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We develop the Maxwell-Stefan formulation for diffusion of binary mixtures in zeolites, and show that the
mixture transport behaviour can be predicted on the basis of information on the pure component jump
diffusivities at zero loading. The interaction between the diffusing, sorbed, species is taken into account by the

introduction of an interchange coefficient D;;,

which is estimated using a logarithmic interpolation formula. To

verify the developed Maxwell-Stefan formulation, we have carried out kinetic Monte Carlo (KMC)
simulations to calculate the transport diffusivities for binary mixtures in silicalite and also on a square lattice.
The KMC simulations confirm that the binary mixture diffusion can be predicted with very good accuracy.
The interchange coefficient D;; encapsulates the correlations in the molecular jumps.

1. Introduction

Zeolites are widely used as adsorbents or catalysts in separa-
tion and reaction processes.!™3 In the design of zeolite based
processes, it is essential to have a proper description of diffu-
sion of mixtures within the zeolite crystals. The estimation of
the mixture diffusion within zeolites is complicated by several
factors: (1) diffusion is closely linked with the sorption
strength and is strongly influenced by the molecular loading
or occupancy; (2) each of the diffusing species influences the
other, the molecule with the higher mobility being retarded
and the species with the lower mobility being accelerated and
(3) the activated jumps of molecules are correlated because the
total number of sites within the zeolite matrix is fixed, such
correlation effects depending on the molecular loading and
zeolite topology.

Transport of mixtures is described by a square matrix of
Fick diffusivities [D] for which the non-diagonal elements
have significant non-zero values.!** The elements of the matrix
[D] are influenced not only by the species mobilities but also
by the sorption thermodynamics.* For design purposes it is
important to have a mixture diffusion theory with the capabil-
ity of predicting the elements of [D] from pure component
transport data. Such mixture diffusion theories are almost
invariably based on the theory of irreversible thermodynamics
(IT) and correctly recognise that chemical potential gradients
must be used as the proper driving forces for diffusion.!*#—8
This IT approach, when applied to a binary mixture, shows
that the mixture diffusion is described by a square matrix of
Onsager coefficients [L] in which the diagonal elements are
non-zero. When the matrix [L] is “corrected” to take account
of sorption thermodynamic effects, we obtain the Fick matrix
[D]. The estimation of [D] is therefore a matter of estimating
the Onsager matrix [L], but, unfortunately, the IT theory pro-
vides no fundamental guidelines for estimating [L]. Sundaram
and Yang® give some estimation methods for [L] but their
approach is flawed, as we will demonstrate in this paper. The
alternative Maxwell-Stefan (MS) approach to mixture diffu-
sion has several advantages over the Onsager formulation.
The MS approach promises to provide a convenient method
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for predicting the mixture transport behaviour using informa-
tion on pure component transport properties, along with
mixture sorption thermodynamics. Though the MS theory
appears to be well developed,*~® its predictive capabilities
have never been thoroughly tested. For verification of the
mixture diffusion theories we need experimental and molecu-
lar simulation data for a wide range of mixture compositions
and loadings.

While there are several experimental, and computational,
studies on single species diffusion,!*? there is very little corre-
sponding data on mixture diffusion. Snurr and Kirger® per-
formed pulsed field gradient (PFG) NMR measurements and
molecular dynamics (MD) simulations on self diffusivities in a
mixture of CH, and CF, in silicalite. Jost et al.'® performed
similar studies for mixtures of CH, and xenon in silicalite.
Gergidis et al.1!'1? studied the self diffusivities in a mixture of
CH, and n-butane in silicalite using molecular dynamics and
quasi-elastic neutron scattering (QENS). Paschek and
Krishna!® used kinetic Monte Carlo (KMC) simulations to
study self diffusivities in a mixture of CH, and CF, in sili-
calite. In equipment design, the transport diffusivities [D]
rather than self diffusivities are required. We are aware of only
one study that presents data on the elements of the Onsager
matrix [L] for binary mixtures; this is the recent paper of
Sanborn and Snurr,'# in which MD simulations are presented
for mixtures of CF, and n-alkanes in faujasite.

