecule depends on the number of vacant
nearest neighbour sites.

n-butane in silicalite-1 (Kapteijn et al, 1994); see
Fig. 58.

Assuming equilibrium between the surface and the
bulk fluid we have the following relationship for the
surface chemical potential y; of species i:

i =uf + RT In(f)

where 4? is the chemical potential in the chosen stan-
dard state and f; is the fugacity of species i in the buik
fluid mixture. For not too high system pressures the
component partial pressures, p;, can be used in place
of the component fugacities, f;, i.e. f; = p;. The surface
chemical potential gradients may be expressed in
terms of the gradients of the surface occupancies by
introduction of the matrix of thermodynamic factors

(135)

6, n ¢lnp;
— V= I,vo, T.,=6, ,
RT u jgl 7 J ) (-)0}
Lj=1,2 ...,n (136)
For the Langmuir isotherm,
?‘ bi i Oi
o, =2 P = g 13
qsat 1 + Z bjpj t
j=1
the elements of [I'] are
o0
rij=3)ij+—, l,]=1,2, P (% (138)
Oy

The surface concentration of component i, g¥, and
the saturation surface concentration, g, are com-
monly expressed in mol/kg of material (this is equiva-
lent to expressing these in mmol/g as is commonly
done in the literature) and the parameters b; are usu-
ally expressed in the units Pa 1.

The surface fluxes N; of the diffusing adsorbed
species are defined as

Ni= pp£‘15a10iui (139)

where p,, is the particle density usually expressed in
kg/m?® and ¢ is the porosity of the material. If the
surface concentrations expressed in mol/kg, the fluxes
Ni{ are obtained in the units of molm™2s~!, The

1071
diffusion of n-butane
L in silicalite-1
D:v |
GO
10—11 i 1 1 1
1.5 (/T /103 KY as

Fig. 58. Maxwell-Stefan micropore diffusivity of n-butane
in silicalite-1. Adapted from Kapteijn et al. (1994).
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vacant sites can be considered to be stationary, so
u,.; =0. (140)
Combining eqs (126), (139), and (140) we obtain

6; -

“REVM 2

9,-Nf—9,»Nj»+ Ng
Predsad  Ppedsad’

——

j=
J#

i=1,2, .. ,n (141)

which equation may be cast into n-dimensional
matrix notation

— pequ[I1(VE) = [BJ(N°) (142)
where the matrix [B®] has the elements
1 " 8; 8;
Bf1=~+ _]_9 BIS=__I, .:.=112"~'5 .
b j; > 2 b §
izl (143)

If we define a matrix of Fick surface diffusivities
[D*] by
(N°) = = ppequ[D°1(VO)

we can obtain the following explicit expression for

[D°]:

(144)

[D7]=[B] '[I]

For single file diffusion mechanism, with no possibili-
ty of counterexchange between the adsorbed species
i and j, the above equations simplify to give the
following expressions for the Fick surface diffusivity
matrix [D*]:

(145)

w 0 0 0

wq-| * P 0 [T].  (146)
1o o - '
0 0 0 By

The Fick surface diffusivity matrix [D*] portrays
a conglomerate of these two effects, namely, (i) the
surface mobilities embodied in the Dfy, which can be
determined from single-component sorption kinetic
data, and (ii} the fluid—solid adsorption equilibrium
(‘isotherm’} embodied in the thermodynamic matrix
[Tl
For single component diffusion, eq. (144) reduces to
the scalar form
Ni = — ppeqD1V0, (147)
where the Fick surface diffusivity is [cf. eq. (145)]
Dj =

Wl (148)

For the Langmuir adsorption isotherm the thermo-
dynamic factor T is

(149)

and so

(150)

In the vast literature on micropore diffusion (Ruthven,
1984; Yang, 1987) the Maxwell-Stefan surface diffus-
ivity Py is also referred as the ‘corrected diffusivity’.
If B, decreases with surface coverage following eq.
(131), then the Fick surface diffusivity D] must be
independent of surface coverage. On the other hand, if

% v is independent of surface coverage [cf. eq. (130}],
Ds should exhibit a sharp increase with 8,. Such
behaviour has been experimentally observed, for
example, for the diffusion of oxygen and nitrogen in
carbon molecular sieve (Chen er al., 1994); see Fig. 59.
The overall effect of the surface coverage dependence
of Df is to enhance the uptake during adsorption and
reduce it during desorption (Garg and Ruthven, 1972;
Kapoor and Yang, 1991). Figure 60 illustrates this
asymmetry, which is reminiscent of the asymmetry
observed in ion exchange (cf. Figs 35 and 48).

