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We develop the MaxwellÈStefan formulation for di†usion of binary mixtures in zeolites, and show that the
mixture transport behaviour can be predicted on the basis of information on the pure component jump
di†usivities at zero loading. The interaction between the di†using, sorbed, species is taken into account by the
introduction of an interchange coefficient which is estimated using a logarithmic interpolation formula. Tog

ij
,

verify the developed MaxwellÈStefan formulation, we have carried out kinetic Monte Carlo (KMC)
simulations to calculate the transport di†usivities for binary mixtures in silicalite and also on a square lattice.
The KMC simulations conÐrm that the binary mixture di†usion can be predicted with very good accuracy.
The interchange coefficient encapsulates the correlations in the molecular jumps.g

ij

1. Introduction

Zeolites are widely used as adsorbents or catalysts in separa-
tion and reaction processes.1h3 In the design of zeolite based
processes, it is essential to have a proper description of di†u-
sion of mixtures within the zeolite crystals. The estimation of
the mixture di†usion within zeolites is complicated by several
factors : (1) di†usion is closely linked with the sorption
strength and is strongly inÑuenced by the molecular loading
or occupancy ; (2) each of the di†using species inÑuences the
other, the molecule with the higher mobility being retarded
and the species with the lower mobility being accelerated and
(3) the activated jumps of molecules are correlated because the
total number of sites within the zeolite matrix is Ðxed, such
correlation e†ects depending on the molecular loading and
zeolite topology.

Transport of mixtures is described by a square matrix of
Fick di†usivities [D] for which the non-diagonal elements
have signiÐcant non-zero values.1,4 The elements of the matrix
[D] are inÑuenced not only by the species mobilities but also
by the sorption thermodynamics.4 For design purposes it is
important to have a mixture di†usion theory with the capabil-
ity of predicting the elements of [D] from pure component
transport data. Such mixture di†usion theories are almost
invariably based on the theory of irreversible thermodynamics
(IT) and correctly recognise that chemical potential gradients
must be used as the proper driving forces for di†usion.1,4h8
This IT approach, when applied to a binary mixture, shows
that the mixture di†usion is described by a square matrix of
Onsager coefficients [L ] in which the diagonal elements are
non-zero. When the matrix [L ] is ““correctedÏÏ to take account
of sorption thermodynamic e†ects, we obtain the Fick matrix
[D]. The estimation of [D] is therefore a matter of estimating
the Onsager matrix [L ], but, unfortunately, the IT theory pro-
vides no fundamental guidelines for estimating [L ]. Sundaram
and Yang8 give some estimation methods for [L ] but their
approach is Ñawed, as we will demonstrate in this paper. The
alternative MaxwellÈStefan (MS) approach to mixture di†u-
sion has several advantages over the Onsager formulation.
The MS approach promises to provide a convenient method

for predicting the mixture transport behaviour using informa-
tion on pure component transport properties, along with
mixture sorption thermodynamics. Though the MS theory
appears to be well developed,4h6 its predictive capabilities
have never been thoroughly tested. For veriÐcation of the
mixture di†usion theories we need experimental and molecu-
lar simulation data for a wide range of mixture compositions
and loadings.

While there are several experimental, and computational,
studies on single species di†usion,1,2 there is very little corre-
sponding data on mixture di†usion. Snurr and per-Ka� rger9
formed pulsed Ðeld gradient (PFG) NMR measurements and
molecular dynamics (MD) simulations on self di†usivities in a
mixture of and in silicalite. Jost et al.10 performedCH4 CF4similar studies for mixtures of and xenon in silicalite.CH4Gergidis et al.11,12 studied the self di†usivities in a mixture of

and n-butane in silicalite using molecular dynamics andCH4quasi-elastic neutron scattering (QENS). Paschek and
Krishna13 used kinetic Monte Carlo (KMC) simulations to
study self di†usivities in a mixture of and in sili-CH4 CF4calite. In equipment design, the transport di†usivities [D]
rather than self di†usivities are required. We are aware of only
one study that presents data on the elements of the Onsager
matrix [L ] for binary mixtures ; this is the recent paper of
Sanborn and Snurr,14 in which MD simulations are presented
for mixtures of and n-alkanes in faujasite.CF4In view of the heavy computational expense of MD simula-
tions to study mixture di†usion, we resort to kinetic Monte
Carlo (KMC) simulations to calculate transport di†usivities
[L ] and [D] in binary mixtures for a wide range of loadings
and mixture compositions. Two types of topologies have been
studied : silicalite and a primitive square lattice. The KMC
simulations are used to test the MS theory. We begin with a
brief summary of the MS theory for mixture di†usion.