In view of the heavy computational expense of MD simula-
tions to study mixture diffusion, we resort to kinetic Monte
Carlo (KMC) simulations to calculate transport diffusivities
[L] and [D] in binary mixtures for a wide range of loadings
and mixture compositions. Two types of topologies have been
studied: silicalite and a primitive square lattice. The KMC
simulations are used to test the MS theory. We begin with a
brief summary of the MS theory for mixture diffusion.

2. The Maxwell-Stefan theory of diffusion in
zeolites

In the Onsager IT formulation for diffusion of a mixture of n
species within a zeolite matrix, a linear relation is postulated
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between the fluxes and the chemical
dients: 14 7-8:14

potential gra-

1
(V) = = pLlOuILL] 27 Vik) 1)

where we use n-dimensional matrix notation. In eqn. (1) (V)
represents the column matrix of molecular fluxes, N,
expressed in molecules per square metre per second; p is the
zeolite matrix density expressed as unit cells per m?®; @, rep-
resents the loading expressed in molecules of sorbate per unit
cell; [O,,] is a diagonal matrix with elements O, ,,, rep-
resenting the saturation loading of species i; R is the gas con-
stant; T is the temperature; V(u) is the column matrix of
chemical potential gradients, Vy;, which represent the correct
driving forces for diffusion; and [L] is the square matrix of
Onsager coefficients having the units m? s~ !. Qur definition of
the Onsager coefficients differs from the usual ones in the liter-
ature (e.g. refs. 8, 14) by a factor 1/RT. The Onsager matrix
[L] is non-diagonal, in general, and the cross-coefficients
portray the coupling between species diffusion. The Onsager
reciprocal relations demand that the matrix [L] be symmetric,
ie.

L;=Lj, i=12...,n

As we will demonstrate later, the Onsager IT formulation is
not the most convenient one for mixtures because there is no
simple procedure for estimating the elements of L;;. A much
more useful approach, entirely consistent with the theory of
IT, is to adopt the Maxwell-Stefan (MS) formulation in which
the chemical potential gradients are written as linear functions
of the fluxes:*~°

0; " O;N;,— O;N,; N,
—p i Vﬂi= 2 JjtVi itVj + i ,
RT ji=1 @i,sat@j,salDij @i.satDi
J#Ei

i=1,2...,n ()

We have to reckon in general with two types of Maxwell-
Stefan diffusivities: D; and D;;. The D; are the diffusivities that
reflect interactions between species i and the zeolite matrix;
they are also referred to as jump or “corrected” diffusivities in
the literature.®> Mechanistically, the Maxwell-Stefan diffusivity
D; may be related to the displacement of the adsorbed molec-
ular species, 7, and the jump frequency, or transition probabil-
ity, v, which in general can be expected to be dependent on the
total occupancy.'>'1® For a square lattice [see Fig. 1(a)], the
zero-loading diffusivity can be estimated from

Dy0) = 4v? 3)

where the jump probabilities in the x and y directions are
taken to be identical. For a cubic lattice [see Fig. 1(b)] we
obtain

Dy(0) = gv¢? Q)

For the silicalite topology [see Fig. 1(c)], Kirger'” has
derived the following set of relations:

Dt(o) = %[Dx(()) + Dy(o) + DZ(O)]’ Bx(o) = %vzz az;

1
PO=; ()

Dy(o) = %vstr b2, 4 VZZ + VZZ

where vy, and v,, are the jump frequencies for movement
along the straight (str) and zig-zag (zz) channels respectively
and the dimensions a, b and c are as specified in Fig. 1. The
Kirger formula given by eqn. (5) is however restricted in its
applicability to molecules which are predominantly located at
the intersections. For specific molecules, the zero-loading dif-
fusivity P,0) can be determined experimentally or by use of
transition state theory.!8-22
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Fig. 1 Diffusion unit cells for (a) square lattice, (b) cubic lattice and
(c) silicalite. The large dots indicate the sorption sites. For silicalite we
consider a maximum of four sorption sites per unit cell, located at the
intersections between the straight and zig-zag channels.