Use of other adsorption isotherms such as Freun-
dlich, Dubinin—Radushkevich, Toth, Langmuir-
Freundlich result in different correction factors as
illustrated by Seidel and Carl {(1989) for diffusion of
phenol and indole from aqueous solution in activated
carbon. Modification of eq. (150) to account for sur-
face heterogeneity is developed by Kapoor and Yang
(1989, 1990). Connectivity effects for surface diffusion
on heterogeneous surfaces are analysed by Zgrablich

25
o ||
1r ¢ 20
Fick diffusivities in !
[ | Carbon Molecular Sieve (CMS) | 5 D
08f | at 300 K ‘ =
3 10 [10-45-1
pr 06
7
4s
[10s']0.4
0.2 -0
B I T D S
0 0.2 0.4 0.6 0.8 1

8, surface coverage /[-]

Fig. 59. Variation of Fick micropore diffusivity with surface
coverage. Data for oxygen and nitrogen in carbon molecular
sieve. Data from Chen et al. (1994).
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1ir -
I T el
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® “' desorption
61 - ero - ‘-’
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B 0*‘
.
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0 Jt/]s] 35

Fig. 60. Transient uptake profiles during adsorption and
desorption of ethane in zeolite 4A. Adapted from Garg and
Ruthven (1972).
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et al. (1986). Multilayer surface adsorption is con-
sidered by Chen and Yang (1993).

Chen and Yang (1991) have developed a model for
describing the surface coverage dependence of the
Fick diffusivity in zeolitic structures by introducing
a parameter A to account for pore blockage:

A A
=0 +5602—6)+H( - A1 - )70

(1— 0 + 1A0)

(151)

This function is plotted as a function of the surface
coverage 0 for a variety of pore blockage parameters
A in Fig. 61(a). Shown alongside in Fig. 61(b) is a plot
of D5/P}y(0) for various assumed dependencies of the
jump frequency on the surface occupancy v{6;). Insert-
ing the value A =0 results in eq. (150), which is
representative of surface diffusion. Gutsche (1993) in
a study of the diffusion of ammonia in A-type zeolite
crystals have used eq. (148) taking D}y to be constant;
this is tantamount to assuming A = 0. Chen and Yang
(1991) fitted the data for diffusion in zeolite A to
obtain values of A & 0.3. Such a behaviour is perhaps
typical of zeolites A and X which have interconnected
cages and the results with A & 0.3 correspond closely
to those of eq. (132) usingm = 2and z = 4. ForA = 2,
we note that the Fick diffusivity is practically indepen-
dent of the surface coverage. This is equivalent to
assuming that the jump frequency decreases with sur-
face coverage following eq. (131), a scenario typical of
pore-type zeolites such as ZSM-5; here we can take
m=1 and z=1 (Van den Broeke, 1995). Indeed,
Chen and Yang (1991) could fit the Qureshi and Wei
(1990) data for diffusion of benzene in ZSM-5 taking
A =211

Pore-blocking effects in ZSM-5 have been modelled
by Theodorou and Wei (1983) using Monte-Carlo
techniques. Tsikoyiannis and Wei (1991) use the the-
ory of Markov jump processes to model zeolitic

10~
(@) e (151) |
8}
pr |
£,,(0)
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2L

A=2

0 M . N
0 0.2 0.4 06 0.8

8, surface coverage /{-]

R. Krishna and J. A. Wesselingh

diffusion and reaction as a sequence of elementary
jump events taking place in a finite periodic lattice.
The estimation of P, for zeolitic structures is still an
active area of research (Chen et al., 1994; Wei, 1994).