2. The Maxwell–Stefan theory of di†usion in
zeolites
In the Onsager IT formulation for di†usion of a mixture of n
species within a zeolite matrix, a linear relation is postulated
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between the Ñuxes and the chemical potential gra-
dients :1,4,7,8,14

(N)\ [o[Hsat][L ]
1

RT
+(k) (1)

where we use n-dimensional matrix notation. In eqn. (1) (N)
represents the column matrix of molecular Ñuxes, Ni ,expressed in molecules per square metre per second ; o is the
zeolite matrix density expressed as unit cells per m3 ; rep-H

iresents the loading expressed in molecules of sorbate per unit
cell ; is a diagonal matrix with elements rep-[Hsat] H

i, sat ,resenting the saturation loading of species i ; R is the gas con-
stant ; T is the temperature ; +(k) is the column matrix of
chemical potential gradients, which represent the correct+k

i
,

driving forces for di†usion ; and [L ] is the square matrix of
Onsager coefficients having the units m2 s~1. Our deÐnition of
the Onsager coefficients di†ers from the usual ones in the liter-
ature (e.g. refs. 8, 14) by a factor 1/RT . The Onsager matrix
[L ] is non-diagonal, in general, and the cross-coefficients
portray the coupling between species di†usion. The Onsager
reciprocal relations demand that the matrix [L ] be symmetric,
i.e.

L
ij
\ L

ji
, i\ 1, 2, . . . , n

As we will demonstrate later, the Onsager IT formulation is
not the most convenient one for mixtures because there is no
simple procedure for estimating the elements of A muchL

ij
.

more useful approach, entirely consistent with the theory of
IT, is to adopt the MaxwellÈStefan (MS) formulation in which
the chemical potential gradients are written as linear functions
of the Ñuxes :4h6

[o
h
i

RT
+k

i
\ ;

j/1
jEi

n H
j
N

i
[ H

i
N

j
H

i, satHj, satgij

]
N

i
H

i, satgi

,

i\ 1, 2, . . . , n (2)

We have to reckon in general with two types of MaxwellÈ
Stefan di†usivities : and The are the di†usivities thatg

i
g

ij
. g

ireÑect interactions between species i and the zeolite matrix ;
they are also referred to as jump or ““correctedÏÏ di†usivities in
the literature.3 Mechanistically, the MaxwellÈStefan di†usivity

may be related to the displacement of the adsorbed molec-g
iular species, l, and the jump frequency, or transition probabil-

ity, l, which in general can be expected to be dependent on the
total occupancy.15,16 For a square lattice [see Fig. 1(a)], the
zero-loading di†usivity can be estimated from

g
i
(0)\ 14ll2 (3)

where the jump probabilities in the x and y directions are
taken to be identical. For a cubic lattice [see Fig. 1(b)] we
obtain

g
i
(0)\ 16ll2 (4)

For the silicalite topology [see Fig. 1(c)], hasKa� rger17
derived the following set of relations :

g
i
(0)\ 13[g

x
(0)]g

y
(0)]g

z
(0)] ; g

x
(0)\ 14lzz a2 ;

g
y
(0)\ 14lstr b2 ; g

z
(0)\

1

4

lstr lzz
lzz ] lzz

c2 (5)

where and are the jump frequencies for movementlstr lzzalong the straight (str) and zig-zag (zz) channels respectively
and the dimensions a, b and c are as speciÐed in Fig. 1. The

formula given by eqn. (5) is however restricted in itsKa� rger
applicability to molecules which are predominantly located at
the intersections. For speciÐc molecules, the zero-loading dif-
fusivity can be determined experimentally or by use ofg

i
(0)

transition state theory.18h22

Fig. 1 Di†usion unit cells for (a) square lattice, (b) cubic lattice and
(c) silicalite. The large dots indicate the sorption sites. For silicalite we
consider a maximum of four sorption sites per unit cell, located at the
intersections between the straight and zig-zag channels.

