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Abstract—In this study it is shown that the transition from the homogeneous to the heterogen-
eous flow regime in bubble columns can be quantitatively found with high accuracy by
analysing the chaotic characteristics of the pressure fluctuation signal (PFS). In previous work
(van den Bleek and Schouten, 1993; Schouten et al., 1996), the authors have already applied this
technique to time series from gas—solid fluid beds. Also, it was shown (Krishna et al., 1993,
Ellenberger and Krishna, 1994) that hydrodynamics of bubble columns and fluid beds can be
desgribed in an analogous manner. Therefore in this work, the method of chaos analysis is
applied to bubble columns. A distinctive feature of the pressure signal from bubble columns is
that it is composed of two different parts: a low frequency part resulting from the motion of the
large bubbles and a high frequency part resulting from all other processes (coalescence, collapse,
breakup) that take place in the column. From the phase of the cross spectrum of two pressure
probes, placed at different axial positions, it was possible to identify the bands in the spectrum
of the PFS that show a significant time delay. This time delay is of the order of the passage time
of bubbles between the measurement locations. This band in the spectrum of the PFS was used
to estimate the Kolmogorov entropy to quantify the chaotic dynamics in the bubble column.
The Kolmogorov entropy as a function of gas velocity indicates a sharp transition from the
homogeneous to the churn—turbulent flow regime. From other methods considered (e.g. holdup
and other properties of the signal such as variance), this transition was less clear. Therefore
chaos analysis of PFSs is believed to be a powerful technique for on-line identification of flow
regimes. © 1997 Elsevier Science Ltd

Keywords: Bubble column; flow regime transition; regime characterization; pressure sensing;
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INTRODUCTION

For modelling and design of bubble column reactors,
it is of great importance to know the flow regime or
flow pattern. The reason is that a reactor model that is
formulated for a specific flow regime is often not valid
in a different flow regime due to different mass trans-
fer, heat transfer and mixing characteristics. As an
illustration of such a situation, a cold flow model of
a bubble column reactor at ambient pressure can be
considered; the flow regime prevailing in the pilot
plant or in the commercial reactor to be built can
differ considerably from that in the cold model, due to
higher pressures (see, e.g. Tarmy et al., 1984). There-
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fore the effects of pressure on the hydrodynamics in
general and on the flow regime in particular need to be
known. To study these pressure effects, an objective and
accurate measurement technique is needed to identify
the different regimes and the transitions between these.

An attractive option to study the hydrodynamics of
bubble columns is the analysis of pressure fluctu-
ations. The measuring method is well developed and
relatively cheap. Furthermore, it is robust and there-
fore has great possibilities for use at industrial condi-
tions, e.g. for ‘low regime monitoring” as a part of
process monitoring. Analysis of pressure fluctuations
also has advantages compared to visual observation;
objective, quantitative criteria for the flow regimes
and flow regime transitions can be formulated.
Furthermore, in high pressure experimental set ups or
in industrial installations, visual observation is in
many cases limited if not impossible.
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In spite of its experimental advantages, analysis of
pressure fluctuations is complicated; it is difficult to
unravel from the measured signals the flow-regime
characteristics. The reason is obvious: the processes
that cause the pressure fluctuations (such as flow
circulations and passage of bubbles) take place
throughout the column; they are however ‘projected’
on a one-dimensional pressure signal. Unavoidably,
information is hidden or lost in this way. Many
authors however have shown that still relevant in-
formation about the flow can be obtained by analysis
of the pressure fluctuation signal (PFS) by applying
the appropriate signal processing techniques.

Examples of different signal processing techniques
are (i) analyses of variance and Fourier spectra (Fan
etal, 1986), (i) Hurst analysis or R/S analysis
(Draho$ er al., 1992; Fan et al., 1990), (iii) wavelet
transformation and similar techniques, determining
the instantaneous frequency. This technique was used
by Bakshi et al. (1995), based on a gas holdup signal,
and by Hervieu and Seleghim (1995), based on a pres-
sure signal. The aim is to ‘distill’ more information
about the hydrodynamics, by processing a representa-
tive signal from the bubble column with new methods.

In recent years, the hydrodynamic behaviour of
gas—solid fluidized beds has been studied by consider-
ing it as a chaotic system. Van den Bleek and
Schouten (1993), Schouten et al. (1996), Daw et al.
(1990) and Daw and Halow (1991) used the pressure
signal to calculate chaotic invariants that characterize
the system. Examples of such invariants are correla-
tion dimension and Kolmogorov entropy. Krishna
etal. (1993) and Ellenberger and Krishna (1994)
showed that hydrodynamics in bubble columns are in
many aspects analogous to that in gas-solid fluidized
beds. Therefore, it is to be expected that bubble col-
umns show comparable chaotic characteristics as
fluidized beds.