For single file diffusion (SFD) involving two com-
ponents, eqs (144)(146) reduce to the two-dimen-
sional form

Py O
(N°) = — ppsqsa,[ .

. (152
0 Bw][r](VB) (152)

If we use the Langmuir isotherm to calculate [T], we
obtain

(NS) = — Pptsar [Ds](V0)9

o] = [

An important extension of the approach discussed
above is due to Chen and Yang (1992), Chen et al.
(1993) and Sikavitsas and Yang (1995), who have
derived a more general expression for the thermodyn-
amic factor [I'] taking interaction between sorbed
species into account. When such interactions are ne-
glected their model reduces to eq. (153).

The effective Fick surface diffusivities Df defined by

1—0,
w0

‘ 1 ]
92 1 - 61
0 EV

- 153
1-6, -0, (1539

N

Di=——— (154)
ppsqsatvei

can be obtained by comparing eqs (153) and (154):

: vo,|
pp=—-="Y ((1-9 +el 2> 155
= (00 ) 099
Py |ve1|>
DsS=——" [((1-6,)+80
: (1—01—02><( AT

which coincide with those given by Habgood (1958)
and Round et al. (1966). While Habgood and Round

10~ oy egs (129), (132)
and (148)
8l
8,(6)=
. £1,0)

m=1;z=1

0 1 L X
0 02 04 06 08 1
8, surface coverage /[-]

Fig. 61. Influence of the surface coverage and zeolite structural parameters on the Fick micropore
diffusivity. Adapted from (a) Chen and Yang (1991) and (b) Van den Broeke (1995).
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derived the above expressions specifically for a two-
component system our approach can be easily ex-
tended to the general multicomponent case.
Srinivasan et al. (1995) have shown that egs (155) can
also be derived assuming Langmuir kinetics for the
sorption process. From eqs (155) we see that the
effective surface diffusivities are strong functions of
surface concentrations and surface concentration
gradients. Further the effective diffusivity of compo-
nent 1 is affected by the surface concentration gradi-
ent of component 2.

In order to illustrate the coupling effect, let us
consider the example of the uptake of a mixture of
n-heptane(l) and benzene (2) by NaX zeolite. The
zeolite crystals are exposed to a bulk vapour mixture
maintaining a constant composition environment of
benzene and n-heptane and the uptake of these com-
ponents by the zeolite is monitored as a function of
time. The observed transient uptake profiles as meas-
ured experimentally by Kérger and Biilow (1975) are
shown in Fig. 62. The profile for n-heptane exhibits
a remarkable maximum at t = 50 min (Fo = 0.015)
with the surface concentration reaching a value signif-
icantly higher than the final (low) equilibrium surface
concentration value. The results can be explained
physically as follows. The Maxwell-Stefan surface
mobility of n-heptane D, is about 50 times larger
than the corresponding mobility of benzene D5y ; this
is because of differences in the molecular configura-
tions. Initially, beginning with fresh zeolite crystals,
n-heptane quickly penetrates the pores of the zeolite
occupying the sorption sites. The sorption strength of
n-heptane is, however, considerably lower than that of
benzene due inter alia to differences in polarity. The
adsorbed n-heptane eventually gets displaced from
the sorption sites by benzene and the surface concen-
tration of n-heptane decreases from its maximum
value to reach its final low saturation value. At equi-
librium, achieved after about Sh (Fo = 0.09), the
pores of the zeolite are occupied predominantly by the
strongly adsorbed benzene.

ol 00153150 benzene 2)  ®
o6} (4,5 /d,2) = 5x10%57;
=3 | D, 5/D,,5= 50;
" G Gy e = 0.18 mol/kg;

o4r m /9 pom = 1.65 molikg
H /e =m

0.2 : L4 n-heptane (1)

o
0 0.02 0.04 0.06 0.08 0.1
(4 B2t /02 1]

Fig. 62. Transient uptake of benzene and n-heptane by

zeolite-X. Comparison of experimental results of Kérger and

Biilow (1975) with simulations using the Maxwell-Stefan
surface diffusion model.
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The transient uptake process can be simulated by
solving the equations of continuity
a0,

=V (Dive),

i=1,2
ot '

(156)

together with eq. (155) and are also shown in Fig. 62
(for details of the calculations see Krishna, 1990;
1993a,b). The curious maximum in the n-heptane
uptake is properly simulated. That the coupling effects
are to be attributed to the thermodynamic matrix [I7]
can be demonstrated by performing the simulations
taking [T'] to be identity matrix, i.e.

