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We report kinetic Monte Carlo (KMC) simulations of self- and transport-di†usivities of 2-methylhexane
(2MH) in silicalite. The hopping rates of 2MH along the straight and zig-zag channels were chosen based on
the calculations of Smit (Faraday Discuss., 1997, 106, 93). The self-di†usivity tensor was found to exhibit
anisotropy and strongly dependent on the occupancy or loading. The degree of anisotropy of the
self-di†usivity tensor decreases with loading, a hitherto unreported result. The loading dependence is shown to
be due to correlation e†ects. Such correlation e†ects, do not however inÑuence the behavior of the
transport-di†usivity which exhibits a predictable Langmuirian dependence on loading.

Introduction
A quantitative understanding of the transport of adsorbed
molecules in zeolitic materials is of vital importance for appli-
cations such as the kinetic separation of di†erent alkane
isomers.1

The Ñux of a single component through a zeolite matrix

J \ [oDtransport$H \ [oDjumpC$H (1)

is essentially determined by two terms : a thermodynamic (C)
and a kinetic quantity.2 Here, C is the so called ther-(Djump)modynamic correction factor

C\ H
d ln p

dH
, (2)

with H being the loading of the zeolite (molecules per unit
cell) and p being the partial pressure of the adsorbed species.
The jump-di†usivity reÑects the kinetic microscopic par-Djumpticle mobility and is also referred to as the MaxwellÈStefan or
““correctedÏÏ di†usivity.3 o denotes the number of unit cells per
volume. The product is also termed the transport-DjumpCdi†usivity.2,3

When the sorption isotherm exhibits a simple, single-site,
Langmuir behavior the thermodynamic correction factor C\

and therefore C tends to inÐnity as saturation1/(1[ H/Hmax)loading is approached.2,3 For some hydrocarbon mol-Hmaxecules, such as branched alkanes and aromatics, the sorption
is described by a dual-site Langmuir isotherm; in this case the
thermodynamic correction factor exhibits a double maximum,
again tending to inÐnity at saturation loading.4 It is also clear
from eqn. (1) that the Ñux across the zeolite J is also deter-
mined by the loading dependence of the MaxwellÈStefan di†u-
sivity Experimental data2 show that for someDjump .
soluteÈzeolite combinations is independent of the occu-Djumppancy ; in this case the product will have the sameDjumpCloading dependence as that of C.4 However, experimental data
for other moleculeÈzeolite combinations2 show the MaxwellÈ
Stefan di†usivity decreases with occupancy ; in this case the
loading dependence of the transport-di†usivity will beDtransportmore difficult to predict.

Even in simple systems, like the noninteracting lattice gas,
the loading dependence of the self-di†usion coefficient is a

function of the lattice topology, as has been recently shown by
Coppens et al.5 Moreover, for silicalite-like topologies, the
loading dependence is strongly non-linear. So, to elucidate the
particular behavior of di†usion in silicalite-type zeolites under
high loading conditions, simulations with a clearly justiÐed
molecular picture are required.

The objective of the present contribution is to examine the
loading dependence of the self-, jump-, and transport-
di†usivities for a particular moleculeÈzeolite combination
using kinetic Monte Carlo (KMC) simulation techniques. We
have chosen the 2-methylhexaneÈsilicalite system for two
reasons. (1) It allows us to employ a well justiÐed hopping
model recently proposed by Smit et al.6 (2) The system and
model exhibit clearly Langmuir behavior and therefore the
loading dependence of C is exactly known. In contrast to pre-
vious studies,5,7,8 we take the e†ect of unequal transition
probabilities for straight and zig-zag channels into account.

Moreover, we report a loading dependence of the anisot-
ropy of the self-di†usivity tensor in silicalite, which is shown
to be typical for the case of unequal transition probabilities.
In order to elucidate this behavior more clearly, we report
simulations where transition probabilities are systematically
varied and compare them with the much simpler case of a
two-dimensional square lattice.