The jump frequency v can be expected to decrease with
occupancy.!®16:23 If we assume that a molecule can migrate
from one site to another only when the receiving site is vacant,
the chance that this will occur will be a function of the frac-
tion of unoccupied sites. The loading dependence of the jump
diffusivity is therefore ;= D,0) x (vacancy factor), where
D|0) represents the Maxwell-Stefan diffusivity in the limit of
zero loading. The vacancy factor can be taken to be (1 — 0,
— 6, —--- —0,) and therefore we get

b, =b01—-0,—-0,—---9,) (6)

Additionally, molecular repulsive forces come into play
when determining the jump frequency of molecules. Due to
molecular repulsions the jump frequency increases because a
molecule wishes to escape from the “unfavourable” environ-
ment. Clearly, the molecular repulsions will increase when the
occupancy increases. If the repulsion factor is proportional to
1/1—6, —6,—---—40,), we see that the Maxwell-Stefan
diffusivity is independent of the molecular loading. There is a
considerable amount of experimental data to show that the
Maxwell-Stefan diffusivity P is indeed independent of the
loading.'~3 In the KMC simulations to be described later we
did not introduce molecule-molecule repulsions; for this sce-
nario we would expect eqn. (6) to hold, ie. the Maxwell-
Stefan diffusivity decreasing with increasing loading due to
reduced vacancies.

Mixture diffusion introduces an additional complication
due to sorbate-sorbate interactions. This interaction is
embodied in the coefficients D;;. We can consider this coeffi-
cient as representing the facility for counter-exchange, i.e. at a
sorption site the sorbed species j is replaced by the species i.
Fig. 2 is a pictorial representation of the exchange process.
The Onsager reciprocal relations require D;; = D;;. The net
effect of this counter-exchange is a slowing down of a faster
moving species due to interactions with a species of lower
mobility. Also, a species of lower mobility is accelerated by
interactions with another species of higher mobility. We will
see later that D;; encapsulates the correlation effects associated
with molecular jumps. The interchange coefficient D;; can be



Fig. 2 Pictorial representation of the two types of diffusivities for
binary mixtures using the Maxwell-Stefan model.

estimated by a procedure that has been suggested by Krishna
and Wesselingh:*+

Dij — [Bi] 0i/(0:+6,) [Dj] 0j/(0:+6)) (7)

It is convenient to introduce the matrix of thermodynamic
factors [ I'], defined by

F‘-= @j,sat @ apl Zealnpz
i=\6. ) 1: 00, 00,

i, sat

ij=1,2...,n (8

where p; represent the partial pressures of the components in
the vapour phase and the 6, represent the fractional
occupancies of the species:

0,=0,/0; ., i=1,2..,n )
Combining eqns. (1), (8) and (9) we obtain
1/6, 0 0
(N) = —p[OuJL]f 0 - 0 [[IIVE)  (10)
0 0 1/6,
Also, eqn. (2) can be cast into n-dimensional matrix form:
(N) = —p[O,J[B]'[T1V(0) (11)
The matrix [ B] has the elements
Bii:%i—i_j;lg_;’ Bij:_Bi:j’ ij=1,2,...,n
j#i
12)

If the square matrix of Fick, or transport, diffusivities, [D],
is defined by

(V) = —p[O,][D1(VO) (13)

we obtain the following inter-relations and a method for esti-
mation the elements of [D]:

16, 0 0
[Dl=[L]] O - 0 |r1=[B]'[I] (14)
0o 0 1/,

If the n-component sorption can be described by the multi-
component Langmuir isotherm, the elements of [I'] are given

(15)

where d;; is the Kronecker delta.

Even though the Onsager and MS formulations are for-
mally equivalent, the important advantage of the MS formula-
tion is that eqns. (3)—(9) allow calculation of the matrices [D]
and [L] for multicomponent mixtures from data on pure
components.

The above derivation was for a general n-component
mixture. Let us examine two important limiting cases of the
general formalism: (a) pure component diffusion and (b) tracer
diffusion.