L [P 0
[D]_[ 0 SW(OJ'

The simulations using eq. (157), shown in Fig. 63 as
dotted lines, predict monotonic approaches to equi-
librium for both species, which deviates qualitatively
from the experimental observations (cf. Fig. 62). Put
another way, the observed non-monotonic behaviour
observed experimentally in Fig. 62 for the uptake
profile of n-heptane is due to the presence of non-
diagonal elements in the Fick surface diffusivity
matrix [ D*]. A further consequence is that counterdif-
fusion of binary mixtures in zeolite crystals can ex-
hibit asymmetric behaviour (Krishna, 1990; Moore
and Katzer, 1972).

Krishna and van den Broeke (1995) have shown
that the curious maximum in the flux of hydrogen for
transfer across a zeolite membrane in Fig. 6 can be
predicted by the Maxwell-Stefan model (153); see
Fig. 64. At steady state the more strongly adsorbed
species has the higher flux. Use of eq. (157) with
a composition-independent Fick diffusivity matrix
yields a monotonous approach to steady state.
Srinivasan ez al. (1994) present another neat example
of selectivity reversal with microporous membranes.

Rao and Sircar (1993) have shown the separation
possibilities offered by microporous carbon mem-
branes for separating hydrocarbons from a gaseous
mixture containing hydrogen (Fig. 635). The hydro-
carbons are much more strongly adsorbed than

(157)

D595 = 50;
17| Gug = 0.18;
Qo st = 1.65;
- | 8y o = 0.098;
6oy =09

[ . — eqs (153, 156)
NG e, egs (156, 157)

1

1 |

0.08

1
0 (4 B3 t/d3) 1]

Fig. 63. Transient uptake of benzene and n-heptane by
zeolite-X. Comparison of the Maxwell-Stefan model with
a model assuming constant Fick surface diffusivities.
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hydrogen and they move across the thickness of the
membrane by surface diffusion. The adsorbed compo-
nents then desorb at the low pressure side. In the
process for recovery of hydrogen from refinery gases,
the desired product hydrogen is ‘rejected’ at the high-
pressure side of the membrane and can therefore be
produced at feed pressure, eliminating the need for
further product compression.

The use of the complete Maxwell-Stefan formula-
tion including countersorption, eqs (143) together
with say eq. (134), in place of the single file diffusion
approximation, eq. (153) does not lead to significantly
different results; see the simulation results of Fig, 66.
This is a happy situation in view of the uncertainty in
the prediction of the countersorption diffusivities Dj;.

For the prediction of breakthroughs in a packed
bed of microporous adsorbents, Van den Broeke and
Krishna (1995) have experimentally verified the su-
periority of the Maxwell-Stefan model (153) over the
conventionally used linear driving force approxima-
tions; see Fig. 67.

104 | single file diffusion, eq. (153)

----- constant Fick matrix, eq. (157)

D,/ Dy =40

N3 1(pEquiy) |
-

{0, /BN

Fig. 64. Simulations for transport of hydrogen (1)- n-butane

(2) across silicalite membrane. Comparison of the Max-

well-Stefan mode! with a Fick model with constant surface

diffusivities. Details of model parameters and simulations are
given by Krishna and van den Broeke (1995).