Simulation method
We perform kinetic Monte Carlo (KMC) simulations of a
Langmuir type system, which means that we have a lattice of
equal sites which can be occupied by only one molecule at a
time and there are no further moleculeÈmolecule interactions.
Particles can move from one site to a neighboring site via
hops. The probability per unit time to move from one site to
another is determined by transition rates and forkzz kstrzig-zag (zz) and straight (str) channels (see Fig. 1 for a sche-
matic sketch). This approach is furnished by recent conÐgu-
rational bias Monte Carlo (CBMC) simulations of Vlugt et
al.9 which reveal a clear Langmuir behavior for 2-
methylhexane with a saturation limit of four molecules per
unit cell. The Langmuir adsorption sites are found to corre-
spond directly to the four channel intersections. In an earlier
study Smit et al.6 proposed a model for the di†usion of 2-
methylhexane in silicalite at 300 K following the results also
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Fig. 1 Di†usion unit cell connecting intersection sites (black dots)
via straight (str) and zig-zag (zz) channels (unit cell parameters :
a \ 2.01, b \ 1.99, c\ 1.34 nm).

obtained from a series of CBMC simulations using transition
state theory10 to determine the rate constants. From the simu-
lations cited above it became quite evident that the bulky
(branched) head group of the molecules prefers to stay in the
intersections of the silicalite channel structure. Moreover, the
preferred locations are separated by rather high free energy
barriers of about 20 Therefore, the average residencekBT .
time (at B300 K) in an intersection is in the order of micro-
seconds and thus di†usion in the zeolite structure might be
described reasonably well by a model of uncorrelated jumps,
as provided by the KMC/Langmuir approach.

We employ a standard KMC methodology to propagate
the system (see refs. 11È13). A hop is made every KMC step
and the system clock is updated with variable time steps. For
a given conÐguration of random walkers on the silicalite
lattice a process list containing all possible M moves to vacant
intersection sites is created. Each possible move i is associated
with a transition probability which is either ork

i
, kzz kstr .Now, the mean elapsed time q is the inverse of the total rate

coefficient

q~1 \ ktotal\ ;
i/1

M
k
i
, (3)

which is determined as the sum over all processes contained in
the process list. The actual KMC time step *t for a given
conÐguration is randomly chosen from a Poisson distribution

*t \ [ln(u)ktotal~1 , (4)

where u ½ [0, 1] is a uniform random deviate. The timestep *t
is independent from the chosen hopping process. To select the
actual jump, we deÐne process probabilities according to p

i
\

The ith process is chosen, when;
j/1i k

j
/ktotal . p

i~1 \ l O p
i
,

where l ½ [0, 1] is another uniform random deviate. After
having performed a hop, the process list is updated. In order
to sample ensemble averages correctly and to calculate
dynamical properties more easily, the variable time scale is
mapped on a periodic time scale for analyzing purposes. In
order to avoid surface e†ects we employ periodic boundary
conditions. We have investigated the Ðnite size-e†ect on di†u-
sivity and found convergence already at 5] 5 ] 5 unit cells.
The employed rate constants, which should correspond to 2-
methylhexane in silicalite at 300 K were s~1kstr\ 1.4 ] 105
for crossing straight channels and s~1 for cross-kzz \ 5 ] 104
ing zig-zag channels.6

Self di†usion and correlation e†ects
The self-di†usivity tensor may be described by components of
the self-di†usion coefficient in the x-, y- and z-direction which
are deÐned as

Da \ lim
*t?=

Da(*t) \
1

2
lim
*t?=

1

*t
Sra2(*t)T, (5)

with SÉ É ÉT denoting both ensemble and time averaging, where
r is the particle displacement vector and a is x or y or z.
Accordingly, the total self-di†usion coefficient is expressed by

D\ 13(D
x
] D

y
] D

z
). (6)

For uncorrelated hopping in silicalite type network structures
has established a relationship between the com-Ka� rger14

ponents of the di†usivity tensor

c2
D

z

\
a2
D

x

]
b2
D

y

, (7)

where a, b and c are the dimensions of the rectangular unit
cell in x-, y- and z-direction, respectively.

