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We report kinetic Monte Carlo (KMC) simulations of self-diffusion of a methane/perfluoromethane mixture
in silicalite. The hopping rates and model setup were taken to match previously published MD simulations
and PFG-NMR data. In the case of the present KMC simulation the acceleration/deceleration of particles
with varying mixture composition can be attributed to correlation effects. The logarithmic interpolation
rule for mixture self-diffusion coefficients reported by Snurr and Kärger (J. Phys. Chem. B 1997, 101, 6469)
is validated for a broad range of loadings. However, a deficiency of the present KMC model is that it is
not able to cope with different saturation capacities of the two species; the influence of different saturation
capacities on mixture diffusion is accounted for by the Maxwell-Stefan theory. The Maxwell-Stefan
formulation of diffusion in multicomponent mixtures is used to obtain explicit formulas for calculating the
diffusivities of binary mixtures within a zeolite matrix. The theoretical development allows the estimation
of the mixture diffusivities on the basis of the pure component diffusivities at zero loadings. We discuss
several mixture rules for the estimation of the exchange coefficient ^12. Though none of them is fully
satisfying, we demonstrate the ^12 value should have the same order of magnitude as the pure component
Maxwell-Stefan diffusivities in order to account properly for acceleration/deceleration behavior.

Introduction

The proper description of diffusive transport within
zeolitic materials is of considerable importance in practice
because of the many applications in catalytic reaction and
separation processes.1-3 A variety of models and tech-
niques have been used to describe diffusion within zeolites,
ranging from phenomenological models such as the Fick’s
law of diffusion1,2 and the Maxwell-Stefan formulation4,5

to Monte Carlo simulations6-9 and molecular dynamics
(MD).10,11 In recent years increasing attention has been
paid to the description of mixture diffusion12-15 using MD
techniques. The computational expense involved in the
use of MD techniques for mixtures is considerable. In this
work we study binary mixture diffusion within silicalite
using kinetic Monte Carlo (KMC) simulation techniques.
The major objective of our work is to examine the extent
to which KMC simulation techniques can be used as an
alternative to MD techniques to describe mixture diffusion.

The KMC approach requires substantially less compu-
tational effort than the MD alternative and is therefore
appealing. An additional objective of our paper is to
highlight an important shortcoming of KMC simulations
for mixtures that has not been received due attention in
the literature. This shortcoming relates to the inability of
the current KMC methodologies to handle mixtures made
up of components with different saturation loadings. To
compare KMC and MD approaches, we chose the mixture
methane/perfluoromethane for study because MD simu-
lation results are already available in the literature.12

Kinetic Monte Carlo Simulations

We perform kinetic Monte Carlo (KMC) simulations of
a Langmuir-type system, which means that we have a
lattice of equal sites which can be occupied by only one
molecule at a time and there are no further molecule-
molecule interactions. Particles can move from one site to
a neighboring site via hops. The probability per unit time
to move from one site to another is determined by
transition rates, which have been chosen to reproduce
published experimental and simulated (MD-Simulation)
data.12,16

We employ a standard KMC methodology to propagate
the system (see refs 6, 9, 17, and 18). A hop is made every
KMC step, and the system clock is updated with variable
time steps. For a given configuration of random walkers
on the silicalite lattice, a process list containing all possible
M moves to vacant sites is created. Each possible move
i is associated with a transition probability ki. Note that
these values depend on the particular type of move a
particle attempts, as well as on the particle type. Now,
the mean elapsed time τ is the inverse of the total rate
coefficient

(1) Kärger, J.; Ruthven, D. M. Diffusion in Zeolites and Other
Microporous Solids; Wiley & Sons: New York, 1992.

(2) Ruthven, D. M.; Farooq, S.; Knaebel, K. S. Pressure Swing
Adsorption; VCH Publishers: New York, 1994.

(3) Krishna, R.; Smit, B.; Vlugt, T. J. H. J. Phys. Chem. A 1998, 102,
7727.

(4) Krishna, R.; Wesselingh, J. A. Chem. Eng. Sci. 1997, 52, 861.
(5) Kapteijn, F.; Moulijn, J. A.; Krishna, R. Chem. Eng. Sci. 2000,

55, 2923.
(6) Saravanan, C.; Auerbach, S. M. J. Chem. Phys. 1997, 107, 8132.
(7) Saravanan, C.; Auerbach, S. M. J. Chem. Phys. 1999, 110, 11000.
(8) Coppens, M. O.; Bell, A. T.; Chakraborty, A. K. Chem. Eng. Sci.

