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The relationship is explored between residue curves and composition trajectories in tray and
packed distillation columns. The standard model for residue curves as described by, for example,
Doherty and Malone is completely consistent, and that published attempts to modify this model to
take into account mass transfer effects are flawed. The packed and tray column composition
trajectories at total reflux collapse onto the residue curves when each species in the vapor phase
has an identical facility for mass transfer (and there is no resistance to mass transfer in the liquid
phase). The stationary points of a residue curve map (RCM) and a composition trajectory map
(CTM) are the same (pure components and azeotropes). Thus, mass transfer effects do not change
the basic structure of the RCM. However, distillation boundaries computed from a mass transfer
model are not, in general, identical to those in the RCM. Differences between residue curves and
composition trajectories are characterized by the relative length of and angle between the two
composition vectors. The relative length of the composition vectors characterizes the separation
process and can be best understood as an average efficiency for a multicomponent mixture. For a
binary system in a tray column the new efficiency is equal to the Murphree efficiency. For a binary
system in a packed column the vector average efficiency is equal to the overall number of transfer
units. The average efficiency may also be viewed as the local ratio of the arc length of the actual
composition profile to the arc length of the composition trajectory for a reference (virtual) column
in which all species have the same facility for mass transfer. The reference composition profile is
coincident with a residue curve. © 2004 American Institute of Chemical Engineers AIChE J, 50:
3134–3148, 2004
Keywords: residue curve maps, distillation lines, distillation boundaries, mass transfer,
Maxwell–Stefan formulation, efficiency, tray columns, packed columns

Introduction

“The least complicated of all distillation processes is the
simple distillation, or open evaporation of a mixture. The liquid
is boiled and the vapors are removed from contact with the
liquid as soon as they are formed. Thus, the composition of the

liquid will change continuously with time, since the vapors are
always richer in the more volatile components than the liquid
from which they came. The trajectory of the liquid composi-
tions starting from some initial point is called a residue curve;
the collection of all such curves for a given mixture is called a
residue curve map.”

This paragraph, taken from Conceptual Design of Distilla-
tion Systems by Doherty and Malone1 perfectly describes a tool
that has become increasingly important in modern process
synthesis and design. Residue curves are closely related to the
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composition profiles in distillation columns.1 A residue curve
map (RCM) can be a valuable aid in the determination of the
feasibility of separation sequences.

Although not stated in the above-cited quotation, it is gen-
erally understood that the vapors referred to are in equilibrium
with the liquid phase. Indeed, it is common practice to assume
that the vapor and liquid phases are in equilibrium with each
other in the computer-based simulation and design of distilla-
tion columns. Real distillation processes, however, nearly al-
ways operate away from equilibrium. In fact, the degree of
separation actually attained depends on the rates of mass trans-
fer between vapor and liquid phases—rates that depend on the
extent to which the two phases are not in equilibrium.

For some time it has been possible to simulate distillation
and absorption because the mass-transfer rate–based opera-
tions they really are using have become known as nonequilib-
rium (NEQ) or rate-based models.2 It is the purpose of this
paper to explore the relationships between residue curves and
composition trajectories in tray and packed distillation columns
when the latter two are computed with a mass transfer rate–
based model and identify the circumstances in which residue
curves and composition trajectories are essentially identical.
We will show that, although mass transfer does not change the
basic structure of conventional residue curve maps, mass trans-
fer may alter the precise location of distillation boundaries. We
shall find that differences between residue curves and compo-
sition trajectories are quantified by a quantity that we call the
geometric average efficiency [which for binary distillation in
tray columns is identical to the Murphree efficiency, and for
binary systems in packed columns is closely related to the
height equivalent to a theoretical plate (HETP)].

A Unified Framework for Distillation Composition
Curves
Residue curves

The starting point for the construction of a residue curve is
the differential material balance for species i in the liquid phase

d�Mxi�

dt
� �Vyi (1)

where M is the number of moles of liquid and V is the molar
flow rate of vapor leaving the system. This equation may be
summed over the species index to yield the total material
balance. The derivative in Eq. 1 can then be expanded and
combined with the total material to give

dxi

d�
� xi � yi (2)

where � is a “warped” time that incorporates the vapor flow rate
and molar liquid holdup.1

To be able to integrate these equations we need to say
something about how the vapor and liquid compositions are
related. It is common to assume that the vapor and liquid mole
fractions are related through the familiar equation of phase
equilibrium

yi � Kixi i � 1, 2, . . . , n (3)

where K represents the so-called K-values or equilibrium ra-
tios. It must suffice to note that the K-values are, in general,
complicated functions of the composition of both phases (xj,
j � 1, . . . , n and yj, j � 1, . . . , n), temperature (T), and
pressure (P). Armed with an appropriate model for the K-
values, an additional equation that forces the mole fractions to
sum to unity, and an appropriate numerical method, we may
integrate these equations from a variety of initial compositions
to create a residue curve map.