microporous
layer

adsorption

°H, l ® HC

desorption

pEous

support
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Diffusional selectivity is the basis of an industrial
process for the separation of nitrogen and oxygen.
Despite a very small difference in the kinetic diameters
of these two molecules, there is a significant difference
in the Maxwell-Stefan diffusivities (cf. Fig. 359).
Farooq et al. (1991, 1993) have shown that for simula-
tion of a pressure swing adsorption process for air
separation the use of the Maxwell-Stefan formulation
(153) is essential. The simulations using the conven-
tionally used LDF (linear driving force model) appear
to be only slightly different from the Maxwell-Stefan
model (cf. Fig. 68), but such small differences are
apparently vital for the simulation of commercial
units (Ruthven et al., 1994). Micropore diffusion selec-
tivity is also the basis of the separation of carbon
dioxide from hydrocarbons using pressure swing
adsorption with carbon molecular sieve sorbents
(Kapoor et al.,, 1993).

eq. (146)
egs (143), (145)

component 2

D,(0)/D,(0) = 40;
1.sat = 0.1;

0 4q = 0.85

o [

.._'_V.A'c_:_c_)mponent 1

T 1 | L ] L1

0 (4 D5 t/d2) /-] 040

Fig. 66. Transient uptake profiles of a binary mixture inside

a single spherical particle. The single file diffusion model is

compared with the complete Maxwell-Stefan model includ-
ing counter-sorption, with DY, given by eq. (134).

refinery

waste

gases
(H2,CH,,C3Hg,CoHg, CHyo)

H,
purification
and
recovery

microporous
adsorbent
membrane

to fuel

Fig. 65. A microporous carbon membrane can be used for separation of hydrocarbons from a gaseous
mixture containing hydrogen. The hydrocarbons are more strongly adsorbed inside the micropores and are
transported across the membrane much faster than hydrogen. Adapted from Rao and Sircar (1994).
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Maxwell-Stefan SFD model

==~ LDF constant [D] model

1.5 1

c,/c,

-]

CH,:CO,He = 1:1:2
Kureha MAC
T=2345 K; p = 200 kPa
Uy =0.01mis

/] 100
Fig. 67. Breakthrough curves for the system CH,/CO,/He
in the ratio of 1:1:2 with Kureha microporous carbon
adsorbent particles. The effluent concentration is plotted on
the y-axis and this is normalized with respect to the inlet
concentration. On the x-axis is plotted the dimensionless
time. The markers are experimental results and the solid
lines are numerical fits with the single file diffusion model
taking the Maxwell-Stefan diffusion coefficients P}y and
B3y to be constant. Also shown are the simulations with the
LDF model. Details of experimental conditions and simula-
tions are given in Van den Broeke and Krishna (1995).

T N
4t
; ! s P tiistbieldblelotebedeedetet ot
c;lcq |
ﬁ Maxwell-Stefan model
i LDF model with constant {D]
[¢] I ! i 1 L i
0 900

Fig. 68. Breakthrough curves for oxygen (1) and nitrogen (2)
on Bergbau-Forschung carbon molecular sieve. The effluent
concentration is plotted on the y-axis and this is normalized
with respect to the inlet concentration ¢o. The feed composi-
tion is O, :21%; N, :79%. Other parameters in the simula-
tion are as follows. Packed bed length 0.7m; column
diameter = 0.035 m; inlet gas velocity = 0.038 m/s; bed por-
osity ¢, = 0.4; temperature, assumed isothermal, T = 294 K;
pressure, p = 100kPa. The Maxwell-Stefan diffusivities
given as: 4 D}y/d,? = 0.0027s~'; 4 P3,/d,? = 0.000059 s~ 1.
The Langmuir adsorption isotherm parameters are
P15 = 2640  molm™%  pgy =2640molm ™3 (b,
RT)=00035m*mol™"; (b, RT)=0.00337m3mol "
Further details of simulations in Van den Broeke (1994).