1999, 54, 3455.
(9) Paschek, D.; Krishna, R. Phys. Chem. Chem. Phys. 2000, 2, 2389.
(10) Haberlandt, R.; Fritzsche, S.; Peinel, G.; Heinzinger, K.Molecular

Dynamics; Vieweg: Braunschweig, 1995.
(11) Pickett, S. D.; Nowak, A. K.; Thomas, J. M.; Peterson, B. K.;

Swift, J. F. P.; Cheetham, A. K.; den Ouden, C. J. J.; Smit, B.; Post, M.
F. M. J. Phys. Chem. 1990, 94, 1233.

(12) Snurr, R. Q.; Kärger, J. J. Phys. Chem. B 1997, 101, 6469.
(13) Jost, S.; Bär, N. K.; Fritzsche, S.; Haberlandt, R.; Kärger, J. J.

Phys. Chem. B 1998, 102, 6375.
(14) Schuring, D.; Jansen, A. P. J.; van Santen, R. A. J. Phys. Chem.

B 2000, 104, 941.
(15) Gergidis, L. N.; Theodorou, D. N. J. Phys. Chem. B 1999, 103,

3380.

(16) Goodbody, S. J.; Watanabe, K.; MacGowan, D.; Walton, J. P. R.
B.; Quirke, N. J. Chem. Soc., Faraday Trans. 1991, 87, 1951.

(17) Reed, D. A.; Ehrlich, G. Surf. Sci. 1981, 105, 603.
(18) Fichthorn, K. A.; Weinberg, W. H. J. Chem. Phys. 1991, 95,

1090.

247Langmuir 2001, 17, 247-254

10.1021/la000695h CCC: $20.00 © 2001 American Chemical Society
Published on Web 12/07/2000



which is determined as the sum over all processes
contained in the process list. The actual KMC time step
∆t for a given configuration is randomly chosen from a
Poisson distribution

where u ∈ [0,1] is a uniform random deviate. The time
step ∆t is independent from the chosen hopping process.
To select the actual jump, we define process probabilities
according to pi ) ∑j)1

i kj/ktotal. The ith process is chosen,
if pi-1 < v e pi, where v ∈ [0,1] is another uniform random
deviate. After having performed a hop, the process list is
updated. To sample ensemble averages correctly and to
calculate dynamical properties more easily, the variable
time scale is mapped on a periodic time scale for analyzing
purposes. [In the KMC simulations presented here the
time between two subsequent hopping events follows a
Poisson distribution. However, simple dynamic quantities
such as the particle mean sqare displacement or time
correlation functions in general can be obtained much
more easily from a data set, where the time between two
stored configurations is constant (as it is done typically
in MD simulations). To achieve this, we use a simple
bookkeeping procedure, that ensures that a new config-
uration is only written to the trajectory file, if the system
clock has exceeded a certain defined time step value.] To
avoid wall effects, we employ periodic boundary conditions.
In keeping with our previous findings,9 the finite size-
effect on diffusivity was found to be negligible at a size of
5 × 5 × 5 unit cells. About 107 simulation steps were
performed for each simulation. The run length depends
strongly on the number of possible jump processes, but
even the most time-consuming simulations could be
completed within a few hours on a single IBM SP2-node.

To attempt matching the diffusivity data of Goodbody
et al.16 and Snurr and Kärger12 and to take the correct
particle distribution between channel and intersection
sites given in ref 12 into account, a discretization of the
zeolite channel structure using 24 sites per unit cell is
proposed (see Figure 1). Since the present model has been
designed to be as simple as possible, the lattice sites are
not supposed to represent exactly the minima of the
adsorbed particles’ potential energy surface but are a
coarse grained representation of the channel interior.
Moreover, we are neglecting particle-size effects, as well
as kinetic correlations in terms of multiple jumps or jump
memory (the consequences are discussed in the following
sections). The transition probabilities (per unit time) to
attempt a hop from a channel site (st: straight channel,
zz: zigzag channel) to any other (neighboring) site are
defined by

Here, γ denotes the particular particle type. kst
∞(γ) and

kzz
∞ (γ) define the so-called frequency factors, which char-

acterize individual particle mobilities at infinitely high
temperature. For the actual simulations, the rate con-
stants were determined to match the zero-loading self-
diffusivities:12,16 kst

∞(CH4) ) 2.1 × 1012 s-1, kst
∞(CF4) ) 4.5

× 1011 s-1, kzz
∞ (CH4) ) 1.8 × 1012 s-1, and kzz

∞ (CF4) ) 3.8

× 1011 s-1. The temperature dependence is given by
assuming Arrhenius behavior of the individual jump rates.
The activation energy Ea has been defined to be 4 kJ mol-1

in all cases, which is motivated by the temperature
dependence of the experimental and MD-Simulation
diffusivity data of Snurr and Kärger.12 To match also the
particle distributions given by Snurr and Kärger,12 the
adsorption in channel sites was preferred slightly by
reducing the transition probabilities for moves from an
intersection site (in) to any channel site by a factor of one
half