In this work, the chaos analysis techniques as de-
scribed by Van den Bleek and Schouten (1993) are
applied to the analysis of pressure fluctuations in
bubble columns. It will be shown that the transition
from the homogeneous to the heterogeneous flow
regime can be determined with high accuracy. Before
the chaos analysis method can be applied, the signal
needs to be pre-processed. Whereas in a gas—solid
fluid bed the PFS is mainly due to bubbles, in
a gas-liquid bubble column many more effects are
present; with cross-spectral techniques, frequency
bands containing these effects are identified and fil-
tered out.

First, the principles of the chaos analysis method
that is used, are described. Next, the analogies be-
tween gas-solid and gas-liquid flow are discussed,
sketching at the same time the problems encountered
in applying chaos analysis to the ‘raw’ pressure signal
in gas-liquid flow. After description of the experi-
mental set-up, the pre-processing of the signals is
discussed. The obtained results are presented, and we
end with conclusions and suggestions for applications
and future work.
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Bubble columns figure prominently in the research
interest profile of Prof. M.M. Sharma as witnessed in
his recent review (Sharma, 1993). Professor Sharma
has always encouraged new concepts and ideas and it
is a great pleasure for the authors to offer the current
contribution as a tribute to him on his sixtieth birth-
day.

CHAOS ANALYSIS OF PRESSURE SIGNALS

For an overview of the analysis of time series with
chaotic characteristics, the reader is referred to Grass-
berger et al. (1991). Below, some concepts of chaotic
time series analysis will be introduced.

Chaotic system

A chaotic system is a non-linear, deterministic sys-
tem that is extremely sensitive to small changes in
initial conditions. Two initial states of the system that
are almost identical will, after some time, develop in
completely different ways. The reason is that the (very
small) initial differences grow exponentially with time.
The rate at which these differences grow, is a charac-
teristic for the system. Limiting cases are zero growth:
a completely ordered system, and infinitely fast
growth: a stochastic system. The rate of growth of the
difference between two initial conditions in time is
expressed in quantities like Lyapunov exponents and
Kolmogorov entropy; these quantify the unpredicta-
bility of the system.

Attractor

It is possible to represent any physical system by
a plot in its state space; this is an imaginary space with
m axes, each representing a state variable of the sys-
tem. Every state of the system now corresponds to
a point in the state space. The co-ordinate values for
this point are equal to the values of the corresponding
state variables.

As an example a pendulum is considered. The two
state variables are angle and angular velocity. Plot-
ting these quantities in a two-dimensional state space,
the plot in Fig. 1 is obtained. The curves in the plots,
representing the states of the system at consecutive
time steps are called trajectories or orbits. The part of
the state space to which the trajectories converge is
called the attractor of the system; in case of a pendu-
lum this can be a single point (damped pendulum: A)
or a limit cycle (undamped pendulum: B). These at-
tractors are finite. This is a characteristic for fully
predictable systems.

Consider now the attractor for say a gas-solid
fluidized bed. In this case, the attractor has a dimen-
sion higher than unity, whereas only a limited number
of signals are available to reconstruct the attractor
from, e.g. pressure and/or porosity. However, it was
shown by Takens (1981), that it is possible to recon-
struct an m-dimensional state space plot by means of
only one characteristic variable, using the method of
delay co-ordinates: the values of the variable at differ-
ent time delays (0, Az, 2At, ... ,(m — 1)At) are used as
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co-ordinate values in the ‘embedding space’. Takens
(1981) proved that the state space plot obtained in this
way in principle shows the same dynamics and cha-
otic characteristics as the state space plot that would
have been obtained if all the state variables would
have been used as co-ordinate values.

Figure 2 shows a 2D projection of a higher dimen-
sional state space plot from a pressure fluctuation
time series, measured in a fluidized bed (38.4 cm inner
diameter, 400 ym sand particles, U, = 0.24 m/s). The
non-finite attractor obtained in this way is a strange
attractor, a typical feature of a chaotic system. For
a chaotic system, the strange attractor has a finite
dimension that is smaller than the dimension of the
embedding space (if the latter is chosen sufficiently
high). This dimension, which can be a non-integer, is
calied the fractal dimension.

()

A: damped
0
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B: undamped ®
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Fig. 1. Plot of state of a pendulum in state space for a
damped pendulum (point attractor: A) and an undamped
pendulum (limit cycle: B).
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Kolmogorov entropy

Systems with a strange attractor have a limited
predictability. The degree of predictability however
varies according to the system. Limiting cases are
completely predictable systems, like the undamped
pendulum, and completely unpredictable systems:
stochastic systems. The predictability can be quanti-
fied as follows. Consider two nearby points that lie on
different orbits of the attractor. These points represent
two states of the system, separated in time, with al-
most equal conditions. The rate at which the orbits
separate expresses the ‘degree of unpredictability’. It is
quantified by the Kolmogorov entropy, a character-
istic invariant proportional to the rate of separation of
two orbits. Schouten et al. (1994a) and Schouten and
Van den Bleek (1992-1995) developed methods and
software for a maximum likelihood estimation of the
Kolmogorov entropy. The correlation dimension is
calculated using the maximum likelihood estimation
of Takens as described by Schouten et al. (1994b).

