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ABSTRACT 
We consider mass transfer in turbulent flow of multicomponent 
mixtures, taking into account the molecular diffusional coupling 
between the constituent species. For steady state transport across 
an effective 'film', we develop a simple analytic procedure for 
calculating the matrix of multicomponent mass transfer coefficients. 

Analysis 

The continuity relations for diffusion in an n-component mixture in molar 

units take the form [I] 

~c. ~c. 
i + V'c. u .  z + V'N. O, i = 1,2,..n ( 1 )  

where 

N. = c. u. = ci (~i - ~) + c. u = J. + x. N (2) 
~i i ~i i ~ ~i i ~t 

is the total molar flux of species i; J. is the molar diffusion flux of i 
i 

with respect to the molar average reference velocity ~; ~t = c ~ is the total 

mixture molar flux; c is the total mixture molar concentration. 

Summing equations (;) over the n species we have for the total mixture 

t deceased 

* address correspondence to R. Krishna who is now at Koninklijke/Shell- 

Laboratorium, Amsterdam, Badhuisweg 3, Amsterdam-N, The Netherlands. 
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~C ~_~c + V.c u = -- + V.N = 0 (3) 
~t ~ - ~t ~ ~t 

A combination of equations (I) - (3) gives differential relations in terms of 

the constituent mole fractions x. 
i 

I 1 1 + u ° V x .  = - V - J . ,  i = 1 , 2 , . . n - 1  ( 4 )  
C ~t ~ ~ i ~ ~i 

where we write only n-l independent relations. 

For multicomponent mixtures we must take account of the diffusional 

coupling and write the molar diffusion fluxes as [2,3,4] 

n-I 
J. = - c ~ Dij ~xj, i = 1,2,..n-! (5) 
~i j=1 

where [D] represents an n-J×n-! square matrix of molecular diffusion coeff- 

icients. 

Equations (4) and (5) represent a set of n-! coupled partial differential 

equations. By assuming that c and D.. are constant along the diffusion path, 
i] 

these equations may be uncoupled by use of the similarity transformation 

as discussed by Toor [2] and Stewart and Prober [3]. We address ourselves 

to the problem of diffusion under turbulent flow eonditions. In his analysis 

of this problem, Stewart [4] first diagonalizes (4) and (5) and obtains 

^ ^ 

i + v. (x i u) = V • ( D. lxi ), i = 1,2,..n-I (6) 
~t ~ ~ ~ 1 

where the D. represent the eigenvalues of the matrix [D]: 
1 

[P]' [D] [P] = 
and the pseudo compositions x. are given by 

i 

(7) 

On time averaging the instantaneous relations (6) we have 

axi + V "( x i u) = V • ( D. Vx. - x.' u' ) 
~- n i l  ~ ~- (9) 

= V "( D. Vx. + ~ D t. Vx.) 
I " i j=l lj ~ J 
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The turbulent diffusion flux can be written as 

n-I 
u '  i = 1 , 2 . . n - 1  (10)  j.t _ - C [ D t- VX. - C X.' ~ , 

~i j=l z] ~ j I 

where D. t, are elements of the turbulent diffusivity matrix. If we assume 
x3 

that the turbulent diffusivities are independent of the molecular diffusiv- 

ities then the turbulent diffusivity matrix must simplify as [4,5]: 

[D t] = D t VIj; D t. = D t 6.., i,j = 1,2,..n-I (II) 
1] zj 

and we must have 

^t 
= D t 6 i,j = 1,2,..n-1 (]2) Dij ij' 

SO 

~xi ÷ v .( x i u) = v .((D. + D t) V~ 
3t ~ -- z i ) 

(13)  

Note that D t (and indeed D~.) can vary with position and time; they 
13 

only must not be functions of composition, else we cannot apply the inverse 

transformation. 

Alternatively we can time average equations (4)-(5) first when we get 

on dividing by c 

~X. n-I 
i 

~t + ~ " ( xi ~ ) = V • { ~ (Dij + D2.) Vxj } (14) 
~ j~| ] ~ 

Now to diagonalize equation (14) is more complicated for we must find the 

eigenvalues of D.. + D~.. If equation (I]) applies, we may however just 
z] z I 

find the eigenvalues and modal matrix [P] for [D], when the diagonal form of 

equation (14) becomes identical to equation (13). Thus Stewart's [4] 

approach is mathematically more elegant but conceptually requires us to 

consider justifying equation (10) for turbulent diffusion flux in diagonal- 

ized form, i.e. in terms of pseudovariables. 