A constant factor has been used here, since there is not
much information on the temperature dependence of the
difference in the sorption strength of channels and
intersections. However, large temperature effects are not
to be expected, since the difference in sorption strength
is rather small, as indicated by the fact that the adsorption
data of both components are represented well by a
Langmuir single-site isotherm.19

Using the setup described above, we obtain a distribu-
tion of 1.44 mol/u.c. per intersection site, 4.22 mol/u.c. for
the straight channel adsorption, and 6.34 mol/u.c. for the
zigzag channel adsorption for both components, methane
and perfluoromethane. This is in quite good agreement
with the data reported by Snurr and Kärger (see Table
2 in ref 12). To keep the model as simple as possible, we
have ignored molecule-size effects. As we will show later,
the effect of sizing may lead to problems. In our model,
the saturation capacity is naturally fixed to 24 mol/u.c.
for both components; therefore, perfluoromethane could
be considered as a kinetically slowed version of methane.
The implications on mixture diffusion are discussed below.

Mixture Self-Diffusion
The self-diffusivity tensor may be described by com-

ponents of the self-diffusion coefficient in the x-, y- and
z-directions, which are defined as

with 〈...〉 denoting both ensemble and time averaging.
Accordingly, the average self-diffusion coefficient is ex-

(19) Buss, E.; Heuchel, M. J. Chem. Soc., Faraday Trans. 1997, 93,
1621.

τ-1 ) ktotal ) ∑
i)1

M

ki (1)

∆t ) -ln(u)ktotal
-1 (2)

kst(T,γ) ) kst
∞(γ) exp(-Ea/RT)

kzz(T,γ) ) kzz
∞ (γ) exp(-Ea/RT) (3)

Figure 1. Diffusion unit cell used for KMC simulations.
Intersection (in) sites (black dots) are connected via straight
(st) channel sites (white dots) and zigzag (zz) channel sites (grey
dots) (unit cell parameters: a ) 2.01 nm (x), b ) 1.99 nm (y),
c ) 1.34 nm (z)).

kinfst(T,γ) ) kst(T,γ)/2

kinfzz(T,γ) ) kzz(T,γ)/2 (4)

DR ) lim
∆tf∞

DR(∆t) ) 1
2

lim
∆tf∞

1
∆t

〈rR
2(∆t)〉 (5)
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pressed by

In Figure 2 the components of the self-diffusion coefficients
for methane at 300 K obtained from the KMC simulations
are compared with the MD simulation data of Goodbody
et al.16 Note the good agreement between the loading
dependence of methane for all three directions. So, in
addition to the zero-loading diffusivities, which were
adjusted in order to match the experimental data, also
the model setup seems to be appropriate, since the
particular form of the self-diffusivity curve is due to
correlation effects,20 which have been shown to depend
strongly on the channel topology.21 Moreover, since the
loadingdependenceof thepurecomponentself-diffusivities
(in all three directions) is described rather well, it does
not seem essential to consider additional kinetic correla-
tions in terms of multiple jumps or jump memory effects.
While it is possible that such effects may exist, these are
apparently of minor importance for the case studied here.
It is interesting to note that the deviation from the mean
field (1 - θ) behavior found here is even more strongly
pronounced than the one obtained recently for 2-meth-
ylhexane adsorbed in silicalite.9 Moreover, we would like
to emphasize that the use of a diffusion unit cell that is
identical to the crystallographic unit cell gives consistent
results with MD simulations. Therefore, the introduction
of a particular diffusion unit cell being elongated (doubled)

in the z-direction, as proposed recently,22 might be a
questionable procedure.

The average self-diffusion coefficients of pure methane
and perfluoromethane at T ) 300 K are given in Figure
3. Here perfluoromethane is considered to be a kinetically
slowed version of methane exhibiting a similar saturation
capacity. Considering the large scatter in MD and PFG-
NMR data,12,16 the agreement between KMC simulated
data and MD and PFG-NMR data seems to be reasonably
good, although the substantially larger value for perfluo-
romethane at zero loading already indicates that the self-
diffusion coefficient of perfluoromethane might decrease
somewhat more strongly with loading than that of
methane.

The temperature dependence of the self-diffusion coef-
ficients in the mixture at a total loading of eight methane
and four perfluoromethane molecules per unit cell is shown
in Figure 4. In both cases the KMC data are situated
between experimental (PFG-NMR) and MD simulation
data. In Figure 5 the self-diffusion coefficients of methane
and perfluoromethane are given as a function of composi-

(20) Kärger, J. J. Phys. Chem. 1991, 95, 5558.
(21) Coppens, M. O.; Bell, A. T.; Chakraborty, A. K. Chem. Eng. Sci.

1998, 53, 2053.