In Fig. 3 a schematic is drawn that illustrates the
calculation of the Kolmogorov entropy from the pres-
sure signal. From this schematic it can be seen that the
different points in the embedding space are actually
time segments in the pressure signal. This comparison
of different parts in the signal is not new: an autocor-
relation also quantifies the ‘self similarity’ of the
signal. However, in the latter method the signal
is compared with its shifted version (shown schemati-
cally in Fig. 4). What is different about the chaos
analysis method is that different time segments with
different time spacings are compared, only if the
corresponding points in embedding space satisfy the
criterion that they are close within a certain tolerance.
It is clear that from this analysis, signal features can
be retrieved that may not be identified by other
methods.
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Fig. 2. Example of a strange attractor measured in a fluidized bed (38.4 cm inner diameter, 400 ym sand
particles, U, = 0.24 m/s).
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Fig. 3. Schematic of the calculation method for Kol-

mogorov entropy from the time series of one variable: if two

time segments are close in state space, their future is com-
pared.

R, (@)= [P,(t)P,(t+a) dt

Fig. 4. Schematic of calculation method for cross correla-
tion: the entire signal is compared with a shifted version of
itself.

ANALOGY BETWEEN FLUID BEDS AND BUBBLE
COLUMNS

Krishna er al. (1993) showed that hydrodynamics in
bubble columns and fluidized beds can be described in
analogous ways: in a bubble column operating in the
churn—turbulent regime, large bubbles rise through
the column at high speed, like in fluidized beds. Cor-
relations for size and velocity that have been found for
bubbles in fluidized beds, can also be used to describe
bubble growth and velocity in bubble columns. It was
also noted that small bubbles (order 3—5 mm) behave
analogously to the emulsion phase in fluidized beds;
this phase travels through the column at low speed
and is thoroughly backmixed; the small bubbles have
similar backmixing characteristics as the liquid. Fig-
ure 5 illustrates the concept of analogies between the
dilute phase (the large bubbles) and the dense phase
(small bubbles plus liquid in bubble columns and
emulsion phase in fluidized beds). By using empirical
relations for bubble growth in fluidized beds to de-
scribe bubble growth in (slurry) bubble columns, an
analogous hydrodynamic model has been formulated
for this reactor type (Krishna et al., 1993; Ellenberger
and Krishna, 1994).
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Fig. 5. Analogy concept of Krishna er al. (1993): gas-liquid

flow (above) and gas—solid flow (below) consist of a dense

phase (small bubbles respectively emulsion phase) and a di-
lute phase (large bubbles).

Chaotic analogies

Because of the fact that bubbling in a fluidized bed
shows chaotic behaviour, and because hydrodynam-
ics in bubble columns are analogous to those in
fluidized beds, it is to be expected that analysis of the
chaotic characteristics in bubble columns can give
useful information about the flow properties. This is
why the method of chaos analysis is applied to
gas-liquid bubble columns for identification of the
transition from the homogeneous to the heterogen-
eous flow regime.

EXPERIMENTAL SET-UP

Measurements were done in two acrylic columns
with inner diameters of 0.1 and 0.19 m, respectively.
Both columns had a stainless steel porous plate
distributor. A schematic drawing of the setup is
given in Fig. 6. The gas phase was air, and the liquid
phase was tap water. Salt was added to obtain a
homogeneous regime in a sufficiently wide range of
gas velocities; the effect of salt is that it shifts
the regime transition to higher gas velocities
(Zahradnik et al., 1995). The pressure signal was mea-
sured with piezo-electric sensors (Kistler type 7261)
with accuracy of about 1 Pa. To measure the signal in
the column, a tube was mounted on the sensor to
conduct the pressure fluctuations to the sensor sur-
face. The tube was attached to a cap that is fixed to the
sensor (Fig. 7). The space in the tube and under the
cap was carefully filled with water, to conduct the
fluctuations to the piezo-electric surface of the sensor.

Pressure signals were sampled with frequencies of
200-800 Hz and processed further on the computer
with MATLAB (Mathworks, 1984-1994) and
RRCHAOS (Schouten and Van den Bleek, 1992-
1995) software. MATLAB was used for filtering and
spectral analysis, RRCHAOS for calculation of the
Kolmogorov entropy and correlation dimension.
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Fig. 6. Experimental set up for a 0.19 m inner diameter
bubble column.
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Fig. 7. Pressure sensor: a cap is mounted on the piezoelec-
tric surface.