The self-di†usion coefficient of 2-methylhexane in a
silicalite-type network structure at zero loading can be derived
analytically and are given by Smit et al.6

D
x
\ 14kzz a2

D
y
\ 14kstr b2

D
z
\

1

4

kstr kzz
kstr ] kzz

c2. (8)

In Table 1 the values according to eqn. (8) and those obtained
from KMC simulations are shown. Theoretical and simulated
values agree well within the simulation uncertainty. The errors
were determined using standard block averaging techniques.15

Fig. 2 shows the di†usion coefficients as a function ofDa(*t)
the time interval *t. For and no signiÐcant time depen-D

x
D

ydence can be denoted. For however, the situation is di†er-D
z
,

ent. This has to be attributed to the fact that two processes
(crossing straight and zig-zag channels) contribute to the di†u-
sion in the z-direction. At long times the obtained di†usion
coefficient corresponds to the value according to eqn. (8). At
very short time intervals, only the crossing of a zig-zag
channel contributes to the mean square displacement, since
the combination of several jumps including movements along
the straight channels is very unlikely. Hence, di†usion in the
z-direction is not slowed down by straight channel moves.
Consequently, the short time-limit for can be expressedD

z
(*t)

as

D
z
(*t ] 0) \ 14kzz c2. (9)

This corresponds exactly to the case that has estab-Ka� rger
lished for a completely correlated motion within the zig-zag
channels.14 The timescale separating these two general types
of behavior is found to be in the range of the average
residence time s.q

R
\ 1/(2kstr ] 2kzz) \ 2.63] 10~6

In Fig. 2(b) the di†usion coefficient is shown for the occu-
pancy of h \ 0.9. Here, the fractional occupancy is deÐned as

Table 1 Self-di†usion coefficients for 2-methylhexane in a silicalite-like network structure at zero loading

Di†usivity/10~14 m2 s~1

D D
x

D
y

D
z

Eqn. (8) 6.854 78 5.050 14 13.860 36 1.653 84
KMC 6.848^ 0.021 5.055 ^ 0.018 13.836 ^ 0.057 1.656^ 0.006

The shown KMC simulation data correspond to a simulation run of 109 steps. The di†usion coefficients were obtained from particle displace-
ments within a time interval of 10~3 s.
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Fig. 2 Self-di†usion coefficients for 2-methylhexane in silicalite at
““zero ÏÏ loading (a) and at occupancy 0.9 (b) as a function of time. D

x
,

and denote the di†usivities in the x-, y- and z-direction, respec-D
y

D
ztively.

where for the case under study. It ish \ H/Hmax , Hmax\ 4
interesting to compare the short time limit of Fig. 2(a) and
2(b). The limiting values for h \ 0.9 are exactly reduced by a
factor of 10. The reason for this is illustrated in Fig. 3(a),
where it is shown that the short time di†usion limit scales with
(1[ h). This is quite what is expected, since this is the prob-
ability for a particle to attempt a hop to a vacant neighboring
site as already outlined by Coppens et al.5 The long time limit,
shown in Fig. 3(b), exhibits an additional slowing down of the
self-di†usivity leading to a deviation from the ideal (1 [ h)
behavior. This feature has to be attributed to a time depen-
dent correlation e†ect, which depends (1) on the topology and
is described quantitatively by the relation for the limitKa� rger
of zero occupancy and (2) on correlations due to the fact that
a jump in the reverse direction is more likely, if the particle
has performed a jump in a short time interval preceding that
move.

Fig. 3 Self-di†usion coefficients for 2-methylhexane in silicalite as a
function of occupancy h. denote the di†usivities in the x-,D

x
, D

y
, D

zy- and z-direction, respectively. (a) The short time limit (D(*t \ 10~7
s)) scales exactly with (1[ h). (b) The long time limit (D(*t \ 10~3 s))
is additionally slowed down by particle time-correlations.