For diffusion of a single species obeying the Langmuir sorp-
tion isotherm we obtain:

1
Ny = —p0O,; D;Vb, = —pO, D, 1—0. Vo,
1

1 1
= _p@satLl

——FVo, (1
911_01V1 (16)

where D,, P, and L, are respectively the Fick, MS and
Onsager coefficients; these are inter-related as

L = D101 =D,(1 — 91)01 17

Let us apply the above set of equations for self diffusion and
consider a system consisting of untagged (1) and tagged (2)
species. For self diffusion the conditions of the experiment are
such that the gradients for diffusion of the tagged and
untagged species are equal in magnitude and opposite in sign:

VO, + V0, =0 (18)

Consequently the fluxes of tagged and untagged species sum
to zero:

N,+N,=0 (19)

Applying the restrictions (18) and (19) to eqn. (2) we obtain,
after imposing P, = D, for the tagged and untagged species:

Ny = —p0, DTV,

1
= p@ , sa Vo (20)
PR U/BY) + 0y + 05Dy,
which shows that the tracer diffusivity D¥ is
1
Dy = —— — (21)

(1/D1) + (6/P1>)

where 0 is the total occupancy (tagged and untagged species).
The exchange parameter D, is an expression of the corre-
lation between the jumps of the tagged and untagged species.
Eqn. (21) shows that the tracer, or self, diffusivity D¥ reduces
to the Maxwell-Stefan diffusivity only when the interchange
coefficient is exceedingly high:

D¥—->b; when D, > w (22)

In the more general case for finite values of the exchange
parameter D, we would expect D¥ to be smaller than ;. We
should in general anticipate that the interchange coefficient is
related in some way to the mobility of the species 1. We may
therefore assume

D, =D, (23)
and therefore the expression for the self diffusivity reduces to

b,

D% =
LT (1+0

24
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If we follow the Onsager formulation (1) we can analo-
gously derive the following expression for the self diffusivity:

Lll L12

Nl = _p@sathvel = _p@sat T g V01 (25)
6, 6,

Eqn. (25) was first derived by Kérger.” It is important to
emphasise that the coefficient L,; on the right hand side of
eqn. (25) cannot be identified with the pure component
Onsager coefficient L, ; we return to this point later on in this
paper.

In order to test the capability of the MS formulation to
predict mixture transport from pure component diffusivities,
we resort to KMC simulations.

3. Kinetic Monte Carlo simulation methodology

We first perform kinetic Monte Carlo (KMC) simulations in
which each component follows Langmuir isotherm behaviour.
We assume the lattice to be made up of equal sized sites which
can be occupied by only one molecule at a time. Particles can
move from one site to a neighbouring site via hops. Two types
of topologies were studied: (a) square lattice and (b) silicalite;
see Fig. 1. For the square lattice [Fig. 1(a)] we take the dis-
tance of separation between adjacent sites to be unity, £ = 1.
Furthermore the jump frequency of species 1 is taken to be
equal in all directions and set to unity, i.e., v; = 1. For simula-
tions with silicalite, the jump frequencies along the straight
and zig-zag channels for component 1 are taken to correspond
to that for 2-methylhexane 2MH) at 300 K, v, o, = 1.4 x 10°
s 4 vy ,, =5 x 10* s71; these values were calculated by Smit
et al. using the transition state theory.!® For the silicalite
topology the maximum loading was taken to be four mol-
ecules per unit cell, where the molecules are all located at the
intersections. We have published the details of the pure com-
ponent 2MH simulations earlier.?* In the two-component
mixture simulations, the corresponding jump frequencies for
component 2 were chosen such that v,/v, varied between 1
and 16. This allowed insight to be gained into transport in
mixtures with differing mobilities.