In some zeolitic structures such as ZSM-5 the Max-
well-Stefan diffusivities Pj, decrease with surface
coverage following eq. (131) and so we obtain the
following expression for the Fick surface diffusivity
matrix:

L [P 0 qri-0. 6
[D]“[ 0 av(oj[ 02 1—01} (138)

4
ethyl benzene

] eqs (156, 158)
L
ei,ut

benzene
0 atipt’ T T T T T 1
0 | 30

Fig. 69. Transient uptake profiles for benzene (1) and ethyl

benzene (2) inside ZSM-5 crystals. The Maxwell-Stefan dif-

fusion model is compared with experimental data of Niessen

(1991). Further details of simulations are available in Van
den Broeke (1995).

where D5, (0) represent the Maxwell-Stefan diffusivi-
ties at zero coverage. Equation (158) coincides with
the expression derived by Qureshi and Wei (1990),
using a different reasoning. The experimental data of
Niessen (1991) for codiffusion of benzene (1)-ethyl
benzene (2) in ZSM-5 can be successfully simulated by
eq. (158) using only pure component diffusivities Djy;
see Fig. 69.

Sundaresan and Hall (1986) have developed
a model for estimation of the Fick matrix [D] for
zeolites taking account of non-idealities arising from
interaction between sorbed species as well as the effect
of pore and surface blocking.

For regular structures such as zeolites, with well-
defined geometry, it is possible to use Monte-Carlo
simulation techniques to describe the diffusion pro-
cess (Van den Broeke et al., 1992; Dahlke and Emig,
1991; Palekar and Rajadhyaksha, 1985, 1986). Figure
70 compares the Monte Carlo simulations of Van den
Broeke et al. (1992) with simulations using eqs (131)
and (153). It is also interesting to note both the
Monte-Carlo and Maxwell-Stefan formulations pre-
dict a maximum in the surface occupancy of the fas-
ter-moving component 2 at the same relative time
scale. Both approaches also predict multiple maxima
for ternary mixtures; cf. Fig. 71.

Kouyoumdjiev et al. (1993) have analysed single
and multicomponent adsorption on activated carbon
from aqueous solutions, involving both macro- and
micropore diffusion, and have shown that a combina-
tion of eqs (88) and (152) allows the prediction of
multicomponent behaviour on the basis of single-
component transport parameters along with multi-
component adsorption equilibria.

An alternative approach to surface diffusion is to
use the Onsager formulation of irreversible thermo-
dynamics (Kirger, 1973; Yang et al, 1991); in this
formulation the surface fluxes are written as linear
functions of the chemical potential gradients. For
n-component systems we write

1
(NS) = - ppsqsa! [Ls] R—f (V‘U) (159)
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B/D,=50; |
{(a) Monte-Carlo simulations 61 a1 = 0.85; (b) Maxweli-Stefan SFD model
6,50 =0.10
1 total mixture 1 * total mixture
6, 1 9, 1
2 2
0 T —r . — 0
0 JJarbitrary time scale 300 0 JFo 1

Fig. 70. Transient uptake profiles for binary diffusion in a square lattice of 25 x 25 sites. The Monte-Carlo
simulations are compared with the Maxwell-Stefan single file diffusion model. Details of simulations are
available in Van den Broeke et al. (1992).

£,/D,/D, = 50/10/1;
(a) Monte-Carlo simulations 61,0t = 0.65; (b) Maxwell-Stefan SFD model
6, oot = 0.20;
6340 = 0.10
1 total mixture 1 total mixture
seremr A
1 8, !
2 2
— . — 0 . S 3
0 Jarbitrary time scale 300 0 JFo 1

Fig. 71. Transient uptake profiles for ternary diffusion in a square lattice of 25 x 25 sites. The Monte-Carlo
simulations are compared with the Maxwell-Stefan single file diffusion model. Details of simulations are
available in Van den Broeke et al. (1992).

from the Onsager reciprocal relations we conclude
that the matrix [L*] is symmetric, i.e.

S=Li, k=12 ...n (160)

The chemical potential gradients may be related to
the gradient of the surface occupancies [cf. eq. (136)]

E%Vy,» = j:l %z—g—; vo; = l.,-; I';ve;. (1e61)
Combining eqs (160) and (161) we obtain
16, 0 0
(N%) = — ppequ[L7]| O 0 |r'}(ve). (162)
0 0 1/6,

Comparison of eqs (144), (145) and (162) gives the
relation between [D*], [B*] and [L*]:

/6, 0 0
[B77' =[L7]| © 0 |,
0o 0 1/6,

1/6, 0 O
[D)1=[L]]] O 0 Il (163)
o 0 1/,
The Onsager reciprocal relations
wk=Lu (i#k) (164)

are equivalent to assuming symmetry of the counter-
sorption diffusivities B§, = P§;. Though the Onsager
formulation is equivalent to the Maxwell-Stefan for-
mulation it is not as convenient for the prediction of
the transport parameters.