The strong correlation e†ect found here may indicate that
the relation between average scalar connectivity and deviation
from ideality as suggested by Coppens et al.5 does not always
hold. In the present case the connectivity is four, exactly cor-
responding to the value for a square lattice where the corre-
lation e†ect is reported to be far less pronounced. Hence, the
strong e†ect in silicalite is supposedly due to the peculiar con-
nectivity of the silicalite channel structure, where the mobility
in the z-direction is coupled to the mobility in the x- and y-
direction.

A closer look at Fig. 2(b) reveals an interesting feature of
di†usion on a silicalite lattice with unequal transition prob-
abilities. While for the short time limit the di†erence between

and is smaller than the di†erence between and theD
x

D
y

D
y

D
zsituation is vice versa for the limit of long times. This leads to

the interesting conclusion that the anisotropy of self-di†usion
is loading dependent. In order to illustrate this more clearly
we have plotted the probabilities for a particle to move in the
y- and in the x-direction

P
x
h \

kzz
kzz ] kstr

\
D

z
D

y

b2
c2

P
y
h \

kstr
kzz ] kstr

\
D

z
D

x

a2
c2

(10)

as a function of loading in Fig. 4. Since the particle can only
move either along a straight or a zig-zag channel, the prob-
abilities to move in the x- and in the y-direction add up to
unity, which is not subject to any correlation e†ect and there-
fore independent of loading (also indicating that the Ka� rger
relation still holds at Ðnite loading). However, as can be seen
from Fig. 4, the individual weighting for these two processes is
loading dependent. Moreover, the probability to make a move
in the x- or in the y-direction is an apparently linear function
of loading, indicating a less anisotropic di†usion tensor at
high loadings.

To clarify this e†ect we have plotted in Fig. 5(a) the prob-
ability to make a move in the x- and in the y-direction at a
loading close to maximum occupancy, as a function ofP

x
1, P

y
1,

the probability to make a move in the x-direction at zero
occupancy In fact, is given by the fundamental tran-P

x
0. P

x
0

sition probabilities and which were varied in a system-kzz kstr ,atic manner and and were derived from di†usionP
x
1 P

y
1

coefficients obtained from simulations exhibiting only one
unoccupied lattice site. The time between two sampled con-
Ðgurations was chosen in all cases large enough to yield con-
verged di†usion coefficients. Again, for the considered P

x
0

parameter space, a system of 5] 5 ] 5 unit cells does not
exhibit signiÐcant Ðnite size e†ects.

Fig. 4 Probabilities and for 2-methylhexane to move in the x-P
x
h P

y
h

and y-direction, obtained from self-di†usion data according to eqn.
(10).
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Fig. 5 Probabilities and for a particle to move in the x- andP
x
1 P

y
1

the y-direction in the high loading limit as a function of the transition
probability at ““zero ÏÏ loading. Results for the silicalite lattice (a) and
the square lattice (b). The dotted lines indicate ideal behavior in the
absence of correlation e†ects.

First, the summed probabilities in Fig. 5(a) again suggest
that the relation is fulÐlled. We generally observe, thatKa� rger
the correlation e†ects at high occupancy are always in oppo-
sition to the trend deÐned by the fundamental transition prob-
abilities. For small probabilities to make a move in the
x-direction, we Ðnd a preference to move in this directionP

x
0 ,

at high loading, while for high probabilities, the oppositeP
x
0

situation is found. For the case of equal transition probabil-
ities no loading preference can be observed.(P

x
0\ 1/2)