We employ a standard KMC methodology to propagate
the system (details in refs. 24-27). A hop is made every KMC
step and the system clock is updated with variable time steps.
For a given configuration of random walkers on the lattice a
process list containing all possible M moves to vacant inter-
section sites is created. Each possible move i is associated with
a transition probability v;. Now, the mean elapsed time t is
the inverse of the total rate coefficient

M
1‘-_1 = vtotal = Z vi (26)
i=1

which is then determined as the sum over all processes con-
tained in the process list. The actual KMC time step At for a
given configuration is randomly chosen from a Poisson dis-
tribution

At = —In(u)/V i @7

where u € [0,1] is a uniform random deviate. The time step At
is independent of the chosen hopping process. To select the
actual jump, we define process probabilities according to

i

pi = Z Vj/vtotal

j=1

The ith process is chosen, when p;_; < v < p;, where v € [0,1]
is another uniform random deviate. After having performed a
hop, the process list is updated. In order to avoid wall effects
we employ periodic boundary conditions. We have investi-
gated the finite size effect on the diffusivity and found systems

3188 Phys. Chem. Chem. Phys., 2001, 3, 3185-3191

of 10 x 10 and 6 x 6 x 6 unit cells to be sufficiently large for
the 2D and 3D lattices shown in Fig. 1. In order to provide
sufficiently accurate data for the Onsager transport coefficient
L;;, a total of 108 to 10° simulation steps were required.These
simulations extended to several CPU days on a single IBM
SP2 node.

For diffusion of a single component 1, the details of the
determination of the self diffusivity D¥, the jump diffusivity B,
and the transport diffusivity D; from the ensemble average
statistics have been published earlier.>* For binary mixtures,
applying linear response theory, the Onsager coefficients L;;
can be determined using the displacement formula

L;= lim LA}

At— o0
11 . 1 Ni
= 6 ﬁs AltliI:o At <<l§1["1, {t +At)—r, ;(0])
X (;1 [re, (t + At) — 1y, j(t):|>> (28)

where (---)> denotes both ensemble and time averaging over
the entire system trajectory; N, is the number of particles
belonging to species i; and r(t) is the position vector of com-
ponent i at time t. In contrast to the formula for L;; used by
Sanborn and Snurr!# in their MD simulations, the normal-
ising volume is replaced by N, the total number of discrete
adsorption sites in the simulation. For the square lattice simu-
lations, we use a pre-multiplier 1/4 instead of 1/6 in eqn. (6).
Furthermore, eqn. (28) yields L;; in units of m* s™'. The
Onsager coefficients L;; are subject to strong correlation
effects and therefore the obtained values of the transport coef-
ficients vary strongly with the separation time between two
configurations At. This is illustrated in Fig. 3 for binary
mixture simulations for the square lattice configuration for
which v,/v, = 16. Since arbitrary time and length units have
been used for the square lattice simulations, the Onsager coef-
ficients presented in Fig. 3, and also later in this paper, have
been normalised with respect to the zero-loading diffusivity of
component 1, D,(0). We see from Fig. 3 that it is important to
employ a sufficiently large At to ensure converged data. For
the square lattice simulations a At of 30 time steps was
chosen. For simulations with silicalite, using actual lattice
dimensions and realistic jump frequencies, a At of 10~ 3 s was
employed, on the basis of our previous experience.?#>3
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Fig. 3 The Onsager transport coefficients L;; as a function of the
separation time At for a square lattice (£, = 7, = 1) with particle jump
probabilities v, =1, v, = 16, at a total occupancy 6 = 0.96 and a
mixture composition x; = x, = 0.5. All the Onsager coefficients have
been normalised with respect to the zero loading of component 1,
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4. KMC simulation results compared to the MS
model predictions

Let us first consider the KMC simulation results for pure
component 2MH in silicalite at 300 K. The simulations for the
self diffusivity D¥, the jump diffusivity P, and the transport
diffusivity D, for various fractional occupancies are shown in
Fig. 4. The pure component Onsager coefficient L, calculated
using eqn. (17) is also shown here. The jump diffusivity P,
shows a linear dependence on the fractional vacancy, in con-
formity with eqn. (6), and the transport D, is seen to be inde-

diffusivities are free of correlation effects; see our earlier
publication®* for detailed discussion on this. The self diffusi-
vity D¥ values from KMC simulations compare very well with
the estimations from eqn. (24); D¥ is strongly influenced by
correlated jump effects, evidenced by the deviation from the
(1 — 0) linear dependence exhibited by D;.