PRESSURE SIGNALS AND PREPROCESSING

Figure 8(a) shows a typical example of a pressure
fluctuation signal, measured in the bubble column of
0.19 m ID. For comparison, Fig. 8(b) shows a signal
from a gas-solid fluidized bed of 0.384 m ID (400 pm
sand particles, U, = 0.24 m/s). It is obvious that the
signal in the bubble column is far more complex,
especially when studying the auto power spectral den-
sity (APSD) estimations: these show that the signal in
the bubble column contains considerably higher fre-
quencies. The chaos analysis method, that was de-
veloped for fluidized beds, cannot be applied to the
raw signals from bubble columns directly; similar time
segments {close pairs of points in the state space)
cannot be found due to the high level of irregularity of
the signal.

The PFS in bubble columns and gas—solid fluidized
beds are very different, whereas the bubble behaviour
is analogous. To explain this difference, the origin of
the pressure signal in bubble columns was studied.
First, however, it is necessary to study if the signal is
representative of the flow situation and not a result

4451

from noise, introduced by the sensors or the tubing.
The (cross) spectral techniques that were used for this
purpose in the present study are explained in Appen-
dix A.

Sensor influence

To study the influence of the sensor on the repro-
ducibility of the signal, a pressure signal was recorded
with two different sensors placed on one tube by
means of a T-junction. Figure 9(A) shows the config-
uration. A bubble column of 0.1 m ID was used, with
a superficial gas velocity of 0.077 m/s. The tube end
was positioned in the middle of the column at a height
of 0.43 m above the distributor. A data series of 32768
points was recorded with an acquisition frequency of
800 Hz. A cross power spectral density (CPSD) and
a coherence estimate were calculated by averaging
over 32 records of 1024 points. Figure 10 shows the
coherence function estimate and the estimate of the
phase of the cross spectrum calculated from the two
signals. From the figure it can be seen that up to
a frequency of about 64 Hz the coherence exceeds 0.9;
the phase shift between the signals is negligible at
these frequencies.

Reproducibility of pressure signal

In the configuration shown in Fig. 9(B) the signal
was measured on one position in the bubble column
with two different pressure sensors, each with a separ-
ate tube connected to it. This was done to investigate
the influence of the tubes on the reproducibility of the
signal. The superficial gas velocity was 0.117 m/s. The
axial position of the sensors was 0.43 m above the
distributor, the sample frequency was 200 Hz.
A bandwidth of 100 Hz was more than sufficient, since
it was shown that comparing the signals is not mean-
ingful at frequencies above 70 Hz. Estimates of the
CPSD and coherence were made by averaging over 32
records of 1024 points. Figure 11 shows the coherence
function estimate and the estimate of the phase of the
cross spectrum. The signals are sufficiently coherent
up to 70 Hz (coherence higher than 0.8), although the
coherence is lower than in the case of Fig, 10. From
Fig. 11 it can be seen that up to a frequency of 50 Hz
there is no significant phase shift.

It can therefore be concluded that up to a frequency
of 50 Hz, the PFS that is measured represents the
pressure fluctuations in the column at the tip of the
pressure probe. At higher frequencies the coherency
deteriorates and a phase shift appears, probably due
to noise introduced by the sensors and the tubing.

Pressure sources

The question remains why the APSD of the pres-
sure signal from a fluidized bed shows frequencies
typically below 10 Hz, whereas the APSD of the pres-
sure signal of gas-liquid bubble columns contains
considerable power at frequencies at least up till
50 Hz. A possible explanation is given in Fig. 12. In
this figure a schematic representation is given of the
sources of pressure fluctuations in a bubble column.
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Fig. 8. Typical pressure signal and spectrum estimate for (a) a bubble column and (b) a fluidized bed.

First, there is the bubble formation and detachment
from the distributor. As the bubbles rise through the
column, they continuously coalesce and break up,
again causing pressure fluctuations. Also, when
a bubble erupts at the surface a pressure fluctuation
results. Another source for fluctuations is the wake of
the bubbles. The wake oscillates, making every bubble
a transmitter of pressure fluctuations. Furthermore,
the overall pressure in the wake is lower than in the
rest of the column. This pressure trough is observed
when the bubbles pass the pressure probes nearby.
Bed level oscillations and macro circulations also
cause pressure fluctuations.