The reason for this behavior can be demonstrated quite
clearly by relating it to the much simpler case of di†usion on a
square lattice with unequal transition probabilities in the x-
and the y-direction (see also Fig. 5(b)). The correlation e†ect
leads always to slowing down of the di†usion process, since it
expresses nothing more than the possibility that a particle can
make a move backwards (and therefore canceling the initial
di†usion step). Obviously, this can happen only while the
vacancy is still in the vicinity of a moving particle. Conse-
quently, the correlation e†ect will be a†ected by any process
inÑuencing this jump-back probability. Let us consider now
the two dimensional case. If the mobility in the x-direction is
high, the probability to move in the y-direction will be small
and therefore the high probability to reverse a di†usion step
in the x-direction will result in a large correlation e†ect. Con-
sider the opposite situation. Now the probability to move in
the y-direction is high and therefore it is much more likely for
the vacancy to make a move in the y-direction, reducing the
probability to cancel the initial di†usion step in the x-
direction. Consequently, the correlation e†ect in the x-
direction will be small. A similar situation is found in the case
of silicalite. Here, the correlation e†ect for a move along the
straight channels will be large in the case of high straight
channel transition probabilities.

It is interesting to note that from the molecular dynamics
simulation results of Gergidis and Theodorou16 a loading
dependent di†usion anisotropy can also be conjectured. Their
data (Fig. 16 of ref. 16) show a crossing of the average self-
di†usion coefficient on n-butane in an n-butaneÈmethane
mixture and the di†usion in the x-direction at highest n-
butane loadings, in accordance with the observation reported
here.

Despite the fact that the observed loading dependence of
the di†usion anisotropy is a rather weak e†ect, it is worth
considering since it is a generic type of behavior for the case of
unequal transition probabilities. Moreover, for a quite large
number of alkane compounds the ratio of self-di†usivities in
the x- and the y-direction at zero loading (which is equal to
the ratio of fundamental transition probabilities) is close to
the value observed for 2-methylhexane.17 This has to be

attributed to the fact that the transition probabilities are
determined to a large extent by channel diameters given by
the zeolite environment.

Jump- and transport-di†usivity

So far we have discussed self-di†usivities, denoting a quite
complex direction dependent correlation behavior. The ques-
tion arises, whether these e†ects inÑuence mass transport e.g.
through a silicalite membrane.

Due to the work of Reed and Ehrlich11 and Uebing et
al.18,19 it is established that the thermodynamic correction
factor C can be related to particle Ñuctuations in a Ðnite probe
volume

C\
SNT
SN2T

(11)

at equilibrium conditions. Fig. 6(a) shows that the C-data
obtained from KMC simulations approximate the expected
1/(1 [ h) behavior for the Langmuir case rather well. For this
purpose, the Ñuctuation of particles within one unit cell in a
system of 5 ] 5 ] 5 unit cells has been considered.

To estimate the transport-di†usivity as an equilibrium pro-
perty, a collective, so called ““ jump-di†usionÏÏ coefficient has
been introduced11,18

Djump\
1

6
lim
*t?=

1

*t
TA 1

N
;
i/1

N
r
i
(t ] *t) [ r

i
(t)
B2U

, (12)

denoting the mean square displacement of the center of
gravity of all N adsorbed particles. Since is identicalDjumpwith the MaxwellÈStefan di†usivity, the transport-di†usion
coefficient is the product of the thermodynamic factorDtransport(C) and In Fig. 6(b) the di†erent di†usion coefficients,Djump .
are depicted as functions of the loading. Note, that inDjump ,
contrast to is not subject to correlation e†ects and there-Dself ,fore shows exactly a (1 [ h) behavior. Since C and Djumpbalance each other, the transport-di†usivity is estimated to be
constant over the whole loading range. We would like to
stress the fact that self- and jump-di†usivity are quantitatively
di†erent, which may serve as an additional reason for the dis-
agreement between self-di†usion coefficients obtained from
microscopic methods like neutron scattering and MaxwellÈ
Stefan di†usivities according to Ñux measurements, as recently
reported by Millot et al.20 for isobutane. In general, however,
for the case of two dimensional surface di†usion of interacting
and noninteracting lattice gases both quantities typically
exhibit a qualitatively similar loading dependence.18,19

Fig. 6 (a) Thermodynamic factor of 2-methylhexane according to
particle Ñuctuations obtained from KMC simulations. (b) Self-, jump-
and transport-di†usion coefficients for 2-methylhexane.
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Fig. 7 Occupancy proÐles obtained from nonequilibrium KMC simulations imposing Ñuxes in the x-, y- and z-direction. The time between
subsequent particle transfers had been adjusted according to eqn. (13) s). The lines indicate the(q

x
\ 5.0] 10~5, q

y
\ 1.8] 10~5, q

z
\ 6.8] 10~5

expected gradients.