Now, let us consider transport in a mixture of 2MH along
with another component 2. First we take the component 2 to
have identical jump frequencies along the straight and zig-zag
channels as those for component 1. The simulated L;; values
using eqn. (28) are shown in Fig. 5 for three types of simula-
tions: (a) 50-50 mixture with varying fractional occupancy, (b)
for a total occupancy of 0.48 with varying composition of x,,
and (c) for a total occupancy of 0.96 with varying composition
of x,. Let us first consider Fig. 5(a). We note that the cross-
coefficient L, , is non-zero despite the fact that component 2 is
taken to be identical to component 1 with respect to its parti-
cle mobility. For the 50-50 mixture, L,, = L,,, as expected,
but it is remarkable to note that these values are significantly
lower than the pure component Onsager coefficient L, [these
values of L, were taken from the simulations shown in Fig. 4;
the values are re-plotted in Fig. 5(a) for comparison
purposes]. This underlines the lack of predictability of the
Onsager coefficients from pure component diffusivities. The
results shown in Fig. 5(a) refute the assumption of Sundaram
and Yang® that the diagonal elements of [L] can be identified
with the pure component L; values.

Also shown in Fig. 5(a) are the estimations of the L;; using
eqns. (6), (7), (12) and (14), derived from the MS formulations.
The agreement with the KMC simulations is excellent. Com-
parison of the KMC simulations with varying mixture com-

pendent of occupancy. Both the jump and transport positions for 8 = 0.48 and 0.96, shown in Figs. 5(b) and (c)
(a) X,=x,=0.5 (b) Total occupancy = 0.48 (c) Total occupancy = 0.96
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Fig. 5 KMC simulations of the Onsager coefficients L;; for a binary mixture of component 1 (taken to be 2MH) and 2 in silicalite at 300 K. The
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jump frequency of component 1 is v, = 1. The ratio v,/v, is varied
progressively from 1 to 16. The Onsager coefficient has been normal-
ised with respect to the zero-loading diffusivity value D(0).

with the predictions of the MS theory led us to conclude that
the mixture rule for the interchange coefficient, eqn. (7), is the
correct one.

In Fig. 6, KMC simulation results are presented for the case
in which the jump probabilities for component 2 are taken to
be twice the corresponding values for component 1. We again
note the excellent agreement between the simulated L;; values
with the predictions of the MS model for a wide variation in
the loading and mixture composition.

Comparison of the values of L, in Figs. 5 and 6 led us to
conclude that this coefficient is influenced by the mobility of

(a) L1 coefficient

(b) Lo coefficient

component 2. Specifically the values of L, are higher in the
mixture where the mobility of species 2 is higher, in Fig. 6. Put
another way, correlated jump effects influence not only the
cross-coefficient L, , but also the diagonal coefficients L, and
L,,. To emphasise this further, we present KMC simulations
for a 50-50 mixture in a square lattice, where the mobility of
component 2 is progressively increased; see Fig. 7. We note
that L,, increases progressively with increasing mobility of
component 2. The excellent predictive capabilities of the MS
model to describe the variation of the transport coefficients
with mixture composition are demonstrated in Fig. 8, which
presents the KMC simulation results (square lattice, v,/v, =
16, total occupancy = 0.96) for L;;. The agreement of the MS
model, using eqns. (6), (7), (12) and (14), with the KMC simula-
tions is excellent.

Finally, we study the influence of topology on the Onsager
coefficients, after normalisation by dividing by P,(0), by com-
paring the results for the silicalite topology with the corre-
sponding results for the square lattice; the KMC results for
v,/v; = 2 are compared in Fig. 9. Interestingly, we note that
the normalised transport coefficients for these two topologies
are remarkably close to one another.

