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Abstract

We have performed kinetic Monte Carlo simulations for diffusion of methane, perfluoromethane and 2-methylhexane
in silicalite to study the inter-relations between self-, jump- and transport-diffusivities. Both the self- and jump-diffu-
sivities were found to decrease with occupancy, or loading, within the zeolite matrix. Correlation effects cause the self-
diffusivity to be lower in value than the jump-diffusivity. Using the Maxwell-Stefan theory for diffusion we derive a

simple formula to relate the self- and jump-diffusivities. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

The proper description of diffusive transport
within zeolitic materials is of considerable impor-
tance in practice because of the many applications
in catalytic reaction and separation processes [1-
3]. Consider diffusion of a single component (1)
within the matrix of a zeolite structure; the mo-
lecular flux, expressed in molecules per square
meters per second, is given by

N, = —pDV 6, (1)

where p is the density of zeolite matrix, expressed
in unit cells per m?, @, is the molecular loading,
expressed in molecules per unit cell. Eq. (1) defines
the transport or Fick diffusivity D. The adsorption
isotherm relates the molecular loading ®; to the
partial pressure of component 1 in the bulk gas
phase surrounding the zeolite crystals, p;. The
Langmuir isotherm gives, for example:
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where b; is the Langmuir constant, @, is the
saturation loading and 0, is the fractional occu-
pancy.

A more fundamental way of describing the dif-
fusion process is to use chemical potential gradi-
ents as driving forces:

0
Nl = _p@l,satD(R}thp,ul>v (3)

where D is variously referred to as the corrected,
jump or Maxwell-Stefan diffusivity [1-4], R is the
gas constant and 7T is the absolute temperature.
The transport- and jump-diffusivities are inter-re-
lated by

D =PI, 4)

where I' is the thermodynamic correction factor
[3.4]
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For the Langmuir isotherm (2), the thermody-
namic correction factor is given by
1 1

I 1-0,/0g 1-0," ©)

The transport diffusivity D is measured under
non-equilibrium conditions in which finite gradients
of the loading exist. They are determined by
macroscopic methods like gravimetry, volumetry,
chromatography or frequency response techniques
[1,5]. In other experimental procedures, the self-
diffusivities are measured under equilibrium con-
ditions by microscopic techniques, viz. quasielastic
neutron scattering and pulsed field gradient NMR.
For self-diffusion, the flux of the marked, or
tagged, species (1*) is measured under the influ-
ence of the gradient in the loading of marked
molecules VO . keeping the total molecular load-
ing (tagged and untagged species) constant
(VO +VO, =0).

Nl* == —pD*V@l*. (7)

In the limit of zero loading the self-, jump- and
transport-diffusivities are all identical:

b=D"=D; 0,—-0. (8)

In the published literature, there appears to be
no general inter-relation between these three
quantities under conditions of finite molecular
loadings. In a recent experimental study, Jobic
et al. [5] have found that D > B > D* for diffusion
of H, in NaX zeolite. However, these authors did
not provide any theoretical formulae for the inter-
relationships. The objective of our Letter is to try
to develop a simple mathematical formula relating
the three diffusivities using the Maxwell-Stefan
theory for diffusion. To validate the developed
relations we perform kinetic Monte Carlo simu-
lations of methane, perfluoromethane and
2-methylhexane in silicalite.

2. The Maxwell-Stefan theory of diffusion in
zeolites

The essential concepts behind a general con-
stitutive relation for diffusion in multicomponent
mixtures were already available more than a cen-

tury ago following the pioneering works of James
Maxwell [6] and Stefan [7]. These ideas have been
applied to describe diffusion of n species within a
zeolite matrix using the following set of equations
[3,4,8-10]:

1 @iﬁsat@j,satDij @i,satDi’

J#

i=1,2,....n 9)

In the Maxwell-Stefan formulation for zeolite
diffusion, Eq. (9), we have to reckon in general
with two types of Maxwell-Stefan diffusivities: B;;
and D,. The D, are the diffusivites which reflect
interactions between species i and the zeolite ma-
trix; these correspond to the jump-diffusivities in-
troduced earlier. Mixture diffusion introduces an
additional complication due to sorbate-sorbate
interactions. This interaction is embodied in the
coefficients D;;. We can consider this coefficient as
representing the facility for counter-exchange, i.e.,
at a sorption site the sorbed species j is replaced by
the species i. The net effect of this counter-ex-
change is the slowing down of a faster moving
species due to interactions with a species of lower
mobility. Also, a species of lower mobility is ac-
celerated by interactions with another species of
higher mobility.