All these pressure fluctuations are transmitted to
the pressure probes by the continuous phase and
consequently are noticeable in the pressure signal. In
the case of a fluid bed, the signals are transmitted to
the probes by the suspension of particles in fluid,
which can be expected to dampen the fluctuations
considerably. Therefore in a fluid bed, only the pres-
sure signal due to the bubbles (dilute phase) remains.
Schouten et al. (1996) based their analysis of the
chaotic characteristics of fluid beds on the behaviour
of these bubbles. Ellenberger and Krishna (1994)
based their analogous bubble growth models on the
behaviour of the dilute (large bubble) phase as well.
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This puts forward the question whether it is possible
to extract the signal due to the dilute phase in bubble
columns from the overall signal, before applying the
chaos analysis method. .

It was suggested by Drahos et al. (1989, 1991) and
Glasgow et al. (1984) that the different processes tak-
ing place in the column produce different frequency
bands in the spectrum of the PFS. Figure 13, adapted
from Drahos et al. (1991), illustrates this concept. If

column

sensor 1
A
T-junction
sensor 2
column
B

sensor 1 sensor 2

Fig. 9. (A) The configuration to study the influence of the
sensors on the reproducibility of the signal (A) and (B)
the influence of pressure tubes on the reproducibility of the
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this is true, it is possible to filter out all the effects not
related with the large bubbles by properly applying
high and low pass filtering. First, however, these ef-
fects must be identified.

Consider two pressure probes that are placed in the
column at different axial positions. It is expected that
the fluctuations taking place far from the sensors will
cause pressure waves that travel through the continu-
ous phase at relatively high speed, at least compared
to the velocity of bubbles and/or bubble swarms.
Therefore these pressure waves will reach the
two sensors almost instantaneously. The part of the
pressure signal that is due to the trough in the wake
of a bubble, that passes the probes nearby, will have
a much larger time delay; this will be of the order
of the passage time of the bubble. Considering the
fact that these effects lie on different frequency
bands, it is desirable to look at the time delay at the
different frequencies. Hereto the phase of the CPSD is
studied.

The signals from two pressure probes, placed at an
axial distance of 0.1 m, were recorded and a cross
spectral analysis was performed on them. The 0.19 m
ID column was used, with pressure probes placed in
the centre of the column at axial heights of 1.42 and
1.52m above the distributor, respectively. With
a sample frequency of 200 Hz, an acquisition of
884736 points was made. Such an extensive acquisi-
tion was necessary to obtain reliable estimations for
the CPSD and the coherence function. The estimates
were calculated from 864 records with 1024 data
points. In Fig. 14 the phase of the CPSD and the
coherence function of the two signals are plotted. We
clearly observe a straight slope (and therefore a con-
stant time delay) at low frequencies in the plot of the
phase of the CPSD, whereas at high frequencies no

signal. time delay is observed. The time delay A at low
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Fig. 10. Phase- and coherence-spectrum estimates of the signals recorded from the setup in Fig. 9(A).
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Fig. 11. Phase- and coherence spectrum estimates of the signals recorded from the setup in Fig. 9(B).

bed level oscillations
bubble eruptions

pressure trough

breakup / coalescence

bubbie formation

Fig. 12. Schematic representation of the sources of the pres-
sure fluctuations in gas-liquid flow.

frequencies is estimated from the slope of the phase
spectrum:

éf_P =2nA x~ EE

of 6
This gives a time delay of about £ s which corresponds
to a velocity of 0.6 m/s. The estimation of large bubble
velocity with data from Ellenberger and Krishna
(1994), given in Appendix B, shows that this velocity is
of the order of the rise velocity is of the large bubbles:
V, ~ 0.6 m/s.

If the probe distance doubles, the time spacing
should double, assuming the same bubble velocities.
In Fig. 15 the phase of the CPSD and the coherence
function are depicted, resulting from a probe spacing
of 0.2 m. The slope has doubled, indicating a double
time delay:

?;0 =2nA ~ E
of 3

Bubble
Columns |Circulatlon Bubbles Turbulence
) ] | | I
10" 10° 10' 10°
Frequency (Hz)

Fig. 13. Location of different pressure fluctuation sources
on the spectrum (from Draho$ et al. 1991)

which corresponds to the same velocity of the bubble,
ie. V, = 0.6 m/s. For the higher frequencies we see
from Fig. 14 that there is no time shift. It is therefore
concluded that the signal due to large bubbles can be
found in the low frequency range, typically below
10 Hz. The estimation of the phase of the CPSD seems
less reliable, but this can be expected because the
probes lie too far apart for the small fluctuations to be
coherent.

From Fig. 14 it is concluded that the bubble dy-
namics are represented by the low frequencies
(1-10 Hz) of the spectrum of the pressure fluctuations.
Pressure fluctuations due to macro circulations of the
fluid in the bubble column and due to bed level
oscillations are expected to lie on a much lower fre-
quency, of order 10~ * Hz (Drahos and Cermak, 1989).