Figure 2. Self-diffusion of methane in silicalite in the x-, y-,
and z-directions (T ) 300 K) as a function of the number of
adsorbed molecules per unit cell Nc. Comparison of KMC
simulation results with MD data of Goodbody et al.16

Figure 3. Average self-diffusion of methane and perfluo-
romethane in silicalite (T ) 300 K) as a function of the number
of adsorbed molecules per unit cell Nc. Comparison of KMC
simulation results with MD data of Goodbody et al.16 (methane)
and MD data and PFG-NMR measurements of Snurr et al.12

(perfluoromethane).

D ) 1
3

(Dx + Dy + Dz) (6)

Figure4. Temperature dependence of self-diffusion of methane
and perfluoromethane in silicalite at a total loading of eight
methane and four perfluoromethane molecules per unit cell.
Comparison with data from Snurr and Kärger.12

Figure 5. Self-diffusion of methane and perfluoromethane
in silicalite (T ) 200 K) at a total loading of Nc ) Nc(CH4) +
Nc(CH4) ) 12 molecules per unit cell with varying mixture
composition. Circles denote methane, and squares indicate
perfluoromethane diffusivities. Small symbols denote the KMC
simulation results. Large closed symbols denote PFG-NMR,
and large open symbols denote MD simulation data according
to ref 12.

Diffusion of Binary Mixtures in Zeolites Langmuir, Vol. 17, No. 1, 2001 249



tion at a fixed loading of 12 molecules per unit cell and
T ) 200 K and are compared with the data of Snurr and
Kärger. First, we can conclude that KMC simulation, as
well as MD simulation and PFG-NMR data, can be
described perfectly by a logarithmic interpolation between
values for the pure component and at infinite dilution

Here, x1 is the molar fraction of species 1 and D1(Θ,x1) and
D2(Θ,x1) are the self-diffusion coefficients of species 1 and
2 at a total loading Θ ) Θ1 + Θ2 in molecules per unit cell
and composition x1 with

Moreover, in Figure 6 it is shown that the apparent validity
of the logarithmic interpolation rule can be denoted for
the complete range of loadings ranging from 2.4 to 18
molecules per unit cell. With increased loading, the
acceleration/deceleration behavior is found to be even
more strongly pronounced. The values for D1,2(Θ,x1)0)
and D1,2(Θ,x1)1) obtained from the KMC simulations at
200 K and different total loadings are given in Table 1.
However, the slopes of experimental (MD simulation and
PFG-NMR) and KMC curves in Figure 5 differ notably,
so the acceleration/deceleration behavior seems to be
underestimated by the KMC model. It is likely that the

reason for the weaker composition dependence in the KMC
simulations has to be attributed to the effect of different
saturation capacities of methane and perfluoromethane.
In a previous paper (Paschek and Krishna9) we had
analyzed in considerable detail the self-diffusivities, the
transport diffusivities, and the Maxwell-Stefan diffu-
sivities for single-component diffusion using MC simula-
tions. This study shows clearly that for a system observing
the Langmuir isotherm and the absence of any collective
dynamics the self-diffusivity tends to zero at saturation
loadings; see Figure 6b of ref 9. In the context of self-
diffusion in binary mixtures, where the total mixture
loading is kept constant, we would expect differences in
the sizes of the constituent species and also differences in
their saturation loadings to influence component self-
diffusivities. Since, for technical reasons, the saturation
capacity has to be equal for both components in the KMC
model but it is experimentally known that the slower
component (perfluoromethane) has a significantly smaller
saturation limit,23 it is likely that including the effect of
different saturation capacities will increase the diffusivity
difference, as reflected in the MD and PFG-NMR data. In
a later section we will use Maxwell-Stefan theory in order
to support the above-mentioned idea.

Particle Acceleration/Deceleration: A
Correlation Effect

It is interesting to ask why the different particle
diffusivities influence each other, since any specific
particle-particle interactions are neglected in the Lang-
muir model. So, the reason for the acceleration/slowing
down in the KMC simulations is purely based on the
correlation effect. Suppose, a slow particle, which is
exclusively surrounded by fast particles, performs a hop.
This initial diffusion step may be canceled (which is the
reason for the correlation effect) if the particle performs
a hop back. Of course, this can happen only if the vacancy
is still in the vicinity of the particle. However, consider
the case that the slow particle is surrounded by fast
particles only. Now it is much more likely for the vacancy
to diffuse away compared to a situation where there are
only slow particles. Therefore, a cancellation of the initial
step of the slow particle is less likely, and hence, the
diffusive motion of the slow particle is, on average,
accelerated. The opposite situation is found for the case
of a fast particle which is surrounded by slow particles.
Now, the probability for the fast particle to reverse its
initial diffusion step is much higher as compared to a
situation where also the environment is formed by fast
particles. Therefore, its correlation factor increases, and
hence, the fast particle species is slowed. Please note that
the acceleration effect is therefore never unique. Since it
is based on the correlation effect, its strength will always
depend on the lattice topology. Finally, since the correla-
tion effect becomes stronger at higher loadings, the
acceleration/deceleration effect also increases.