The jump frequency l can be expected to decrease with
occupancy.15,16,23 If we assume that a molecule can migrate
from one site to another only when the receiving site is vacant,
the chance that this will occur will be a function of the frac-
tion of unoccupied sites. The loading dependence of the jump
di†usivity is therefore factor), whereg

i
\g

i
(0)] (vacancy

represents the MaxwellÈStefan di†usivity in the limit ofg
i
(0)

zero loading. The vacancy factor can be taken to be (1 [ h1and therefore we get[ h2[ É É É [ h
n
)

g
i
\g

i
(0)(1[ h1 [ h2[ É É É [ h

n
) (6)

Additionally, molecular repulsive forces come into play
when determining the jump frequency of molecules. Due to
molecular repulsions the jump frequency increases because a
molecule wishes to escape from the ““unfavourable ÏÏ environ-
ment. Clearly, the molecular repulsions will increase when the
occupancy increases. If the repulsion factor is proportional to

we see that the MaxwellÈStefan1/(1[ h1 [ h2[ É É É [ h
n
),

di†usivity is independent of the molecular loading. There is a
considerable amount of experimental data to show that the
MaxwellÈStefan di†usivity g is indeed independent of the
loading.1h3 In the KMC simulations to be described later we
did not introduce moleculeÈmolecule repulsions ; for this sce-
nario we would expect eqn. (6) to hold, i.e. the MaxwellÈ
Stefan di†usivity decreasing with increasing loading due to
reduced vacancies.

Mixture di†usion introduces an additional complication
due to sorbateÈsorbate interactions. This interaction is
embodied in the coefficients We can consider this coeffi-g

ij
.

cient as representing the facility for counter-exchange, i.e. at a
sorption site the sorbed species j is replaced by the species i.
Fig. 2 is a pictorial representation of the exchange process.
The Onsager reciprocal relations require The netg

ij
\g

ji
.

e†ect of this counter-exchange is a slowing down of a faster
moving species due to interactions with a species of lower
mobility. Also, a species of lower mobility is accelerated by
interactions with another species of higher mobility. We will
see later that encapsulates the correlation e†ects associatedg

ijwith molecular jumps. The interchange coefficient can beg
ij
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Fig. 2 Pictorial representation of the two types of di†usivities for
binary mixtures using the MaxwellÈStefan model.

estimated by a procedure that has been suggested by Krishna
and Wesselingh :4

g
ij
\ [g

i
]hi@(hi`hj)[g

j
]hj@(hi`hj) (7)

It is convenient to introduce the matrix of thermodynamic
factors [C], deÐned by

C
ij
4
AH

j, sat
H

i, sat

B H
i

p
i

dp
i

dH
j

\ h
i

d ln p
i

dh
j

, i, j\ 1, 2, . . . , n (8)

where represent the partial pressures of the components inp
ithe vapour phase and the represent the fractionalh

ioccupancies of the species :

h
i
4 H

i
/H

i, sat , i\ 1, 2, . . . , n (9)

Combining eqns. (1), (8) and (9) we obtain

(N)\ [o[Hsat][L ]

31/h1
0

0

0

}

0

0

0

1/h
n

4
[C](+h) (10)

Also, eqn. (2) can be cast into n-dimensional matrix form:

(N)\ [o[Hsat][B]~1[C]+(h) (11)

The matrix [B] has the elements

B
ii
\

1

g
i

] ;
j/1
jEi

n h
j

g
ij

, B
ij
\ [

h
i

g
ij

, i, j\ 1, 2, . . . , n

(12)

If the square matrix of Fick, or transport, di†usivities, [D],
is deÐned by

(N)\ [o[Hsat][D](+h) (13)

we obtain the following inter-relations and a method for esti-
mation the elements of [D] :

[D]\ [L ]

31/h1
0

0

0

}

0

0

0

1/h
n

4
[C]\ [B]~1[C] (14)

If the n-component sorption can be described by the multi-
component Langmuir isotherm, the elements of [C] are given

by

C
ij
\ d

ij
]

h
i

1 [ h1[ h2 [ É É É [ h
n

, i, j \ 1, 2, . . . , n

(15)

where is the Kronecker delta.d
ijEven though the Onsager and MS formulations are for-

mally equivalent, the important advantage of the MS formula-
tion is that eqns. (3)È(9) allow calculation of the matrices [D]
and [L ] for multicomponent mixtures from data on pure
components.

The above derivation was for a general n-component
mixture. Let us examine two important limiting cases of the
general formalism: (a) pure component di†usion and (b) tracer
di†usion.