CONCLUDING REMARKS

In this review we have attempted to develop a uni-
fied approach to mass transfer processes by using the
Maxwell-Stefan formulation. This approach has been
shown to be able to handle all processes of interest to
chemical engineers and in many cases lead to superior
predictions than the more conventionally used Fick
formulation. In some cases where uphill diffusion can
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occur the Fick approach fails even at the qualitative
level to describe the mass transfer phenomena. With
the availability of suitable text books (Cussler, 1976;
Jackson, 1977; Lightfoot, 1974; Mason and Malinaus-
kas, 1983; Taylor and Krishna, 1993; Wesselingh and
Krishna, 1990; Zarzycki and Chacuk, 1993), the Max-
well-Stefan approach can be easily taught even at the
undergraduate level.
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NOTATION

b; parameter in the Langmuir adsorption iso-
therm, kPa~! or Pa™!

By permeability, m?

[B] square matrix of inverted Maxwell-Stefan
diffusivities, eq. (26) or eq. (69), m s

[B] square matrix of inverted Maxwell-Stefan
intrapore diffusivities, eq. (87), m 25

[B*] square matrix of inverted Maxwell-Stefan
micropore diffusivities, eq. (143), m~2s

¢o inlet (at z = 0) molar concentration of the
fluid mixture, molm ™3

¢ molar concentration of species i, molm ™3

I total molar concentration of the fluid mix-
ture, molm 3

d; generalized driving force, eq. (53), m ™!

dp particle diameter, m

do pore diameter, m

D Fick diffusivity in binary mixture, m?s ™1

D; effective Fick diffusivity of species i, m?s™*

Dj effective Fick micropore diffusivity of spe-
cies i, m?s™ !

[D] square matrix of Fick diffusivities, eq. (27),
m?s~!

[D*] square matrix of Fick micropore diffusivi-
ties, eq. (145), m?s !

Df thermal diffusion coefficient of component I,
eq. (46), kg 'm3s !

Dy Maxwell-Stefan i—j pair diffusivity, m?s™!

Dg effective bulk diffusivity of binary pair i—j in

porous medium, m?s~!

%
Div(0)
fV
Bij
D visc
B_.U

D
E,‘j

(k]

[L7]

re

[R]

effective Knudsen diffusivity of binary pair
i~j in porous medium, m%s ™!
Maxwell-Stefan diffusivity at zero coverage,
m?s”!

Maxwell-Stefan micropore diffusivity of
component i, m?s "}

Maxwell-Stefan micropore countersorption
diffusivity, m?s ™!

‘viscous’ diffusivity, defined by eq. (106),
m?s!

parameter defined by eq. (116), m?s ™!
parameter defined by eq. (116), m?s ™!
Lightfoot transport coefficients for i—j pair,
see eq. (111), m?s™!

Lightfoot transport coefficients for i—M pair,
see eq. (111), m?s™!

energy flux, Wm™?2

fugacity of species i, f; = p; for ideal gases, Pa
the body force acting per kg of species i,
Nkg!

the body force acting per mol of species i,
Nmol !

Faraday constant, 96,500 Cmol ™!