Let us apply the above set of equations Eq. (9)
for self-diffusion and consider a system consisting
of untagged (1) and tagged (1*) species; see pic-
torial representation in Fig. 1. For self-diffusion
the conditions of experiment are such that the
gradients for diffusion of the tagged and untagged
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Fig. 1. Pictorial representation of self diffusion using the
Maxwell-Stefan diffusion model.
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species are equal in magnitude and opposite in
sign:

V0, + V0, =0 (10)

and consequently the fluxes of tagged and untag-

ged species sum to zero:

N; + N =0. (11)
Applying the restrictions (10) and (11) to Eq. (9)

we obtain, after imposing Py = B« =D for the

tagged and untagged species:

N| = —p0, D"V,

Vo, (12)

= _p@I‘sat
1, 01405

<§+ B )

which shows that the tracer diffusivity D* is

S (13)

1 0
(i)

where 0 is the total occupancy (tagged and un-
tagged species).

Eq. (13) shows that the tracer, or self-, diffu-
sivity D* reduces to the Maxwell-Stefan diffusivity
only when the interchange coefficient is exceed-
ingly high:

D" — Db when b ;- — 0. (14)

In the more general case for finite values of the
exchange parameter D; ;- we would expect D* to
be smaller than . As we shall show later in this
Letter, the exchange parameter B, ;- is an expres-
sion of the correlation between the jumps of the
tagged and untagged species. A good practical
solution would be to take B, ;- = D; with this as-
sumption we obtain

D= . (15)

We now seek verification of the validity of Eq. (15)
by performing kinetic Monte Carlo simulations.

3. Kinetic Monte Carlo simulations

We perform kinetic Monte Carlo (KMC) sim-
ulations for diffusion of 2-methylhexane (2MH),

methane (CHj,) and perfluormethane (CF,4) at 300 K
in silicalite. Each component follows Langmuir
isotherm behaviour. We assume the lattice to be
made up of equal sized sites which can be occupied
by only one molecule at a time and there are no
further molecule-molecule interactions. Particles
can move from one site to a neighbouring site via
hops. The probability per unit time to move from
one site to another is determined by transition
rates k,, and kg, for the zig-zag (zz) and straight
(str) channels; see Fig. 2 for a schematic sketch.
For 2MH, the transition probabilities were deter-
mined based on the calculations of Smit [11] and
the procedure is described in detail in our earlier
publication [12]. For CH4 and CF,, the transition
probabilities were chosen to match the Molecular
Dynamics simulation results of Pickett [13] and
Goodbody [14]. Table 1 lists the input data for the
transition probabilities. For 2MH the maximum
number of sorption sites per unit cell is 4 and the
corresponding number for CH; and CF, are 24
and 12 respectively. These maximum loadings were
taken on the basis of configurational-bias Monte
Carlo simulation results of Vlugt et al. [15] and
experimental data of Heuchel et al. [16].

We employ a standard KMC methodology to
propagate the system (details in Refs. [12,17-19]).
A hop is made every KMC step and the system
clock is updated with variable time steps. For a
given configuration of random walkers on the sil-
icalite lattice a process list containing all possible
M moves to vacant intersection sites is created.
Each possible move i is associated with a transition
probability &; which is either k,, or ky.. Now, the
mean elapsed time 7 is the inverse of the total rate
coefficient

M
7571 == ktotal = Zkh (16)
i=1

which is then determined as the sum over all pro-
cesses contained in the process list. The actual
KMC time step A¢ for a given configuration is
randomly chosen from a Poisson distribution

At = —In(u)k,

total?

(17)

where u € [0,1] is a uniform random deviate. The
timestep At is independent of the chosen hopping
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Fig. 2. Diffusion unit cell for silicalite connecting intersection sites (large black dots) via straight and zig-zag channels.

Table 1
Transition probabilities and zero-loading diffusivities
Species O sat ks kg b(0)
[s7'] 5] [m?s™']
2MH 4 5x10% 1.4x10* 6.86x1014
CH, 24 1.8x10"2 2.1x10"2 1.55x1078
CF, 12 2.05x10'0 3.25x10'° 3.33x10~°
process. To select the actual jump, we define pro- ) 1., 1,
cess probabilities according to p; = Z}:] k; /kiota- D, = AltlfchZ(Af) = EAlglcht (r,(At)) (18)

The ith process is chosen, when p; | <v < p;,
where v € [0, 1] is another uniform random devi-
ate. After having performed a hop, the process list
is updated. In order to sample ensemble averages
correctly and to calculate dynamical properties
more easily, the variable time scale is mapped on a
periodic time scale for analysis purposes. In order
to avoid surface effects we employ periodic
boundary conditions. A choice of 5 x 5 x 5 unit
cells ensures freedom from finite size effects [12].
About 107 simulation steps were performed for
each simulation.