Eqns. (14) and (15) allow the calculation of the elements of
the Fick matrix [D] from information of the Onsager matrix
[L]. From the KMC simulated [L] for a square lattice with
v, =1, v,/v; = 16, we have calculated the elements of [D] for
a variety of loadings and mixture compositions; these are
shown in Fig. 10 along the predictions of the MS theory from
pure component transport data. The agreement can be con-
sidered to be very good. Examination of the elements of [D]
shows that the non-diagonal elements D,, and D,, increase

(c) Lyp coefficient
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Fig. 8 KMC simulations of the Onsager coefficient L;; for a binary mixture, of varying composition x,, in a square lattice. The total occupancy
of the lattice is 0.96. The lattice parameters are / = 1 and the jump frequency of component 1 is v, = 1. The ratio v,/v, is varied progressively
from 1 to 16. The Onsager coefficient has been normalised with respect to the zero-loading diffusivity value H,(0). The symbols are the KMC
simulations and the continuous lines represent the calculations of the Maxwell-Stefan model.
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Fig. 9 KMC simulations of the normalised Onsager coefficients L;; for a binary mixture of components 1 (taken to be 2MH) and 2 in silicalite at
300 K compared with the corresponding results obtained for a square lattice (v, = 1, v,/v, = 2). The Onsager coefficient has been normalised with

respect to the zero-loading diffusivity value D,(0).
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Fig. 10 KMC simulations of the normalised Fick coefficients D;; for a binary mixture of components 1 and 2 in a square lattice (v, = 1,
v,/v, = 16). The Fick coefficient has been normalised with respect to the zero-loading diffusivity value D,(10) The symbols are the KMC
simulations and the continuous lines represent the calculations of the Maxwell-Stefan model.

with increasing total occupancy and can attain values compa-
rable to the main coefficients D, and D,,; this shows that, in
mixture diffusion, the flux of one species is very strongly
coupled to that of the other species.

5. Conclusions

We have developed the MS formulation for mixture diffusion
in zeolites and compared this with the Onsager formulation.
Both approaches have their roots in the theory of irreversible
thermodynamics. An important advantage of the MS formal-
ism is that it allows the estimation of mixture diffusion on the
basis of the pure component diffusivities at zero loading. This
predictive capability has been tested by carrying out KMC
simulations in both silicalite and a primitive square lattice.
The following major conclusions can be drawn from the
results presented in this paper.

(i) For single component diffusion, the self diffusivity is
subject to correlation effects (c¢f. Fig. 4); these correlation
effects are captured by the interchange coefficient ,,. A good
approximation is to take D, to be equal to the pure com-
ponent jump diffusivity B, ; this assumption is verified by the
results presented in Fig. 4.

(i) For binary mixture diffusion, the diagonal element L,
cannot be identified with the pure component Onsager coeffi-
cient L,; cf. Fig. 5(a). This erroneous assumption has been
made in the zeolite literature® to derive mixture diffusion
theories.

(i) For binary mixture diffusion, L, is influenced by the
mobility of species 2; ¢f. Fig. 7. This further emphasises the
fact that L,, cannot be identified with the pure component L,
as has been suggested by Sundaram and Yang.®

(iv) All three Onsager coefficients L;; are influenced by cor-
related jump effects. This result is in sharp contrast with the
MS diffusivities D; which are free of correlation effects.?*

(v) The set of KMC simulation results presented in Figs. 5,
6 and 8 validate the excellent predictive capability of the MS
formulation.The logarithmic interpolation formula [eqn. (7)]
for the interchange coefficient has been verified.

(vi) Comparison of the square lattice simulations with those
of silicalite, for the same mobility ratios in the results present-
ed in Fig. 9 (taking v,/v; = 2), shows that the normalised
transport coefficients are comparable in magnitude and show
the same trend with mixture loading and composition.

(vii) From knowledge of the Onsager [L] matrix, the ele-
ments of the Fick (or transport) matrix [D] can be obtained
using eqns. (15) and (16). The results presented in Fig. 10
underline the strong coupling effects for a mixture with widely
different mobilities.

The overall conclusion of our study is that the Maxwell-
Stefan formulation provides a reliable procedure for estima-
tion of the diffusion behaviour of binary mixtures in zeolites
on the basis of the information on pure component transport
properties, along with mixture sorption thermodynamics.
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