Mass transfer in multicomponent systems

The rates of mass transfer across a phase interface such as
those encountered in real distillation columns (or, indeed, in an
open evaporation) actually are determined by the extent to
which the phases are not in equilibrium with each other. We
consider here mass transfer across the interface separating
vapor and liquid phases.

It is normal in mass transfer modeling to assume continuity
of the molar fluxes across the interface

Ni
L � Ni

V (4)

The molar fluxes are composed of diffusive and convective
fluxes:

Ni
L � Ji

L � xi
LNt

L � Ni � Ji
V � yi

VNt
V � Ni

V (5)

where Nt is the total molar flux

Nt � �
i�1

n

Ni (6)

Mass transfer in multicomponent systems is properly mod-
eled by the Maxwell–Stefan (M-S) equations.3 For the present
purposes it suffices to use the following approximations:

��xi � �
k�1

n x� iNk
L � x�kNi

L

ct
L�i,k

L (7)

��yi � �
k�1

n y� iNk
V � y�kNi

V

ct
V�i,k

V (8)

where �i,k
� is the M-S binary pair mass transfer coefficient in

the � phase and ct
� is the molar �-phase density. �yi and �xi

are the mole fraction differences in the vapor and liquid films
assumed to exist on each side of the phase interface. We have
also ignored thermodynamic corrections attributed to thermo-
dynamic nonideality in writing these equations. The neglect of
these terms does not change our results in any significant way.

To complete the picture we may need to consider energy
transfer across the vapor liquid interface
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�
i�1

n

Ni�Hi,vap � qV � qL � 0 (9)

where the heat fluxes are given by

qV � hV�TI � TV� qL � hL�TL � TI� (10)

and where �Hi,vap is the molar latent heat of vaporization. If the
latent heats are equal (as often is assumed to be true in
distillation), and we ignore the sensible heat terms (because
they are quite small compared to the convective energy flux),
then the energy balance simplifies to

�Hvap �
i�1

c

Ni � �HvapNt � 0 (11)

from which it follows that the total molar flux must be zero
under these conditions.

It is sometimes desirable to cast the M-S equations in matrix
form as (see Section 11.5 of Taylor and Krishna3)

� JV� � ct
V�kV���y� � JL� � ct

L�kL���x� (12)

where [k�] are square matrices of dimension n � 1 of multi-
component mass transfer coefficients for the phases identified
by the superscript (� � {V, L}). These matrices are defined by

�k�� � �R���1 (13)

The elements of the [R] matrices are defined in terms of the
binary M-S mass transfer coefficients by

Ri,i
� �

zi
�

�i,c
� � �

k�1
k�i

c zk
�

�i,k
� Ri, j

� � �zi
�� 1

�i, j
� �

1

�i,c
� � (14)

where zi
� is the mole fraction of species i in the � phase (z �

{x, y}).
Equations 12 sometimes are combined to give (see Section

7.3.1 of Taylor and Krishna3)

� JV� � ct
V�KOV�� yV � y*� (15)

where ( y*) is a column matrix of vapor mole fractions that
would be in equilibrium with the bulk liquid and ( y* � yV) is
the overall driving force for mass transfer. [KOV] is a square
matrix of overall mass transfer coefficients that may be calcu-
lated from

�KOV� � �ROV��1 (16)

�ROV� � �RV� �
ct

V

ct
L �K��RL� (17)

where [K] is a diagonal matrix of equilibrium ratios (K-values).

Equations 15–17 rely on two key assumptions:
(1) The heats of vaporization are the same for all compo-

nents
(2) The sensible heat terms in the energy balance are neg-

ligible in comparison to the latent heat terms.
The first of these restrictions can be dealt with fairly easily
using a more complicated version of the addition of resistances
formula (Eq. 17) (see Section 7.3.1 of Taylor and Krishna3—
but which still requires neglect of the sensible heat terms in the
energy balance).