Summarizing, we state that not only large bubbles,
but many more effects contribute to the unfiltered
PFS. The low-dimensional, chaotic behaviour of
bubble columns, that is assumed to result from the
large bubble behaviour, can be studied by looking at
the low-frequency-part of the spectrum.

REGIME TRANSITION

To determine the regime transition, the chaotic
properties of the low-frequency-part of the PFS were



Characterization of regimes in bubble columns 4455
— 4 T T 1
)
2 o
T 2 7
g
2 0 1
=)
&
2+ ]
4 . ) L
0 5 10 15 20
f/[Hz]
11 T T T
g 1 ]
[
H
S 09r 1
8
08 4
0.7 . . +
0 5 10 15 20
f/[Hz]

Fig. 14. Phase spectrum and coherence spectrum from two sensors, placed at an axial distance of 0.1 m in
the 0.19 m ID column.
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Fig. 15. Phase spectrum and coherence spectrum from two sensors, placed at an axial distance of 0.2 m in
the 0.19 m ID column.

investigated. This was done at different gas velocities,
ranging from 0 to 0.3 m/s. Looking back at Fig. 8, it is
now clear that the high frequencies in the APSD are
irrelevant in studying the bubble behaviour. The low-
pass filter frequency was therefore set at 20 Hz, elimin-
ating high frequency effects, and at the same time
ensuring that all effects due to large bubbles are still
taken into account. Acquisitions were made of the
pressure signal, measured in the middle of the column,
at an axial position of 0.43m from the distributor.
The sensor was placed in such a way that it was well in

the middle of the flow, i.e. as far as possible from the
distributor but well below the bed level. The acquisi-
tion frequency was 400 Hz, the acquisition length
65536 points. Kolmogorov entropy and correlation
dimension were calculated from the filtered time series
of the pressure signals. The number of samples m in
a time segment (representing one point on the attrac-
tor in the m-dimensional embedding space) was set on
50. The cut-off length, a criterion determining whether
points on nearby trajectories are separated or not,
was set to twice the average absolute deviation from



4456

H. M. Letzel et al.

20 035 " 400
¢
18 + 0.3 4 . a : : . | 350
er 4 0251 . T30 .
14 + .
Holdup / 02 4 T 250 Standard
Kolmogorov 12 T [ ’ 1 5gq deviation/
entropy/ 10 1 015+, [Pa]
its s 8+ or b . |1
6l - + 100
4+ 008 ¥ Pt - 50
LR N2
2 0 t +— 0
0 . ) 0 0.1 0.2 0.3
' ! U,/ [ms™
0 0.1 0.2 03

Ug/Ims™ Fig. 18. Gas holdup and standard deviation as a function of
superficial gas velocity in a water—air 0.1 m 1D bubble col-
Fig. 16. Kolmogorov entropy as a function of superficial gas umn.
velocity in a water-air 0.l m ID bubble column, 043 m
above the distributor. 18
16 +
5 14 +
12 1
45t Kolmogorov . |
4l entropy /
witss] 8T
Correlation 35 | 6+
dimension / 4+
[l 3T
2 o+
257 0 f f
21 0 0.1 0.2 03
1.5 f } Ug/[ms™
0 0.1 0.2 0.3

Ug/Ims™

Fig. 17. Correlation dimension as a function of superficial
gas velocity in a water-air 0.1 m [D bubble column, 0.43 m
above the distributor.

the signal’s average (see also Schouten et al., 1994b).
Figure 16 shows a plot of Kolmogorov entropy at
different gas velocities. At a gas velocity of 0.07 m/s,
entropy suddenly drops dramatically in value. In
Fig. 17, the maximum likelihood estimation of the
correlation dimension (Schouten et al., 1994b) is plot-
ted. The same pattern that is observed in the entropy
plot, is also observed here. Van der Stappen et al.
(1993) have also used Kolmogorov entropy to charac-
terize the regime transition from the gas—solid fixed
bed to the bubbling bed in a 10 cm ID fluid bed at
increasing gas velocity (close to minimum fluidiz-
ation). Their data showed that Kolmogorov entropy
first increased strongly at increasing gas velocity, then
decreased and subsequently increased again to settle
at a constant value. These results indicated that the
fluidization state beyond minimum fluidization, but
preceeding the freely bubbling regime, is also charac-
terised by a low value of Kolmogorov entropy (close
to zero), indicating a kind of ‘self-organisation’ before
the system settles at the dynamically more complex
bubbling regime.