We would like to point out that the origin of the
acceleration/deceleration behavior described here is analo-
gous to what has been recently observed for anisotropic
single-component diffusion. For the case of unequal
transition probabilities, as for example in the case of
diffusion of branched alkanes adsorbed in silicalite, a
correlation-effect-based loading dependence of the self-
diffusivity tensor could be observed.9

(22) Smit, B.; Loyens, L. D. J. C.; Verbist, G. L. M. M.Faraday Discuss.
1997, 106, 93.

(23) Heuchel, M.; Snurr, R. Q.; Buss, E. Langmuir 1997, 13, 6795.

Figure 6. Self-diffusion of methane and perfluoromethane in
silicalite (T ) 200 K) at a total loading of 2.4 (circles), 6 (squares),
12 (diamonds), and 18 (triangles) molecules per unit cell as a
function of mixture composition. Open symbols indicate the
diffusivity of perfluoromethane, while closed symbols represent
methane. The straight lines represent fits due to a logarithmic
interpolation rule.

Table 1. Self-diffusion Coefficients of Methane and
Perfluoromethane for x(CH4) ) 0 and x(CH4) ) 1 As a

Function of Total Loading

diffusivity in 10-8 m2 s-1

Nc(CH4) D0(CH4) D1(CH4) D0(CF4) D1(CF4)

2.4 0.47 0. 55 0.117 0.130
6 0.26 0.37 0.082 0.010

12 0.078 0.165 0.037 0.057
18 0.0165 0.05 0.0117 0.0235

D1(Θ,x1) ) D1(Θ,x1)0)1-x1 × D1(Θ,x1)1)x1

D2(Θ,x1) ) D2(Θ,x1)0)1-x1 × D2(Θ,x1)1)x1 (7)

x1 )
Θ1

Θ1 + Θ2
(8)
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Maxwell-Stefan Theory of Diffusion in Zeolites

The essential concepts behind a general constitutive
relation for diffusion in multicomponent mixtures were
already available more than a century ago following the
pioneering works of James Clerk Maxwell24 and Josef
Stefan.25 These ideas have been applied to describe
diffusion of n species within a zeolite matrix using the
following set of equations4,5

where F is the zeolite matrix density expressed as unit
cells per cubic meter, Θi represents the loading expressed
in molecules of sorbate per unit cell of zeolite, Θi,sat is the
saturation loading of species i, R is the gas constant, and
T is the temperature. ∇µi is the gradient of the chemical
potential of species i, which is the fundamental driving
force for diffusion. δij denotes the Kronecker symbol with
δij ) 1 for i ) j and δij ) 0 for i * j. The fractional occupancy
θi of the sorbate within the zeolite matrix is defined as

In general the saturation loadings of the various species
Θi,sat in the mixture will be different from one another.
The Ni are the molecular fluxes expressed in terms of
molecules transported per square meter per second.

In the Maxwell-Stefan formulation for zeolite diffusion,
eq 9, we have to reckon in general with two types of
Maxwell-Stefan diffusivities: ^ij and ^i. The ^i values
are the diffusivities which reflect interactions between
species i and the zeolite matrix. Mixture diffusion
introduces an additional complication due to sorbate-
sorbate interactions. The interaction is embodied in the
coefficients ^ij. We can consider this coefficient as
representing the facility for counter-exchange; that is, at
a sorption site the sorbed species j is replaced by the species
i. The net effect of this counter-exchange is a slowing down
of a faster moving species due to interactions with a species
of lower mobility. Also, a species of lower mobility is
accelerated by interaction with a species of higher mobility.

The Maxwell-Stefan formulation of single-component
diffusion can be derived from eq 9 by setting n ) 1:

where µ1 is the chemical potential of the sorbed species
1. Assuming equilibrium between the sorbed species and
the bulk fluid phase, we have the following relationship
for the chemical potential µ1

where µ°1 is the chemical potential in the chosen standard
state and f1 is the fugacity. For not too high system
pressures the component partial pressure, p1, can be used
in place of the component fugacity, f1; that is, f1 ≈ p1. The
chemical potential gradients may be expressed in terms
of the gradients of the fractional occupancy, ∇θ1

where Γ is the thermodynamic correction factor. Intro-
ducing eq 13 into eq 11, we obtain

D1 is termed the transport of Fick diffusivity. ^1 is
variously called theMaxwell-Stefan, “corrected”or “jump”
diffusivity.1,4 These two diffusivities are inter-related