For di†usion of a single species obeying the Langmuir sorp-
tion isotherm we obtain :

N1 \ [oH1, sat D1+h1\ [oH1, satg1
1

1 [ h1
+h1

\ [oHsat L 1
1

h1

1

1 [ h1
+h1 (16)

where and are respectively the Fick, MS andD1, g1 L 1Onsager coefficients ; these are inter-related as

L 1 \g1h1 \ D1(1 [ h1)h1 (17)

Let us apply the above set of equations for self di†usion and
consider a system consisting of untagged (1) and tagged (2)
species. For self di†usion the conditions of the experiment are
such that the gradients for di†usion of the tagged and
untagged species are equal in magnitude and opposite in sign :

+h1] +h2 \ 0 (18)

Consequently the Ñuxes of tagged and untagged species sum
to zero :

N1] N2\ 0 (19)

Applying the restrictions (18) and (19) to eqn. (2) we obtain,
after imposing for the tagged and untagged species :g1 \g2

N1 \ [oH1, sat D1*+h1

\ [oH1, sat
1

(1/g1) ] (h1 ] h2)/g12
+h1 (20)

which shows that the tracer di†usivity isD1*

D1* \
1

(1/g1) ] (h/g12)
(21)

where h is the total occupancy (tagged and untagged species).
The exchange parameter is an expression of the corre-g12lation between the jumps of the tagged and untagged species.
Eqn. (21) shows that the tracer, or self, di†usivity reducesD1*to the MaxwellÈStefan di†usivity only when the interchange
coefficient is exceedingly high :

D1* ]g1 when g12] O (22)

In the more general case for Ðnite values of the exchange
parameter we would expect to be smaller than Weg12 D1* g1.should in general anticipate that the interchange coefficient is
related in some way to the mobility of the species 1. We may
therefore assume

g12\g1 (23)

and therefore the expression for the self di†usivity reduces to

D1* \
g1

(1 ] h)
(24)
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If we follow the Onsager formulation (1) we can analo-
gously derive the following expression for the self di†usivity :

N1 \ [oHsat L 1*+h1\ [oHsat
AL 11

h1
[

L 12
h2

B
+h1 (25)

Eqn. (25) was Ðrst derived by It is important toKa� rger.7
emphasise that the coefficient on the right hand side ofL 11eqn. (25) cannot be identiÐed with the pure component
Onsager coefficient we return to this point later on in thisL 1 ;
paper.

In order to test the capability of the MS formulation to
predict mixture transport from pure component di†usivities,
we resort to KMC simulations.

3. Kinetic Monte Carlo simulation methodology
We Ðrst perform kinetic Monte Carlo (KMC) simulations in
which each component follows Langmuir isotherm behaviour.
We assume the lattice to be made up of equal sized sites which
can be occupied by only one molecule at a time. Particles can
move from one site to a neighbouring site via hops. Two types
of topologies were studied : (a) square lattice and (b) silicalite ;
see Fig. 1. For the square lattice [Fig. 1(a)] we take the dis-
tance of separation between adjacent sites to be unity, l\ 1.
Furthermore the jump frequency of species 1 is taken to be
equal in all directions and set to unity, i.e., For simula-l1 \ 1.
tions with silicalite, the jump frequencies along the straight
and zig-zag channels for component 1 are taken to correspond
to that for 2-methylhexane (2MH) at 300 K, l1, str\ 1.4] 105
s~1, s~1 ; these values were calculated by Smitl1, zz \ 5 ] 104
et al. using the transition state theory.19 For the silicalite
topology the maximum loading was taken to be four mol-
ecules per unit cell, where the molecules are all located at the
intersections. We have published the details of the pure com-
ponent 2MH simulations earlier.24 In the two-component
mixture simulations, the corresponding jump frequencies for
component 2 were chosen such that varied between 1l2/l1and 16. This allowed insight to be gained into transport in
mixtures with di†ering mobilities.