Fourier number, (= 4Dt/d;) (single particle)
Heavyside function

partial molar enthalpy of species i, J mol ™!
current, A

identity matrix, dimensionless

(n — 1)-dimensional column vector of diffu-
sion fluxes, mol m™2s~!

molar diffusion flux of species i relative to
the molar average reference velocity u,
molm ™25~ !

matrix of multicomponent mass transfer co-
efficients, eq. (40), ms ™!

length of diffusion path, e.g. capillary tube,
m

matrix of Onsgager micropore diffusivities,
eq. (162), m*s™1

maximum number of molecules per cage,
dimensionless

molar mass of species i, kgmol ™!

number of diffusing species

molar flux of species i, molm ™25~ !
mixture molar flux, molm ™~ 2s™!

volume flux through matrix, m*m~ 257!
system pressure, Pa

partial pressure of species i, Pa
saturation vapour pressure, Pa
conductive heat flux, Wm ™2
adsorbed species concentration within
micropores, molkg ™!

total saturation concentration of adsorbed
species, molkg ™!

equilibrium concentration of adsorbed spe-
cies, molkg !

radial distance coordinate, m

radius of crystal or particle, m

gas constant, 8.314 Jmol 'K 1

square matrix of inverted mass transfer coef-
ficients, eq. (41), m~'s
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Ri rate of production of i due to chemical reac-
tion, molm 3s~!

t time, s

T absolute temperature, K

w; velocity of the diffusing species i, ms™!

u/ augmented species velocity including ther-
mal diffusion, eq. (45), ms™!
molar average mixture velocity, ms ™!

v viscous velocity of mixture, ms™?!

Vi viscous velocity of species i, ms™?

Vi partial molar volume of species i, m®*mol ~?

w; species velocity including viscous flow con-
tribution , ms™!

X mole fraction of species i, dimensionless

Vi mole fraction of species i, dimensionless
direction coordinate, m
number of nearest neighbour sites, dimen-
sionless

Zi charge on species i, dimensionless

Greek letters

0 viscous selectivity parameter, eq. (95), di-
mensionless

o modified viscous selectivity parameter, eq.
(100), dimensionless

Vi activity coefficient of species i, dimensionless

r thermodynamic correction factor for binary

mixture, dimensionless

1] matrix of thermodynamic factors, eq. (24) or
(136), dimensionless

) length of diffusion path or thickness of mem-
brane, m

0ij Kronecker delta (6;; = 1 fori = j, ;; = 0 for
i #j)

£ porosity of particle

& void fraction of adsorbent bed

n viscosity of fluid mixture, Pas

0; fractional surface occupancy of component i

0, total surface occupancy of n species

0: sat fractional surface occupancy of component
i at saturation

Ov fraction unoccupied sites

Kij Maxwell-Stefan mass transfer coefficient of
binary pair i~j, ms™?

A lateral displacement, m

A pore blockage parameter, eq. (151), dimen-
sionless

Wi molar chemical potential, Jmol !

v jump frequency of component i, s !

Vi stoichiometric coefficient, dimensionless

&;j frictional  coefficient for i pair,
Nmol 'm!s

& frictional coefficient for interaction of i with
matrix, Nmol !m™1!s

p fluid mixture density, kgm ™3

pi species density, kgm ™3

Pp particle fluid density, kgm 3

o rate of entropy production,  m~3s ! K™!

T tortuosity of porous medium, dimensionless

T shear stress, Nmkg !

[0} electrostatic potential, V

R. Krishna and J. A. Wesselingh

w; mass fraction of species i, dimensionless

Q angular velocity, rads™!

Subscripts

b bulk fluid phase

i,j components in mixture

eff effective parameter

I interface parameter

p derivative at constant pressure

P particle

s salt or solute

sat parameter value at saturation

t total mixture

T derivative at constant temperature

T,p derivative at constant temperature and pres-
sure

14 vacant site

w water

é position z = §

0 initial value or value at position z = 0

n+1  pseudo-species

Superscripts

e effective parameter for intra-matrix diffu-

sion

liquid

nth component or solvent

surface or micropore parameter

vapour

equilibrium value

standard state

- denotes averaged or partial parameter
pseudo-mixture of n + 1 species including
dust molecule

O kxS~

Vector and matrix notation

() component vector
[1] square matrix
Operators

\% gradient or nabla
A difference

il determinant operator

List of abbreviations

CVD  chemical vapour deposition
HETP height of a theoretical plate
HTU  height of a transfer unit
LDF  linear driving force

M-S Maxwell-Stefan

MTBE methyl tert-butyl ether
NTP  number of theoretical plates
PEG  polyethylene glycol

SFD single file diffusion
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