It might be supposed that we should take mass transfer into
account in the calculation of the residue curves themselves.
Toward this end there have been a few recent attempts to
develop a framework for the construction of RCMs that ex-
plicitly include mass transfer rate equations in the model,4-6

Such attempts are, as shown in the Appendix, seriously flawed;
mass transfer rate equations have no place in a model for the
residue curve map as it is described by Doherty and Malone.1

Packed columns

For continuous contact equipment the component material
balances for the vapor phase can be expressed in matrix form
as (see Section 12.3.1 of Taylor and Krishna3)

d� yV�

d�
� ��OV�� y* � yV� (18)

where � is a dimensionless height coordinate and ( y*) is the
column matrix of mole fractions of a vapor in equilibrium with
the bulk liquid. [�OV] is a matrix of numbers of transfer units
for a packed column defined by

��OV� � ct
V�KOV�a	Ach/V (19)

where a	 is the interfacial area per unit volume, Ac is the
cross-sectional area of the column, and h is the height of the
packed section. At total reflux the changes in composition of
the two phases are given by

dxi
L � �dyi

V xi
L � yi

V (20)

Thus, we may rewrite Eq. 18 in a form similar to Eq. 2 for the
residue curves

d� xL�

d�
� ��OV�� xL � y*� (21)

Tray columns

The composition of the vapor streams entering and leaving a
distillation tray are given by (see Section 13.3.1 of Taylor and
Krishna3 for the derivation)

� yL � yE� � 
�I� � �Q��� y* � yE� (22)

where the subscripts E and L refer to the entering and leaving
streams and [Q] is a square matrix defined by
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�Q� � exp����OV�� (23)

where [�OV] is a matrix of numbers of transfer units here
defined by

��OV� � ct
V�KOV�a	Achf/V (24)

where a	 is the interfacial area per unit volume of froth, Ab is
the bubbling area of the tray, and hf is the froth height.

Equation 22 relies on the assumption that [�OV] can be
assumed constant over the froth height, an assumption com-
monly made in modeling mass transfer in distillation. We
further assume that the liquid phase is well mixed in the
(horizontal) flow direction, but note that it is possible to relax
this assumption and obtain an expression with the form of Eq.
22 with Eq. 23 replaced by a more complicated result (see Eqs.
13.3.20 and following of Taylor and Krishna3).

The term on the lefthand side of Eq. 22 is the actual change
in composition over the froth height. We may exprress this
term as

� yL � yE� �
�� yV�

��
(25)

where �� is a change in stage number (�� � 1 here). To obtain
a set of autonomous differential equations we approximate the
composition difference with differentials

�� yV�

��
�

d� yV�

d�
(26)

Now, at total reflux in a tray column

� xL� � � yE� d� xL� � �d�yV� (27)

Thus, Eq. 22 could be approximated by

d� xL�

d�
� 
�I� � �Q��� xL � y*� (28)

A unified model

We now see that the equations that describe residue curves
and, under certain conditions, the composition trajectories in
both tray and packed distillation columns can be written in
compact n � 1 dimensional matrix form as

d� x�

d�
� ���� x � y*� (29)

where � is a dimensionless time or distance coordinate. In
addition, [�] is a square matrix of order n � 1 defined as
follows.

For Residue Curves

��� � �I� (30)

For Tray Columns

��� � �I� � �Q� �Q� � exp����OV�� (31)

For Packed Columns

��� � ��OV� (32)

For both tray and packed columns [�OV] may be calculated
from the addition of resistances formula (cf. Eq. 17 and Eqs.
13.3.20 and following of Taylor and Krishna3)

��OV�
�1 � ��V�

�1 �
V

L
�K���L�

�1 (33)

The matrices for the number of transfer units for the vapor and
liquid phases ([�V] and [�L], respectively) are defined for tray
columns by (cf. Eqs. 14)

��:i,i
�1 �

zi
�

�i,c
� � �

k�1
k�i

c zk
�

�i,k
� ��:i, j

�1 � �zi
�� 1

�i, j
� �

1

�i,c
� � (34)

The superscript �1 indicates that these expressions are for the
elements of the inverse matrices [��]�1. �i, j

� represents the
numbers of transfer units for the binary pair of components
identified by the subscript letters in the phase identified by the
superscript.