We employ a standard KMC methodology to propagate
the system (details in refs. 24È27). A hop is made every KMC
step and the system clock is updated with variable time steps.
For a given conÐguration of random walkers on the lattice a
process list containing all possible M moves to vacant inter-
section sites is created. Each possible move i is associated with
a transition probability Now, the mean elapsed time q isli .the inverse of the total rate coefficient

q~1 \ ltotal\ ;
i/1

M l
i

(26)

which is then determined as the sum over all processes con-
tained in the process list. The actual KMC time step *t for a
given conÐguration is randomly chosen from a Poisson dis-
tribution

*t \ [ln(u)/ltotal (27)

where u ½ [0,1] is a uniform random deviate. The time step *t
is independent of the chosen hopping process. To select the
actual jump, we deÐne process probabilities according to

p
i
\ ;

j/1

i l
j
/ltotal

The ith process is chosen, when where l ½ [0,1]p
i~1 \ l \ p

i
,

is another uniform random deviate. After having performed a
hop, the process list is updated. In order to avoid wall e†ects
we employ periodic boundary conditions. We have investi-
gated the Ðnite size e†ect on the di†usivity and found systems

of 10 ] 10 and 6] 6 ] 6 unit cells to be sufficiently large for
the 2D and 3D lattices shown in Fig. 1. In order to provide
sufficiently accurate data for the Onsager transport coefficient

a total of 108 to 109 simulation steps were required.TheseL
ij
,

simulations extended to several CPU days on a single IBM
SP2 node.

For di†usion of a single component 1, the details of the
determination of the self di†usivity the jump di†usivityD1*, g1and the transport di†usivity from the ensemble averageD1statistics have been published earlier.24 For binary mixtures,
applying linear response theory, the Onsager coefficients L

ijcan be determined using the displacement formula

L
ij
\ lim

*t?=
L
ij
(*t)

\
1

6

1

Ns
lim
*t?=

1

*t
TA

;
l/1

Ni
[r

l, i(t ] *t) [ r
l, i(t)]

B

]
A

;
k/1

Nj
[r

k, j(t ] *t) [ r
k, j(t)]

BU
(28)

where SÉ É ÉT denotes both ensemble and time averaging over
the entire system trajectory ; is the number of particlesN

ibelonging to species i ; and is the position vector of com-r
i
(t)

ponent i at time t. In contrast to the formula for used byL
ijSanborn and Snurr14 in their MD simulations, the normal-

ising volume is replaced by the total number of discreteNs ,adsorption sites in the simulation. For the square lattice simu-
lations, we use a pre-multiplier 1/4 instead of 1/6 in eqn. (6).
Furthermore, eqn. (28) yields in units of m2 s~1. TheL

ijOnsager coefficients are subject to strong correlationL
ije†ects and therefore the obtained values of the transport coef-

Ðcients vary strongly with the separation time between two
conÐgurations *t. This is illustrated in Fig. 3 for binary
mixture simulations for the square lattice conÐguration for
which Since arbitrary time and length units havel2/l1 \ 16.
been used for the square lattice simulations, the Onsager coef-
Ðcients presented in Fig. 3, and also later in this paper, have
been normalised with respect to the zero-loading di†usivity of
component 1, We see from Fig. 3 that it is important tog1(0).
employ a sufficiently large *t to ensure converged data. For
the square lattice simulations a *t of 30 time steps was
chosen. For simulations with silicalite, using actual lattice
dimensions and realistic jump frequencies, a *t of 10~3 s was
employed, on the basis of our previous experience.24,25

Fig. 3 The Onsager transport coefficients as a function of theL
ijseparation time *t for a square lattice with particle jump(l

x
\ l

y
\ 1)

probabilities at a total occupancy h \ 0.96 and al1\ 1, l2\ 16,
mixture composition All the Onsager coefficients havex1\ x2\ 0.5.
been normalised with respect to the zero loading of component 1,
g1(0).
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Fig. 4 KMC simulations of jump, transport, Onsager and self di†u-
sivities of 2MH in silicalite at 300 K. The continuous lines represent
the calculations using eqns. (6), (17) and (24).

4. KMC simulation results compared to the MS
model predictions
Let us Ðrst consider the KMC simulation results for pure
component 2MH in silicalite at 300 K. The simulations for the
self di†usivity the jump di†usivity and the transportD1*, g1di†usivity for various fractional occupancies are shown inD1Fig. 4. The pure component Onsager coefficient calculatedL 1using eqn. (17) is also shown here. The jump di†usivity g1shows a linear dependence on the fractional vacancy, in con-
formity with eqn. (6), and the transport is seen to be inde-D1pendent of occupancy. Both the jump and transport

di†usivities are free of correlation e†ects ; see our earlier
publication24 for detailed discussion on this. The self di†usi-
vity values from KMC simulations compare very well withD1*the estimations from eqn. (24) ; is strongly inÑuenced byD1*correlated jump e†ects, evidenced by the deviation from the
(1 [ h) linear dependence exhibited by g1.Now, let us consider transport in a mixture of 2MH along
with another component 2. First we take the component 2 to
have identical jump frequencies along the straight and zig-zag
channels as those for component 1. The simulated valuesL