The self-diffusivity tensor is described by its
components in the x-, y- and z-directions:

with (---) denoting both ensemble and time aver-
aging, r, is the particle displacement vector and o
is x, y or z. Accordingly, the self-diffusion coeffi-
cient is expressed by

* l * * *
D" =3(D; +D; + D). (19)
Following the works of Reed and Ehrlich [17] and
Uebing [20,21] we also calculated the thermody-
namic correction factor I’ by relating it to the
particle fluctuations in a finite probe volume:

(V)

r=—~ 20
(N?) — (N)? .
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at equilibrium conditions where N is the number
of adsorbed particles.

The jump-diffusivities were calculated from the
KMC simulations using the following relation
[17,20]:

o-gim i (v -n0) )
(21)

which represents the mean square displacement of
the center of gravity of the N adsorbed particles.

4. Verification of Eq. (15)

Let us first consider the KMC simulations for
2MH. Fig. 3a shows the self- and jump-diffusivity
obtained from KMC simulations. The jump dif-
fusivity D shows a linear dependence on the frac-
tional occupancy:

D = D(0)(1 - 0). (22)

The self-diffusivity D* values from KMC simula-
tions compare very well with the estimations from
Eq. (15). The interchange coefficient B, ;- in the
Maxwell-Stefan formulation is a reflection of
correlation effects which influence the self-diffusion
coefficients. The jump-diffusion process is free
from such correlation effects [12].

In Fig. 3b the KMC simulations for transport
diffusivity D and jump diffusivity B, normalised
with respect to B(0) are presented along with the
simulated values of I'. We note that the KMC
simulated I" follows the theoretical Langmuir be-
haviour 1/(1 —6). In view of the linear depen-
dence of the jump diffusivity D following Eq. (22),
the transport diffusivity D(= PT") is independent
of the occupancy 0.

The KMC simulation results for CH, are shown
in Fig. 4. In Fig. 4a the self-diffusivity values in x,
y and z directions are presented as a function of
the fractional occupancy. These self-diffusivity
values are in excellent agreement with the MD
simulation results of Goodbody et al. [14]. The
self-diffusivity D*, calculated from Eq. (19), are
compared in Fig. 4b with the jump diffusivity B
from Eq. (15), from MS theory. The jump diffu-
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Fig. 3. Monte Carlo simulations of self- and jump- and trans-
port-diffusivities of 2MH in silicalite at 300 K.

sivity P again follows the linear dependence of
Eq. (22). The KMC simulations for self-diffusivity
D* for CH, show a stronger correlation effect than
predicted by Eq. (15). The reason for the stronger
correlation effect is to be found in the fact that for
methane we have a total of 24 sorption sites
compared to only 4 for 2MH. The transport dif-
fusivity for CH, is independent of the loading; see
Fig. 4c.
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Fig. 5. Comparison of Monte Carlo simulations of self-diffu-
sivities of 2MH, CH,4 and CF, in silicalite at 300 K. The self-
diffusivities have been normalized with respect to the zero-
loading diffusivities D(0).

The dependence of correlation effects on the
number of sorption sites is emphasised by com-
paring the (normalised) self-diffusivities for 2MH,
CH, with that of CF,, for which the total number
of sorption sites is taken to be 12; see Fig. 5. The
self-diffusivity values for CF4 lie in between those
for the other two molecules, as is to be expected. It
is clear also that the exchange coefficient D ;-
should also take account of the particular system
topology with respect to the number of sorption
sites. It is not yet clear how such topology effects
could be accounted for.

5. Conclusions

Self-diffusivities in zeolites are strongly influ-
enced by correlation effects, whereas the jump-
and transport-diffusivities are both free from such

<&
N

Fig. 4. Monte Carlo simulations of self- and jump- and trans-
port-diffusivities of CHy in silicalite at 300 K. In (a) the self
diffusivities in x, y and z directions are compared with the MD
simulation results of Goodbody et al. [14].
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effects. The Maxwell-Stefan diffusion theory has
been used to derive a simple formula, Eq. (15), to
relate the self-diffusivity to the jump-diffusivity.
This formula is found to provide a reasonable
representation of the self-diffusivity values ob-
tained from kinetic Monte Carlo simulations. The
KMC simulations also show that correlation ef-
fects are influenced by the system topology, i.e.,
the number of sorption sites. Such effects are not
accounted for in the continuum Maxwell-Stefan
description.
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