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THE MAXWELL-STEFAN FORMULATION OF
IRREVERSIBLE THERMODYNAMICS FOR

SIMULTANEOUS HEAT AND MASS TRANSFER

G. L. STANDARTt, R. TAYLOR and R. KRISHNA*

Separation Processes Laboratory,
Department of Chemical Engineering,

University ofManchester, Institute of Science and Technology,
Manchester M60 1QD, Great Britain

We considerconstitutive relations fordiffusion and simultaneous heatconduction in an n-component 000­

ideal fluid mixture. Using the ideal gas treatment of Hirsch felder, Curtiss and Bird as a basis, we develop the
generalization of the Maxwell-Stefan diffusion equations. The application of the second law of thermo­
dynamics is shown to impose non-negativity constraints on the defined diffusion coefficients, D ile The
practical usefulness of the Generalized Maxwell-Stefan formulation is demonstrated by a few examples.

INTRODUCTION

A correct description of multicomponent diffusion in non-ideal fluid mixtures is of
importance in many areas of chemical engineering. That the mass transport char­
acterists of systems with three or more species can be markedly different from a binary
system has been recognised for some time [1,2] and experimental work on distillation
[3], extraction [4,5], and absorption [6,7] have demonstrated the importance of taking
diffusional interactions into account.

Constitutive relations for n-component diffusion are complicated by many factors.
Thus one can describe diffusion in terms of various quantities which define the
concentration; mass fractions (Wi), molar fractions (Xi), volume fractions (¢i), mass
densities (Pi)or molar densities (c,). Furthermore, several diffusion equations for any of
these quantities may be written down, depending on whether the diffusion fluxes (j;) are
defined relative to the mass average velocity (UO), the molar average velocity (u*), the
volume average velocity (u") or the "solvent" velocity [u.]. De Groot and Mazur [8]
discuss all these possibilities in detail and relations are available for transforming from
one set of diffusion coefficients to another set [8,9].

The existence of a large number of diffusion formulations makes the task of a
practising chemical engineer extremely difficult. Ideally one would wish the con­
stitutive relations to fulfill the following requirements:

(i) the set of defined diffusion coefficients should be independent to the choice of
reference velocity for diffusion,

(ii) the diffusion coefficients should allow interpretation in terms of the molecular
collision processes in the fluid and

(iii) the formulation should provide some guidelines for predictingthe n-component
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278 G. L. STANDART, R. TAYLOR AND R. KRISHNA

behaviour in terms of the constituent binary pairs much as the NRTL and Wilson
equations do in the description of phase equilibria.

Now, for diffusion in n-component ideal gas mixtures in the absence of temperature
and pressure gradients and external forces, the Maxwell-Stefan relations:

" x, = ~ x;Nj - xjN;
v I .... j = 1,2,... n - 1

j-I C 9lJ'.J.
j ""'1

(1)

satisfy the above three conditions. Thus the diffusion coefficients 9lJif (= 'l/J ji) are
independent of the choice of reference velocity frame and can be predicted from the
kinetic theory of gases. Also, equations (1) allow the calculation of the fluxes N i in an n­
component system from information on the coefficients of the binary pairs ':lJif'

The validity of equations (1) to describe ternary ideal gas diffusion has been verified
experimentally (see for example [10--12]).

In the present communication we consider the generalization of the Maxwell-Stefan
equations (1) to non-ideal mixtures allowing for temperature and pressure gradients
and external forces. Though such a generalization has been considered in the literature
[13-15), not all of its aspects seems to have been explored. In particular, we employ the
second law of thermodynamics to obtain certain important restrictions on the transport
coefficients.

We use the ideal gas treatment of Hirschfelder, Curtiss and Bird (hereafter HCB)
[16) as a starting point for our development.

THEORETICAL DEVELOPMENT

HCB show (their eq. (7.3-27» that the correct mass transfer driving force for ideal
gases for mass or molar variables is

(2)

where X; is the mole fraction of constituent i, Pi is its mass density with P == :Ep;, the
mixture mass density,p is the pressure and Pi is the external force acting on unit mass of
i. Clearly

f. e: = 0
i=1 I

(3)

It is more common in irreversible thermodynamics to use a slight modification of this
driving force by multiplying d', by the common factor p/cRT (== 1 for ideal gases),
where c is the mixture molar density, R is the gas constant and T is the absolute
temperature, when we can write
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SIMULTANEOUS HEAT AND MASS TRANSFER 279

(4)

P I [ - n -Jd, =--d;=-- c, \l T,pJ.Li +(cf>i - Wi) \l P - Pi (Fi ~ wjF) =
cRT cRT' r 1