Often in experiments and simulations, the self-diffu-
sivity of species 1 is determined under conditions where
there is no net gradient, ∇θ1 ) 0. The self-diffusivity shows
a decreasing trend with molecular loading; see Figures 2
and 3 for MD simulation results of CH4 and CF4 in
silicalite. Monte Carlo simulations have been used recently
to show the inter-relationship between self-diffusivities,
Maxwell-Stefan diffusivities, and transport diffusivities;
see Figure 6b of ref 9. The self-diffusivity is influenced by
correlation effects whereas such correlation effects do not
affect the Maxwell-Stefan and Fick diffusivities. We note
that the Maxwell-Stefan diffusivities follow the simple
linear relationship

where ^1(0) represents the Maxwell-Stefan diffusivity
in the limit of zero loading. At zero loading, all three
diffusivities, self-diffusivity, Maxwell-Stefan diffusivity,
and Fick diffusivity, equal one another. This zero-loading
diffusivity can be determined experimentally or by use of
transition-state theory.26

For a binary mixture, n ) 2, eq 9 may be cast into two-
dimensional matrix notation to give

where [D] is the two-dimensional Fick diffusivity matrix
and [Θsat] is a diagonal matrix with the saturation loadings
Θi,sat. The matrix [B] has the elements

Taking the inverse of matrix [B] and denoting this as [S],
we obtain

A procedure for the estimation of the counter-exchange
coefficient ^12 has been suggested by Krishna and
Wesselingh4

(24) Maxwell, J. C. Philos. Trans. R. Soc. 1866, 157, 49.
(25) Stefan, J. Sitzber. Akad. Wiss. Wien 1871, 63, 63.

(26) June, R. L.; Bell, A. T.; Theodorou, D. N. J. Phys. Chem. 1991,
95, 8866.

- F
θi

RT
∇µi ) ∑

j)1

n

(1 - δij)
ΘjNi - ΘiNj

Θi,satΘj,sat^ij

+
Ni

Θi,sat^i

;

i ) 1, 2, ..., n (9)

θi ≡ Θi/Θi,sat; i ) 1, 2, ..., n (10)

N1 ) -FΘ1,sat^1( θ1

RT
∇µ1) (11)

µ1 ) µ°1 + RT ln(f1) (12)

1
RT

∇µ1 ) 1
θ1

Γ∇θ1; Γ ≡ θ1

∂ ln p1

∂θ1
(13)

N1 ) -FΘ1,satD1∇θ1 ) -FΘ1,sat^1Γ∇θ1 (14)

D1 ) ^1Γ (15)

^1 ) ^1(0)(1 - θ1) (16)

(N) ) -F[Θsat][B]-1[Γ]∇(θ) ) -F[Θsat][D]∇(θ) (17)

Bii )
1

^i

+ ∑
j)1

n

(1 - δij)
θj

^ij

; Bij ) -
θi

^ij

;

i, j ) 1, 2, ..., n (18)

[B]-1 ≡ [S] ) (1 + θ1

^2

^12
+ θ2

^1

^12
)-1

×

[^1 + θ1

^1^2

^12
θ1

^1^2

^12

θ2

^1^2

^12
^2 + θ2

^1^2

^12
] (19)
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The matrix [Γ] is the thermodynamic correction factor
matrix, which can be determined from the mixture
isotherm

When the saturation loadings of the two components,Θi,sat,
are equal to each other and the isotherms of the pure
components can be described by a single-site Langmuir
isotherm, the matrix of thermodynamic correction factors
can be determined from

In the more general case, when the saturation loadings
of the two components are different, we have to use the
ideal adsorbed solution theory to calculate the mixture
isotherms.5 The recent paper of Kapteijn et al.5 shows
that, for mixtures of light hydrocarbons in silicalite, the
IAS theory provides an adequate representation of the
sorption isotherm of mixtures in which the constituent
species have different sorbate loadings. In more recent
papers27,28 we have shown that for some mixture the real
adsorbed solution theory needs to be applied for mixture
isotherms.

We could force-fit eq 17 for the two fluxes Ni into the
form of Fick’s law for each species with effective diffu-
sivities:

where the effective Fick diffusivities of components 1 and
2 are given by

For self-diffusivity measurements or simulations, the sum
of the gradients vanishes; that is

because the total system loading (θ1 + θ2) is held constant.
In the kinetic Monte Carlo simulations, involving hopping
of individual molecules, occupancy gradients of the
individual species, ∇θi, are established which have
vanishingly small, yet finite, values. For a binary mixture,
the gradients of the individual species are equal in
magnitude but opposite in sign, satisfying the constraint
in eq 26. Invoking this constraint (eq 26), the expression
for the self-diffusivities of components 1 and 2 simplifies
to

For the situation in which eq 22 applies, eq 27 further
simplifies to

Equation 28 represents a remarkably simple result which
shows that the self-diffusivities in a binary mixture
(supposing the assumptions of eq 22 apply) are not affected
by thermodynamic factors and can be determined purely
from knowledge of ^1, ^2, and ^12. Extending eq 16 to
binary mixtures, we take

and use eq 20 for determination of the counter-exchange
coefficient ^12. Equation 29 is a mean field aproach
following our earlier paper,9 extended to mixtures.