The important point is that whichever method is used, we come to 

equation (]3) as one which we must solve in order to obtain the composition 

profiles and fluxes. We develop below the integrations of equation (]3) 

for the simple case of one-dimensional steady state diffusion. 

Thus we have in n-1 dimensional matrix notation (we omit the overbars 

for simplicity) 
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d (x) _ d {[r~ 
u dz dz L J 

+ 

with a position dependent D t 

D t = D t (z) 

The first integral of (15) is 

D t rh] d(x) 
-77-z } 

= = (x)0 + c + D t FI c u (x) (x) N t Nt dz 

(15) 

(16) 

~ t FI~] d(x)] 
- c Dj + D O -~z )0 (17) 

t = 0 The equat- where at the rigid wall or interface, z = 0, we may take D O 

ion (17) says no more than 

^ ^ 

N i = Ni0; N i = Ni0 , 

an uncoupled linear first order differential equation better written as 
^ 

dx. 

- Dt dz c Di 
w i t h  i n t e g r a t i n g  f a c t o r  

Z 

exp c I). ÷ D t ( z )  
0 1 

+ x. N = i t Ni0 

_= exp[- F i(z)] 

i = 1 , 2 , . . n - 1  (18) 

(19) 

(20) 

SO 

x, 
IZ 

F. (z) 
i 

= e xi0 + 

z -F. (z)  

i • 
Ni0 e dz 

c ( 6. + Dt(z)) 
i 

0 

F. (z) 
1 

e 
^ 

xi0 

^ 

Ni0 -F.I (z) 
- - - ( e  - I) 

N 
t 

21) 

Writing 

~i0 

we have 

Ni0/ N t 
(22) 
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^ ^ ^ F i ( z )  
x .  + = (23) zz ¢i0 (Xio + ¢i0 ) e 

and at the plane z = 6, where 6 may be viewed as the film thickness for mass 

transfer, we have 
^ ^ 

xi6 + ~iO (Xio + ~iO ) Fi(6) = e (24) 

and therefore we have 

^ F.(z) 
Xiz - Xio e 1 

F i ( 6 )  
xi 6 Xio e 

Now at the wall 
^ 

^ dx i = 

Ji0 ~ - c D i -~--I Ol 

- l 

- 1 

^ 

Nt (xi0 - xi~) 

F .  (~)  
i 

e - I 

(25) 

 i$i&i0 - 

F. ( 6 )  
1 

e - | 

( 2 6 )  

where 

;i - N t / k .  - N / ( c D  z t i/6 ) (27) 

o r  

^ ^ ^ ^ 

Jio ~ k~o (Xio - x i 6)  (28) 

with 
^ 

^~. ki *i = k. *i e 
k 0 = F.(6) z ~!~,z F.(6) (29) 

z z - I 
e 1 e - I e 

a high flux correction factor $i/(exp ~i - I) and a turbulence intensity with 

factor (exp ~0 i - ])/(exp Fi(6) - ]). 
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^ 

The k~0 are the high flux mass transfer coefficients for the pseudo- 

species and these coefficients can be estimated from the physical, thermody- 

namic, transport and turbulence parameters as given by equation (29). We 

first discuss the evaluation of the F.(6) and later discuss the transformation 
I 

of equation (29) to obtain the transfer coefficients for the actual species. 

The turbulent diffusivity is best expressed in terms of the dimensionless 

distance from the wall y+ defined as 

+ * 

y ~ u z / v (30) 

Let us write the pseudo diffusion fluxes as 

d~ 
]. ~ - c (D. + D t) i 
Z z dz 

^ 

dx. 
- c u* ( D./v + Dt/v ) i (31) 

1 + 
dy 

and so defining the Schmidt numbers 

Sc. ~ v/D. ; Sc.. i v /D.. (32) 
i i lj kJ 

we have 

J. 

z c u*  ( I ' S  ^ . / c  + _ _  = 

1 
N N 

t t 

^ 

dx. Dt(y +) ) i 
+ 

dy 
(33) 

Thus 

F(z) ÷ l = fi (y) 

+ 

Y 
N 
t 

CU* 

dy 

1 + D t (y +) 
^ 

Sc. 
I 

(34) 

Any reasonable turbulence mode[ can now be substituted for Dt(y+)/~ 

and the integral in equation (34) evaluated, and the fluxes of the pseudo- 

species calculated from equation (33). 