Finally, we discuss the direct determination of transport-
di†usivities from nonequilibrium KMC simulations. To simu-
late chemical transport directly, we have used a setup which
di†ers from what was outlined above. In order to impose a
precisely deÐned Ñux, we introduce two di†erent regions
within the periodic lattice : one region, from which randomly
selected particles are taken out (source region), and one
region, where particles are inserted at a randomly chosen site
(target region). These transfer moves were done at a Ðxed rate,
thus creating a constant particle Ñux. The resulting concentra-
tion gradient is a direct measure of the transport-di†usivity

Dtransport, a\
1

4

na
nb nc

ba2
qa

1

Hmax
(*h)~1. (13)

Here a speciÐes the direction of the particle transfer. *h is the
di†erence in occupancy between target and source region, qaspeciÐes the time between two particle transfers. andna , nb ncgive the number of unit cells and speciÐes the length of onebaunit cell in the transfer direction.

For the nonequilibrium KMC simulations we have
employed a simulation box, which was elongated in the trans-
port direction by a factor of ten (5 ] 5 ] 50 unit cells). The
regions (source and target regions) for particles to be trans-
ferred were chosen to be four unit cells thick. In very rare
cases it happened that particle transfers at a certain time-step
could not be executed since due to particle Ñuctuations either
all target sites were blocked, or all source sites were empty. In
order to maintain an overall constant Ñux, an additional par-
ticle has then been transferred at the subsequent transfer
move. In Fig. 7 occupancy distributions obtained from non-
equilibrium KMC simulations are shown. To build up gra-
dients of comparable magnitude for di†erent directions, the
times between two particle transfers had been carefully adjust-
ed (see caption of Fig. 7). In all cases, 107 simulation steps
were sufficient to establish converged gradients, while another
3 ] 107 were employed to sample conÐgurations. About 103
conÐgurations were stored at each run for analysis purposes.
In accordance with the expectation of a loading independent
transport-di†usivity, the obtained particle concentration pro-
Ðles do not show any signiÐcant loading dependence and
exhibit a well deÐned linear shape. Moreover, the obtained
gradients match the transport-di†usivity value perfectly.

Conclusions
We have performed kinetic Monte Carlo (KMC) simulations
of 2-methylhexane adsorbed in a silicalite type network struc-
ture. We have calculated direction dependent self- and

transport-di†usivities. The self-di†usion exhibits a rather
complex behavior based on the additional slowing down due
to correlation e†ects, which have been reported previously.
Since the mobility is direction dependent, the correlation e†ect
is also direction dependent, resulting in a hitherto unreported
decrease of the (self )-di†usivity anisotropy with increasing
loading. This e†ect has been shown to be related to the pres-
ence of unequal transition probabilities for straight and
zig-zag channels. It can also be found in the much simpler
case of di†usion on a square lattice with unequal transition
probabilities in the x- and the y-direction. Despite this rather
complex scenario, the Ñux through a zeolite membrane is not
a†ected by these correlation e†ects since the MaxwellÈStefan
di†usivity has to be identiÐed with the so called ““ jump-
di†usionÏÏ coefficient of the center of mass motion of all
adsorbed particles. The jump-di†usivity and the thermodyna-
mic factor balance each other, leading to a loading indepen-
dent transport di†usivity. This has been additionally shown
by nonequilibrium KMC simulations, where a constant Ñux
has been imposed and loading independent steady state gra-
dients have been obtained.
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