We would like to emphasize that the above derivations
for the self-diffusivity are different from the model
presented by Nelson and Wei,29 since the Nelson and Wei
model ignores the interaction between the species, quan-
tified by the term^12. Moreover, the Nelson and Wei model
does not account for differences in the saturation loadings
of the two constituent diffusing species.

MS Theory versus KMC Simulation
The Maxwell-Stefan formulation takes interaction and

correlations between particles into account by using
counter-exchange diffusion coefficients ^ij. For a correct
description of mixture diffusion, it is therefore essential
to be able to reasonably estimate these^ij values. Different
approaches have been proposed in the literature.1,4,29,30

Eventhemostsimpleone,neglecting thecounter-exchange
with ^12 f ∞, has been employed.1,4,29,30 However, includ-
ing counter-exchange in terms of the Vignes relation (eq
20) has been shown to work for quite a lot of cases
exceptionally well.4 One advantage of the Maxwell-Stefan
formulation is that itgivesa thermodynamically consistent
description of mixture diffusion and, due to its simplicity,
offers the possibility to be used as a tool for the develop-
ment of technical processes.

Here we are comparing the predictions of MS theory
with the proposed KMC model. Since the pure component
zero-loading diffusivities (D0(CH4) ) 6.95 × 10-9 m2 s-1

and D0(CF4) ) 1.48 × 10-9 m2 s-1 at T ) 200 K) as well
as the saturation capacities in the KMC model are exactly
known, the only fitting parameter left for the description
of the mixture diffusion is the choice of the mixture rule
for counter-exchange.

In Figures 7 and 8 four different approaches for the
estimation of tracer diffusivity are compared with the
original KMC self-diffusion data obtained for T ) 200 K
for four different loadings. Ignoring the counter-exchange
with ^12 f ∞, as done in Figure 7a, will lead to complete
neglect of the particle acceleration/deceleration behavior.
However, giving the counter-exchange coefficient a finite
value will account for the acceleration/deceleration, as

(27) Krishna, R.; Paschek, D. Ind. Eng. Chem. Res. 2000, 39, 2618.
(28) Krishna, R.; Paschek, D. Sep. Purif. Technol. 2000, 21, 111.

(29) Nelson, P. H.; Wei, J. J. Catal. 1992, 136, 263.
(30) Wesselingh, J. A.; Krishna, R. Mass Transfer in Multicomponent

Mixtures; Delft University Press: Delft, 2000.

^12 ) ^1
θ1/(θ1+θ2)

^2
θ2/(θ1+θ2) ≡ ^1

x1^2
1-x1 (20)

Γij ≡ (Θj,sat

Θi,sat
) Θi

pi

∂pi

∂Θj
; i, j ) 1, 2, ..., n (21)

[Γ] ) [Γ11 Γ12
Γ21 Γ22 ]) 1

1 - θ1 - θ2
[1 - θ2 θ1
θ2 1 - θ1 ] (22)

Ni ) -FΘi,satDi,eff∇θi; i ) 1, 2 (23)

D1,eff ) D11 + D12

∇θ2

∇θ1
(24)

D2,eff ) D21

∇θ1

∇θ2
+ D22 (25)

∇θ1 + ∇θ2 ) 0 (26)

(D1,eff
D2,eff

)) (D11 - D12
D22 - D21

))

(S11Γ11 + S12Γ21 - S11Γ12 - S12Γ22
S21Γ12 + S22Γ22 - S21Γ11 - S22Γ21

) (27)

(D1,eff
D2,eff )) (S11 - S12

S22 - S21 )) (1 + θ1

^2

^12
+ θ2

^1

^12
)-1(^1

^2 )
(28)

^1 ) ^1(0)(1 - θ1 - θ2); ^2 ) ^2(0)(1 - θ1 - θ2)
(29)
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can be concluded from Figures 7b and 8a and b. In general,
all three approaches employing finite ^12 values are
qualitatively more or less correct, since with increasing
loading the self-diffusivities tend to become smaller and
the acceleration/deceleration effect is present. However,
none of them is really satisfying. Taking the value of the
slower diffusing species (^12 )^2) gives a good description
of the (slower) perfluoromethane diffusivity but a less
accurate description of the methane self-diffusion behav-
ior. Using the geometric mean of the diffusivities of the
faster and slower components as an estimate (^12 )
x^1^2) will lead to reversed results: In this case the
(faster) methane diffusivity is described more accurately
than that of perfluoromethane. Finally, the Vignes relation
(eq 20) gives an equally bad description for both compo-
nents. This could be an argument in order to use eq 20
instead of others, since no component is favored. We would
like to emphasize that none of the mentioned mixture
rules are able to account for the apparent logarithmic
interpolationbehaviordeduced fromtheKMCsimulations.
So, none of these could be considered as fully satisfying.
A more accurate description of the KMC data set would
require the exact knowledge of^12 as a function of loading
and composition, rather than the simple approximations
provided here. However, since this is a presumably
complex function, an exact determination would be only
of limited practical interest. Moreover, we would like to
stress that this function is not likely to be unique, since
the acceleration/deceleration behavior is based on the
correlation effect and therefore related to the lattice