ijusing eqn. (28) are shown in Fig. 5 for three types of simula-
tions : (a) 50È50 mixture with varying fractional occupancy, (b)
for a total occupancy of 0.48 with varying composition of x1,and (c) for a total occupancy of 0.96 with varying composition
of Let us Ðrst consider Fig. 5(a). We note that the cross-x1.coefficient is non-zero despite the fact that component 2 isL 12taken to be identical to component 1 with respect to its parti-
cle mobility. For the 50È50 mixture, as expected,L 11\ L 22 ,
but it is remarkable to note that these values are signiÐcantly
lower than the pure component Onsager coefficient [theseL 1values of were taken from the simulations shown in Fig. 4 ;L 1the values are re-plotted in Fig. 5(a) for comparison
purposes]. This underlines the lack of predictability of the
Onsager coefficients from pure component di†usivities. The
results shown in Fig. 5(a) refute the assumption of Sundaram
and Yang8 that the diagonal elements of [L ] can be identiÐed
with the pure component values.L

iAlso shown in Fig. 5(a) are the estimations of the usingL
ijeqns. (6), (7), (12) and (14), derived from the MS formulations.

The agreement with the KMC simulations is excellent. Com-
parison of the KMC simulations with varying mixture com-
positions for h \ 0.48 and 0.96, shown in Figs. 5(b) and (c)

Fig. 5 KMC simulations of the Onsager coefficients for a binary mixture of component 1 (taken to be 2MH) and 2 in silicalite at 300 K. TheL
ijjump frequencies of both components are taken to be identical to each other, s~1, s~1.lstr \ 1.4] 105 lzz\ 5 ] 104

Fig. 6 KMC simulations of the Onsager coefficients for a binary mixture of components 1 (taken to be 2MH) and 2 in silicalite at 300 K. TheL
ijjump frequencies of component 2 are taken to be twice those of component 1, i.e. s~1, s~1.l2, str \ 2.8 ] 105 l2, zz\ 1 ] 105

Phys. Chem. Chem. Phys., 2001, 3, 3185È3191 3189



Fig. 7 KMC simulations of the Onsager coefficient for a binaryL 11mixture in a square lattice. The lattice parameters are l\ 1 and the
jump frequency of component 1 is The ratio is variedl1\ 1. l2/l1progressively from 1 to 16. The Onsager coefficient has been normal-
ised with respect to the zero-loading di†usivity valueg1(0).

with the predictions of the MS theory led us to conclude that
the mixture rule for the interchange coefficient, eqn. (7), is the
correct one.

In Fig. 6, KMC simulation results are presented for the case
in which the jump probabilities for component 2 are taken to
be twice the corresponding values for component 1. We again
note the excellent agreement between the simulated valuesL

ijwith the predictions of the MS model for a wide variation in
the loading and mixture composition.

Comparison of the values of in Figs. 5 and 6 led us toL 11conclude that this coefficient is inÑuenced by the mobility of

component 2. SpeciÐcally the values of are higher in theL 11mixture where the mobility of species 2 is higher, in Fig. 6. Put
another way, correlated jump e†ects inÑuence not only the
cross-coefficient but also the diagonal coefficients andL 12 L 11To emphasise this further, we present KMC simulationsL 22 .
for a 50È50 mixture in a square lattice, where the mobility of
component 2 is progressively increased ; see Fig. 7. We note
that increases progressively with increasing mobility ofL 11component 2. The excellent predictive capabilities of the MS
model to describe the variation of the transport coefficients
with mixture composition are demonstrated in Fig. 8, which
presents the KMC simulation results (square lattice, l2/l1 \
16, total occupancy\ 0.96) for The agreement of the MSL

ij
.

model, using eqns. (6), (7), (12) and (14), with the KMC simula-
tions is excellent.

Finally, we study the inÑuence of topology on the Onsager
coefficients, after normalisation by dividing by by com-g1(0),
paring the results for the silicalite topology with the corre-
sponding results for the square lattice ; the KMC results for

are compared in Fig. 9. Interestingly, we note thatl2/l1 \ 2
the normalised transport coefficients for these two topologies
are remarkably close to one another.