I [ - n -J= -- Pi \l T,pJ.Li + (cf>i - Wi) \l P - Pi [F, - ~ wjF)
cRT j~l

Pi [- I n - ]= -- A -- \l p + ~ wFcRT 'p j-I j j

where the tilded quantities are specific (i.e. per unit mass) values obtained by dividing
the corresponding molar quantities by the constituent molecular weight, M i, as the
constituent mass density is

Pi = cM, = CXi mi (5)

Further J.Li is the specific chemical potential; cf>i is the constituent volume fraction:

-cf>i =CiV, = PiV, (6)

-where V, is the partial molar volume and V; is the partial specific volume of constituent i.
Ai in equation (4) is the (specific) mass transfer driving force obtained by

conventional irreversible thermodynamic arguments (HCB eq. 11.1-27),

In view of the Gibbs-Duhem relation

n _

'~I Pi \l T,pJ.Li = 0
,~

and the Euler relation

(both also valid in molar units) we find

± d= 0
i=l /

(7)

(8)

(9)

(10)

(as well as eq. (3». Thus for the conventional IT driving forces for mass transfer we find
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280 G. L. STANDART, R. TAYLOR AND R. KRISHNA

n - n-
~ pA = \7 p - ~ pF
;=1 I I ;=1 I I

(11)

which sum only vanishes at mechanical equilibrium (cf RCB eq. 11.1-3). What we
have essentially done in eqs. (4) is to apportion (subtract) the fractionpjp (= Wi)of this
deviation from each p)\.; to obtain the d, for the general non-ideal solution case. While it
is always dangerous to generalize from a specific to the general case, we believe that d,
in eq. (4) is the correct driving force for mass transfer for non-ideal solutions not only
because it reduces to the correct kinetic theory value for ideal gases (eq. (2» and the
correct conventional IT value for mechanical equilibrium, but also because the
deviation between cRTd; andp)\; depends only on quantities occurring in the equations
ofmotion and the constituent mass fraction, which quantities are the same for any fluid.
In other words, eq. (4) is more than an arbitrary definition ofconvenience, as implied by
Lightfoot [14, p. 161] and Slattery [15, p. 466].

It remains to show that the driving force d, is compatible with the conventional IT
expression for the volumetric rate of entropy production by heat and mass transfer
(RCB eq. 11.2-18)

1 [\7 T n ~ ]a = -- --. q + ~ J'. AT T ;-1 I I
~O (12)

where q is the. "pure" heat flux and j; is the constituent diffusive mass flux

. , _ ( 0)J; = p, u;.- u

with respect to the mass average velocity UO defined as

0_ n
pu = !; p·u·

;=1 "

where U; is the constituent velocity. Since

±j=O
j=1 I

we can write eq. (12) as (RCB eq. 11.2-43)

1 n
U = --\7 T· q - cR ~ d . (u, - UO).TJ- i=l I I

(13)

(14)

(15)

(16)

Indeed as noted by Lightfoot (p. 162), the expression for u is unchanged if any
arbitrary reference velocity u" is chosen in place ofu", in viewofeq. (10): thus we have a
natural generalisation of the Prigogine theorem [17] for this driving force, valid outside
mechanical equilbriurri of the fluid.

Various choices of reference velocities u" are possible [8]; here we choose the molar
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SIMULTANEOUS HEAT AND MASS TRANSFER 281

average velocity u* because of the widespread use of molar units in chemical
engineering. Also, it is convenient to use the molar diffusion flux J; defined by

J; == c, (u, - u*)

which allows us to write equation (16) as

1 n d
a = - ml \l T . q - R .1: ---'- . J; ~ 0

1- 1=1 x,

(17)

(18)

To develop the Maxwell-Stefan formulation.It is convenient to employ the guide ofthe
kinetic theory to write

1 cR n n
a = - - \l T . q -- 1: 1: d, . (u, - u).'J'1 n ; -lj ~1 'J

( 19)

as we wish to introduce the constituents' velocity difference (u, - u.), We shall in fact
take this expression as the basis for developing our constitutive relations rather than the
conventional eq. (12). Again however we shall use the kinetic theory results as guides
as far as possible and take d, and q as dependent and (u, - u.) and \l Tas independent
variables with the linear dependence for ideal gases (HCB eqs. 7.4-48, 64; 8.1-3,
11.2-54)

n X;X· [DT DTJ \l T}d; = .~ T {(Uj - u.) + --.-!. - -' --
J-l fiJ. p, o, T
j.el U J I

n X;X· tDTjq = -A \l t - cRT 1: __J_ --'- (u, - u.)
u 9lJ ij o, J
-I

JF-}

cRT n x;x tDT DTJ= -A \l T+- ~ __J _J_ - --' (u, - uJ.
2 'J as: o, p,=1 ~}v J I

j;= 1

(20)

(21)

To modify eq. (20) to apply to non-ideal solutions, we may multiply by p/cRTand write

DT DT
\l T}_J , __

Pj o, T
(22)

where

but with the heat flux it is desirable to proceed more cautiously and to write

(23)
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282 G. L. STANDART, R. TAYLOR AND R. KRISHNA

zcRT n X;X· I DT DT]q = - A'V T I ~ __J L-J
- - -'- (u, - u.)