Visual observation in the gas—liquid bubble column
confirms that there is a sharp transition in the flow
characteristics: at low superficial gas velocities the

Fig. 19. Kolmogorov entropy as a function of superficial gas
velocity in a water—air 0.19 m ID bubble column, 1.03 m
above the distributor.

small bubbles rise through the column in a straight
line, every bubble having approximately the same
speed. At a certain superficial gas velocity, a quite
sudden appearance of vortices of bubble swarms
and/or large bubbles is observed. Although these vor-
tices do not show a regular behaviour, they seem to
bring more structure in the flow, which would explain
the sudden drop in the values for the Kolmogorov
entropy and the correlation dimension. At higher gas
velocities, many large bubbles appear, which seems to
destroy this structure again, resulting in an increase of
Kolmogorov entropy and correlation dimension.
From the holdup (Fig. 18) it can be seen that the
transition is somewhere in the range between 0.05 and
0.1 m/s, but it is not possible to determine an exact
transition point from these data. The same holds for
the standard deviation of the signal, also plotted in
Fig. 18.

Measurements were also performed in the larger
0.19m ID column. Sensors were placed at different
axial positions. Figure 19 shows Kolmogorov entropy
at 1.03 m above the distributor as a function of super-
ficial gas velocity. In Fig. 20 a similar plot for the
correlation dimension estimations is shown. Again the
transition point can be clearly identified. The plots of
the holdup and the standard deviation (Fig. 21) give
again a less clear view of the transition.
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Fig. 20. Correlation dimension as a function of superficial
gas velocity in a water—air 0.19 m ID bubble column, 1.03 m
above the distributor.
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Fig. 21. Gas holdup and standard deviation as a function of
superficial gas velocity in a water—air 0.19 m ID bubble
column.

Measuring at a lower position in the column
(0.23 m above the distributor), a different profile is
obtained (Fig. 22). A possible explanation is that in
this region the flow is influenced more by the distribu-
tor. The distributor ‘dictates’ a homogeneous regime
by distributing the gas regularly over small bubbles.
At higher axial positions the gas bubbles will be in
a dynamic equilibrium due to coalescence and break
up. At a certain superficial gas velocity, this equilib-
rium shows a sudden transition from the homogene-
ous regime (no coalescence) to the churn—turbulent
regime (coalescence and break up in equilibrium).

CONCLUDING REMARKS

A pressure fluctuation signal in a bubble column is
complex, due to the fact that the continuous phase
conducts pressure fluctuations very well. The result is
that all processes in the column contribute to the
signal, whereas in a fluidized bed fewer processes seem
to contribute to the signal; it is expected that large
bubbles are an important cause for pressure fluctu-
ations in gas-solid fluid beds. Cross spectral analysis
shows that the pressure signal due to large bubbles in
a gas liquid bubble column can be identified clearly in
the low-frequency-part of the power spectrum.
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Fig. 22. Kolmogorov entropy as a function of superficial gas
velocity in a water—air 0.19 m ID bubble column at an axial
position of 0.23 m above the distributor.

By plotting the Kolmogorov entropy as a function
of superficial gas velocity, it is possible to determine
the point where the flow regime transition takes place.
From plots of holdup or standard deviation of pres-
sure fluctuations, the position of the transition point is
less clear. The method also has an advantage com-
pared with visual observation, since the latter method
is subjective. Furthermore, visual observation is often
limited or not possible at all in pilot plants and
especially in industrial installations that operate at
high pressure and/or temperature.

The typical profile showing the flow regime
transition is not found at lower axial positions in the
bubble column. It is argued that only at sufficient
distance from the distributor the flow regime has
‘settled’, i.e. does not change with axial height for
a given superficial gas velocity. At low axial positions
the distributor seems to be ‘dictating’ the (homogene-
ous) flow regime.

It is argued that the method of chaos analysis may
be a useful experimental tool to study the influence of
pressure on hydrodynamics in bubble columns. Since
the most important effect of pressure is a shift of the
transition velocity (Krishna et al., 1991), chaos analy-
sis of pressure signals can help to determine this
pressure effect on the transition velocity with high
accuracy and with relative experimental ease.

NOTATION

Ay distributor area per orifice, m?

(1) coherent part of time signal x(t) and y(t),
dimensionless

d, bubble diameter, m

Dy column diameter, m

f frequency, s !

3f frequency difference, s ™!

g gravity acceleration constant, m/s?

hy parameter determining the initial bubble
size at the gas distributor, m

h* height of the bubble growth zone, m

m embedding dimension, dimensionless
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P pressure, Pa

t time, s

At characteristic time step in entropy calcu-
lation, s

Uy gas velocity through the dense phase, m/s

U, superficial gas velocity, m/s

U,.ns  superficial gas velocity at transition, m/s

V, large bubble velocity, m/s

x(t) time signal, dimensionless

¥ time signal, dimensionless

Greek letters

% proportionality constant in Darton relation,
eq. (B1), dimensionless

A time delay between two signals, s

e voidage, dimensionless

£, ,(t)  non-coherent part of time signal x(f) and
y(t), dimensionless

¢ phase, dimensionless

(0] proportionality constant in Werther rela-
tion, eq. (B2), dimensionless

o phase difference, dimensionless

Abbreviations

APSD Auto Power Spectral Density
CCF Cross Correlation Function
CPSD  Cross Power Spectral Density
PFS Pressure Fluctuation Signal
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APPENDIX A: CROSS SPECTRAL ANALYSIS
Definitions
We consider signals x{¢) and y(t). The Fourier transform of
signal x(r) is defined as:

J(x) = [ x(t)e 2=t dr (AD
and the same for y(t). The auto power spectral density
{APSD) s the Fourier transform times its complex conjugate
or the Fourier transform of the autocovariance:

APSD,( f) = 3(x)3*(x) = I(COV,). (A2)

Similarly, the cross power spectral density of signals x(t) and
y(t) can be defined from their Fourier transforms and from
their cross covariance:

CPSD,(f) = J(X)I*(y) = J(COV,,). (A}

When two signals are coherent, this feature can be suppressed
by noise. This effect can be different at different frequencies.
The coherence function, 32, quantifies the extent in which
two signals are linearly related at a certain frequency:

CPSDZ,|?
() = | 1

= he (Ad)
APSD,APSD,

A value of unity means a completely coherent signal, a value
of zero means completely uncorrelated signals (at a certain
frequency). The coherence function gives a means to com-
pare two signals at several different frequencies.

Time delay

Suppose signals x(¢t) and y(t) consist of a coherent part c(t)
that shows a time delay A, and non coherent parts ¢,(¢) and
&,(1t), respectively:

x()=clt) + ey =clt — A +e()  (AS)

The time delay is visible in the cross correlation function.
The non-coherent part ¢ will not contribute in it:

CCF (1) = {x{)y(@)> = Letelt + 7 — A))

= ACF (r — A). (A6)

In an estimation over a sufficient amount of data, the es-
timator of the cross correlation function will be equal to
ACF.,. the ACF of the coherent parts of the signals x(z) and
¥(t). A time delay A in the coherent part of the signal results
in a peak at t = A in the CCF. The time shift is also visible in
the CPSD:
CPSD,,( f) = 3(CCF (1)) = I(ACF.(r — A)
= APSD,( f)e 32m/2, (A7)

It is noted that a time delay in the time domain results in
a phase shift in the Fourier domain. Three cases are con-
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Fig. Al. A time delay A between two signals results in (A)
a peak in the correlation function and (B) a linear phase shift
in the phase spectrum of the CPSD.

sidered for the time delay between signals x(¢) and y(t).

a. No time delay. The CCF is symmetric around 0. This
means that the CCF has a symmetric peak at © = 0, resulting
in a real value for the CPSD.

b. A uniform time delay A for all frequencies. This means
that the CCF has a symmetric peak at a time shift 7 = A,
resulting in a complex CPSD with a linear phase shift
~ 2xfA. A plot of the phase against the frequency will show
a slope of — 2zA. Figure Al illustrates this.

c. Different time delays at different frequencies. In some
cases, different frequencies can travel with different velocities,
resulting in different time delays. This results in a non-sym-
metric peak at some average time shift in the CCF. In the
APSD the slope of the phase represents the time shift at that
given frequency.

APPENDIX B: ESTIMATION OF BUBBLE VELOCITIES
FROM ELLENBERGER AND KRISHNA (1994)
Use is made of a relation for the bubble diameter in
gas-liquid bubble columns, similar to that of Darton et al.
(1977):

dy = 2(Uy — Ugg)?*(h* + ho)*/3g ™1 (BY

where « is a constant, U, is the superficial gas velocity, U, is
the superficial gas velocity through the dense phase, and h* is
the bubble growth zone. Furthermore, use is made of a rela-
tion for the bubble velocity similar to that of Werther (1983):

Vy =0 /gd, (B2)

where ® is a constant. Ellenberger and Krishna (1994) ob-
tained experimentally o, = 1; h* = 0.018 + 1.05(U, — Uy,p);
@ = 1.95D¥°, with Dy the column diameter. h, can be esti-
mated from hy = 4N//AO, where A4, is the area of the distribu-
tor plate per orifice. For porous plate distributors they
estimate A, = 0.000056 m?, giving ho = 0.03 m.

The dense-phase gas velocity is taken equal to the superfi-
cial gas velocity at the transition point. From Fig. 19 this
velocity is estimated to be about 0.05 m/s. Substituting these
data in egs (Bl) and (B2), we obtain for a superficial gas
velocity of 0.07 m/s: V, =~ 0.6 m/s. This estimation of the
bubble velocity based on empirical data agrees with the time
shift for low frequencies, measured at different axial posi-
tions. This confirms that these frequencies represent the
bubble behaviour.