topology. So we conclude, that in order to account for
particle acceleration/deceleration effects, the counter-
exchange coefficient should have the same order of
magnitude as the pure component Maxwell-Stefan dif-
fusivities.

Particle-Size Effects
Since the Maxwell-Stefan theory allows us to describe

mixture diffusion of particles adsorbed in a microporous
material at least on a qualitative level, we would like to
demonstrate the influence of different saturation capaci-
ties. In Figure 9 the effect is shown for the case of a total
loading of 12 molecules per unit cell. Equation 20 was
employed as a mixture rule, while the same pure com-
ponent Maxwell-Stefan zero-loading diffusivities were
used as in Figures 7 and 8. A systematic reduction of the
saturation capacity of the slower component leads con-
sistently to mixture self-diffusivity curves with increased
slope. So, decreasing the saturation capacity for perfluo-
romethane to 16 molecules per unit cell leads to a far
better agreement with the MD-Simulation and PFG-NMR
data and underlines the need to account for particle-size
effects.

Conclusions
A simple kinetic model for the mixture diffusion of

methane and perfluoromethane adsorbed in silicalite has
been proposed. The transition probabilities have been
adjusted to match the pure component self-diffusivities
at zero loading reported from recent MD simulation and
PFG-NMR data. The rather simple KMC model developed
here is able to reproduce some basic features basic to
methane/perfluoromethane mixture diffusion and tends

Figure 7. Self-diffusion of methane and perfluoromethane in
silicalite (T ) 200 K) at a total loading of 2.4 (circles), 6 (squares),
12 (diamonds), and 18 (triangles) molecules per unit cell as a
function of mixture composition. Open symbols indicate the
diffusivity of perfluoromethane, while closed symbols represent
methane. The straight lines represent predictions due to the
Maxwell-Stefan model (eq 28).

Figure 8. Self-diffusion of methane and perfluoromethane
in silicalite (T ) 200 K). The same indication is used as in
Figure 7.
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to support the apparent validity of a logarithmic inter-
polation rule for the mixture self-diffusion coefficients
found recently in MD simulations. This is a quite
remarkable result, sinceanyparticle-particle interactions
are absent here and therefore the particle accelerations/
decelerations are purely due to correlation effects.

Using the Maxwell-Stefan theory for binary mixture
diffusion in zeolites, we have developed explicit formulas,
eqs 24 and 25, for calculation of the diffusivities of the
components in the mixture. For situations in which the
sum of the gradients of the two species is maintained as
zero and the assumptions of eq 22 apply, these expressions

simplify considerably to yield eq 28, which, when used in
conjunction with the explicit mixture rule for estimation
of the counter-exchange coefficient ^12, allows the esti-
mation of the mixture diffusivities purely on the basis of
the zero-loading diffusivities ^i(0). We discuss several
mixture rules for the estimation of the exchange coefficient
^12. Though none of them is fully satisfying, we can
demonstrate that ignoring the mixture diffusivities
(^12 f ∞) leads to even worse results. So, we conclude
that ^12 should have the same order of magnitude as the
pure component Maxwell-Stefan diffusivities in order to
account properly for acceleration/deceleration behavior.
The Vignes relation (eq 20) turns out to give the best
balanced results.

The KMC simulation shown here reveals the importance
of accounting for particle-size effects. Since the self-
diffusivity of the particles tends to go to zero at maximum
loading, different saturation capacities thus influence also
the self-diffusion coefficients in the mixture, when equal
loadings (molecules per unit cell) are to be considered. In
the present KMC model these saturation capacity effects
are not included and therefore the mixture behavior is
given less accurately than would be possible. However,
we have shown that within the framework of Maxwell-
Stefan theory these particle-size effects can easily be
accounted for.
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Figure 9. Self-diffusion of methane and perfluoromethane in
silicalite (T ) 200 K) at a total loading of Nc ) Nc(CH4) + Nc-
(CH4) ) 12 molecules per unit cell. Indication as in Figure 5.
The lines are the Maxwell-Stefan predictions. - - - corresponds
to equal saturation capacities (24 mol/u.c.), while - - - corre-
sponds to a reduced saturation capacity of perfluoromethane
of 16 mol/u.c. and - - - corresponds to a reduced saturation
capacity of perfluoromethane of 14 mol/u.c.
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