Eqns. (14) and (15) allow the calculation of the elements of
the Fick matrix [D] from information of the Onsager matrix
[L ]. From the KMC simulated [L ] for a square lattice with

we have calculated the elements of [D] forl1 \ 1, l2/l1\ 16,
a variety of loadings and mixture compositions ; these are
shown in Fig. 10 along the predictions of the MS theory from
pure component transport data. The agreement can be con-
sidered to be very good. Examination of the elements of [D]
shows that the non-diagonal elements and increaseD12 D21

Fig. 8 KMC simulations of the Onsager coefficient for a binary mixture, of varying composition in a square lattice. The total occupancyL
ij

x1,of the lattice is 0.96. The lattice parameters are l\ 1 and the jump frequency of component 1 is The ratio is varied progressivelyl1\ 1. l2/l1from 1 to 16. The Onsager coefficient has been normalised with respect to the zero-loading di†usivity value The symbols are the KMCg1(0).
simulations and the continuous lines represent the calculations of the MaxwellÈStefan model.

Fig. 9 KMC simulations of the normalised Onsager coefficients for a binary mixture of components 1 (taken to be 2MH) and 2 in silicalite atL
ij300 K compared with the corresponding results obtained for a square lattice The Onsager coefficient has been normalised with(l1\ 1, l2/l1\ 2).

respect to the zero-loading di†usivity valueg1(0).
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Fig. 10 KMC simulations of the normalised Fick coefficients for a binary mixture of components 1 and 2 in a square latticeD
ij

(l1\ 1,
The Fick coefficient has been normalised with respect to the zero-loading di†usivity value The symbols are the KMCl2/l1\ 16). g1(10)

simulations and the continuous lines represent the calculations of the MaxwellÈStefan model.

with increasing total occupancy and can attain values compa-
rable to the main coefficients and this shows that, inD11 D22 ;
mixture di†usion, the Ñux of one species is very strongly
coupled to that of the other species.

5. Conclusions
We have developed the MS formulation for mixture di†usion
in zeolites and compared this with the Onsager formulation.
Both approaches have their roots in the theory of irreversible
thermodynamics. An important advantage of the MS formal-
ism is that it allows the estimation of mixture di†usion on the
basis of the pure component di†usivities at zero loading. This
predictive capability has been tested by carrying out KMC
simulations in both silicalite and a primitive square lattice.
The following major conclusions can be drawn from the
results presented in this paper.

(i) For single component di†usion, the self di†usivity is
subject to correlation e†ects (cf. Fig. 4) ; these correlation
e†ects are captured by the interchange coefficient A goodg12 .
approximation is to take to be equal to the pure com-g12ponent jump di†usivity this assumption is veriÐed by theg1 ;
results presented in Fig. 4.

(ii) For binary mixture di†usion, the diagonal element L 11cannot be identiÐed with the pure component Onsager coeffi-
cient cf. Fig. 5(a). This erroneous assumption has beenL 1 ;
made in the zeolite literature8 to derive mixture di†usion
theories.

(iii) For binary mixture di†usion, is inÑuenced by theL 11mobility of species 2 ; cf. Fig. 7. This further emphasises the
fact that cannot be identiÐed with the pure componentL 11 L 1as has been suggested by Sundaram and Yang.8

(iv) All three Onsager coefficients are inÑuenced by cor-L
ijrelated jump e†ects. This result is in sharp contrast with the

MS di†usivities which are free of correlation e†ects.24g
i(v) The set of KMC simulation results presented in Figs. 5,

6 and 8 validate the excellent predictive capability of the MS
formulation.The logarithmic interpolation formula [eqn. (7)]
for the interchange coefficient has been veriÐed.

(vi) Comparison of the square lattice simulations with those
of silicalite, for the same mobility ratios in the results present-
ed in Fig. 9 (taking shows that the normalisedl2/l1\ 2),
transport coefficients are comparable in magnitude and show
the same trend with mixture loading and composition.

(vii) From knowledge of the Onsager [L ] matrix, the ele-
ments of the Fick (or transport) matrix [D] can be obtained
using eqns. (15) and (16). The results presented in Fig. 10
underline the strong coupling e†ects for a mixture with widely
di†erent mobilities.

The overall conclusion of our study is that the MaxwellÈ
Stefan formulation provides a reliable procedure for estima-
tion of the di†usion behaviour of binary mixtures in zeolites
on the basis of the information on pure component transport
properties, along with mixture sorption thermodynamics.
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