2 ::'1 o, Pj Pi
)"'1

(24)

where z is a common factor to be determined.
To determine z it suffices to consider the special case of an isobaric binary system not

subject to external forces when we can express (J in terms of independent quantities as
(see equations 4,8,15,17,18).

(J = - ~ [~ 'V T . q +J .(2- 'V II )\1
TTl X2 T,p,....l~

In the standard Onsager formulation we can write

and from eqs. (13,15,22) we readily find (in molar units)

J = - cD [XI 'V II _ XI X2 [Dr - DiJ 'V TJ
I 12 T,p,....1

. RT D 12 P2 PI T

while from eqs. (4,21,24) we obtain

(25)

(26)

(27)

(28)

[

X,X2 [Dr D;] 2J
= - A+zcR--L- - - --J 'V

D'2 P2 PI

With the Onsager Reciprocal Relations:

(29)

(30)

we see readily using equations (24, 26-29) that we must take

z == 1.

It is convenient to introduce the multicomponent thermal diffusion factor

(31 )

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
a
l
i
f
o
r
n
i
a
,
 
B
e
r
k
e
l
e
y
]
 
A
t
:
 
1
8
:
4
8
 
1
0
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8



SIMULTANEOUS HEAT AND MASS TRANSFER

(undefined for i = j) when we can write eq. (22,24) more compactly as

cRT n
q = -i ): \7 T--- ~ XiXjCXu (u, - U,)

2 ::1
j~1

Alternatively on eliminating (u, - u.) using eq. (22)

n XiX' [DT
]q = -,\ \7 T- cRT~ -r!- -' (u, - U,)

lJ Lt Pi
~I

jse l

283

(32)

(22')

(24')

-,\ n D
T

n XiX' tDTltDT D
T]

\7 T - cRT~ --' d, + cR ~ __J --' ,_J - -.-'. \7 T
,-I p, 'J D.. p. p, p,

I =1 V J -' I

j#i

(33)

where the thermal conductivity in eq. (24) is that in the absence of diffusion and that in
eq. (33) is that in the absence of mass transfer driving forces ("uniform composition").

If we substitute eqs. (22' ,24') in the second law relation (19), we find after some
manipulation

[
\7 712 cR n XiX

a =,\ --~J +-- ~ __J (u, - uy 2: 0
T 2 ~JI Du

IT"i

(34)

in agreement with the HCB result for ideal gases (eq. 11.2-44). This formulation of the
second law condition may be considered "natural", as it represents a reduction to a sum
of squares for a so the corresponding independent "driving forces"

(35)
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284 G. L. STANDART, R. TAYLOR AND R. KRISHNA

of the Maxwell-Stefan approach may also be considered the natural ones, where J i is
the molar diffusive flux and N, is the total molar constituent convective flux (i.e. with
respect to a fixed coordinate frame).

The relation (34) requires that

,\~o (36)

This non-negativity constraint on the coefficients ,\ and Dij is a generalization of the
HCB result for ideal gases (eq. (11.2--46). Also, since the Dif have been defined in terms
of the d., which are reference frame independent, the coefficients D ij are also
independent of the choice of the reference velocity frame. Fuither we note that although
any unsyrnmetric part ofDifcancels in eq. (34), we must utilize the Onsager reciprocal
relations to conclude that

(37)

in eqs. (22',24') (Cf Coleman & Truesdell [l8]). (We had also to assume these
relations to obtain eq. (31». Note also that with the relations (37), the thermal diffusion
factors aij are antisymmetric but otherwise unrestricted.

DISCUSSION

Equations (4,22' ,24') are the constitutive relations we have sought and represent the
generalization of the Maxwell-Stefan relations (I) for non-ideal mixtures in the
presence of simultaneous heat transfer. We consider various special cases below and
demonstrate the superiority of the generalized Maxwell-Stefan (GMS) formulation
over the Fickian formulation.

Let us consider the simple case of a binary mixture of species I and 2, in the absence
of temperature and pressure gradients and with no external body forces acting on the
system.