It now remains to obtain an expression for the matrix of multicomponent 

mass transfer coefficients [k'] defined usually as [2-4] 
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(J) = [k'] (x 0 - x6) (35) 

where the diffusion fluxes Ji are related to the pseudo diffusion fluxes by 

the similarity transformation 

(J) = [P] (J) (36) 

Thus if we premultiply equation (28), in its matrix form, by [P3 we 

have after using equation (8) 

r^e I 
(J) = [P] k j [P]- (x 0 - x~) (37) 

A combination of equations (35) and (37) leads us to the final predictive 

relation for the matrix of multicomponent mass transfer coefficients 

[k'] : [P] [ P ] '  (38) 

Conclusions 

We have analysed the problem of n-component diffusion in turbulent 

flow under steady state conditions. In the analysis we have allowed for the 

possibility of molecular diffusional coupling between the species. By 

assuming an arbitrary model for the turbulent diffuslvity, equation (16), 

we have obtained an analytic expression for the composition profiles 

across a plane of thickness 6. The differentiation of the composition profiles 

gave the mass transfer coefficients in terms of the physical and turbulence 

parameters. One of the novel results of this study has been the expression 

(29), with equation (38), in which we have separated the effects of bulk 

flow (finite mass transfer [I]) and turbulence. 

C, 
1 

D° . zj 

D. 
1 

Nomenclature 

total molar density of the mixture 

molar density of species i in n-component mixture 

elements of the matrix of Fickian diffusion coefficients, defined 

by equations (5) 

eigenvalues of the matrix [D]; also diffusion coefficients of the 

pseudo species i 
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D t 

D t " 
13 

F.(Z) 
1 

fi(y +) 

J .  
^1 

J .  

^ 1  

k.  

1 

[k'] 
n 

N. 

~t 
^ 

Ni0 
[Pl 
Sc 

t 

U° 
""1 

U ~ 

X ,  
^ 1  

X° 
1 

turbulent eddy diffusivity 

elements of the matrix of turbulent diffusivities 

function defined by equation (20) 

function defined by equation (34) 

identity matrix with elements 6ik 

diffusion fluxes of species i 

diffusion fluxes of the pseudo species i 

turbulent diffusion flux 

pseudo-coefficients defined by equation (27) 

pseudo-high flux mass transfer coefficients defined by equation (28) 

matrix of multicomponent mass transfer coefficients 

number of components in mixture 

molar flux of species i relative to a stationary frame of reference 

molar flux of total mixture relative to a stationary frame of 

reference 

molar flux of pseudo species i at the plane z-0 

modal matrix of [D] 

Schmidt number 

time 

velocity of species i 

molar average velocity of mixture 

friction velocity 

mole fraction of species i in mixture 

mole fraction of the pseudo-species 

Xo 
1 

X. 
1 

time averaged compositions 

time averaged pseudo-compositions 

dimensionless distance defined by equation (30) 

distance parameter 

G~k Letters L 

6ik 

o i  

length of diffusion path 

Kronecker delta 

kinematic viscosity 

factor deflned by equation (22) 

factor defined by equation (27) 
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Operational Symbols 

~/~t spatial derivative 

V gradient operator 

• divergence operator 

d/dz scalar gradient operator 

Matrix Notation 

() 

[] 
[]-, 
r 

J 

column matrix with n-I elements 

square matrix n-l×n-I 

inverted square matrix 

diagonal matrix 

Subscripts 

i,j 

t 

z 

0 

6 

indices usually referring to constituent species 

pertaining to total mixture 

at plane z=z 

at plane z=O 

at plane z=6 

Superscripts 

t turbulent parameter 

• coefficient under finite mass transfer conditions 

+ non-dimensional turbulence parameter 

* friction velocity 

^ pseudo species 

overbar denotes time averaged quantities 
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