Equations (4,22' ,35) reduce to

= - c D (I + alny, ) \J X,
12 alnx,

where y, is the activity coefficient in solution. For ideal gas mixtures we have

(38)

(39)
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SIMULTANEOUS HEAT AND MASS TRANSFER 285

which is identical to the Fick's lawdiffusivity. Fornon-ideal solutions we usually define
the Fick's law diffusivity by

(40)

and therefore we see from equation (38) that

(41)

Though both IJIJ 12 and ~2 are functions of composition, the GMS diffusion coefficient
D 12 shows a much more predictable composition dependence and lends itself to
interpretation in terms of molecular collision processes taking place in the fluid [19,20).

For an n-component system if we define the following coefficients

and

Xi n x,
B··=-+ :E-

" D k~l D
in k-Fl ik

i = I,L.n - 1 (42)

i.j = 1,2, ... n - 1
i~j (43)

we may easily derive the following relation for the matrix of Fick's law diffusivities, .
defined by

(J) = - c [D) \l (x),

as [21)

[D) = [Br l [f).

Here the elements of the matrix If) are given as

(44)

(45)

_ 8 Xi olnYir·= .. +---
v v x} olnx}

iJ = 1,2, ...n -1 (46)

Equation (45) is the matrix analogue of equation (38) and again provides a method for
predicting the Fickian matrix [D) as shown by Kosanovich and Cullinan [22,13).
Their work shows the distinct superiority of the GMS D ik over the Fickian D ik in
describing non-ideal mass transport. Future experimental work on multicomponent
diffusion in liquids must recognise this and diffusion data must be reported in terms of
the GMS coefficients.
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286 G. L. STANDART, R. TAYLOR AND R. KRISHNA

If we now consider coupled heat and mass transfer in binary systems we have from
equations (4,22')

(47)

where kT is the thermal diffusion ratio defined as

(48)

Equation (48) is the generalized form of the HCB relation (8.1-10).
For separation processes involving pressure gradients and external forces, such as

centrifugation, osmosis, electrodialysis etc., the GMS relations (4,22') provide the
most convenient point for analysing such problems as shown in [14,24].

For steady-state transport in ideal gas mixtures, equations (1) can be solved exactly
by matrix procedures to yield the fluxes Ni for engineering design calculations [25].
Such exact solutions are in general superior to approximate methods as has been shown
experimentally [11]. For mass transport in non-ideal solutions the set of equations
(4,22') have to be combined with the continuity relations and solved numerically in
general, although solutions may be obtained by making some approximations [21].
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NOTATION

[B] n - ] X n - ] dimensional matrix of inverted GMS diffusion coefficients with
elements given by equations (41, 42)

C molar density of mixture

c, molar density of constituent species i

DiJ GMS diffusion coefficient for pair i-j in multicomponent mixture

f] iJ Fick's law diffusivity pair i-J

[D] n-r I X nr- l matrix of Fickian diffusion coefficients

DT thermal diffusion coefficient i in multicomponent mixture

d; generalized mass transfer driving force for ideal gas mixture defined by
equation (2)
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SIMULTANEOUS HEAT AND MASS TRANSFER 287

d; generalized mass transfer driving force for ideal gas mixture defined by
equation (3)

F; external force acting per unit mass of species i

j; mass diffusion flux relative to mass average velocity (equation (13»

J; molar diffusion flux relative to molar average velocity (equation (17»

k T thermal diffusion ratio (equation (47»

L ij Onsager coefficients

M; molecular weight of species i

n number of components in mixture

N; molar flux of species i relative to stationary coordinate reference frame

p pressure

q "pure" heat flux

R gas constant

T absolute temperature

u, velocity of diffusing species i

U O mass average velocity of mixture: U
O = ±W;U;

n
u" volume average velocity of mixture u" = ~ ¢;u;

u* molar average velocity of mixture u* = ~ X;Ui

V; partial molar volume of species i-V; partial specific volume of species i

X; mole fraction of species i

z undefined constant

Greek Letters

aij multicomponent diffusion factor defined by equation (31)

Y, activity coefficient of species i in solution

WI matrix of thermodynamic factors defined by equation (45)

8ij Kronecker delta

Ai specific mass transfer driving force defined by equation (7)

Jl.i molar chemical potential of species i

iii specific chemical potential of species i
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288 G. L. STANDART, R. TAYLOR AND R. KRISHNA

Pi mass density of species i in mixture

P mixture mass density

cf>i volume fraction of species i (equation (6»

Wi mass fraction of species i

Operational Symbols

V gradient operator

dot product

summation operator

Matrix Notation

( )

[ I
[ r 1

column matrix of dimension n-]

square matrix of dimension n-] X n-]

inverted matrix of dimension n-] X n-]
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