For packed columns the formulation here is essentially
equivalent to that presented by Pelkonen et al.7

The formulae for tray and packed distillation columns rest on
a number of assumptions:

(1) Total reflux operation.
(2) The molar flows in the column are constant (this requires

the latent heats to be equal and the sensible heat fluxes to be
negligible in comparison to the enthalpy fluxes).

(3) The temperature is assumed to be the boiling point of the
liquid mixture (because, otherwise, it would be undefined by
the equations given above).

(4) The vapor phase rises through the column in plug flow.
(5) The liquid phase is well mixed laterally.
Most of these assumptions can be relaxed fairly easily.

Consideration of the effects of nonconstant molar flows (as-
sumption 2 above) simply leads to a more complicated formula
for the matrix of overall mass transfer coefficients (see Section
7.3.1 of Taylor and Krishna3). We may also consider more
realistic liquid flow models (these lead to more complicated
relationships for [�]; see, for example, Section 13.3.3 of Tay-
lor and Krishna3). Sensible heat transfer between phases is very
small relative to latent heat transfers and the restriction implied
by assumption 3 above is not at all serious. The most serious
limitation here is that of total reflux operation; in fact, it is
straightforward (but beyond the scope of this paper) to consider
finite reflux operation. In a companion paper we look in detail
at the (sometimes significant) impact of mass transfer on dis-
tillation process feasibility and column design.
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Some analysis

The �i, j
� are positive (all i–j combinations). It can be shown

that the matrices of transfer units are positive semidefinite.3 [Q]
is also positive semidefinite. Thus, the stationary points of a
composition trajectory map (CTM) for tray or packed columns
are the same as the stationary points of the residue curve map
(RCM) (the pure components and azeotropes). In other words,
a CTM that accounts for mass transfer effects has the basic
structure of the RCM. For the CTM to be identical to the RCM
requires the [�] matrix to be diagonal with all elements on the
main diagonal equal ([�] must be a scalar times the identity
matrix). Let us see whether this is possible.

In the event that the binary numbers of transfer units all have
the same value (�i,k

� � � �, i � k � 1, 2, . . . , n; � � {V, L})
the resistance matrices are diagonal

��V� � �V�I� ��L� � �L�I� (35)

where [I] is the identity matrix. [�OV] will also be diagonal
with elements given by

1

�i,OV
�

1

�V �
KiV/L

�L (36)

The equilibrium ratios will have different values (except at
azeotropes when all of them are unity—a singularly uninter-
esting state of affairs, given that there is no mass transfer under
those conditions anyway). Thus, the assumption of equal mass
transfer coefficients in both phases is not sufficient for [�] to
take the required form.

However, if we also neglect the resistance to mass transfer in
the liquid phase, then � L3  and [�L]�13 [0]. Under these
conditions the matrix of transfer units does indeed become a
scalar multiplied by the identity matrix and we can write

��OV� � ��V� � �OV�I� (37)

where �OV � �a	H/uV is the representative number of transfer
units for the system. If, further, we define a new coordinate
variable as �* � �OV�, then Eq. 21 becomes (assuming, again
as is commonly done, that �OV is constant)

d� xL�

d�*
� � xL � y*� (38)

This is the matrix form of Eq. 2 for the residue curves! Thus,
to recover the residue curve the differences between the binary
numbers of transfer units (or mass transfer coefficients) have to
vanish. This special case is formally equivalent to the conven-
tional HTU/NTU (height of transfer unit/number of transfer
units) approach (see Section 7.5 of Seader and Henley8).
Pelkonen et al.7 derived similar equations as part of their
investigation into mass transfer in packed columns and drew
the same conclusion.

For a tray column, the same set of assumptions (�i,k
V � � V,

i � k � 1, 2, . . . , n, neglecting the liquid phase resistance) in
Eqs. 29 and 31 yields

��� � �1 � e��OV��I� (39)

The scalar multiplier (1 � e��OV is the Murphree efficiency,
which is the same for all components in this case. For this case
we may define a new coordinate variable as � � [1 �
exp(��OV)]�, in which case Eq. 29 collapses to Eq. 38.

Equations 29 and 31 for tray columns also become equiva-
lent to the residue curves when [Q]3 [0] (a null matrix). From
Eq. 23 we see that this requires [�OV] 3 []. This, in turn,
requires that �i,k

V 3  (i, k � 1, 2, . . . , n), in which case the
efficiencies of all components are unity and each tray repre-
sents an equilibrium stage. For the more usual case of finite but
unequal mass transfer coefficients [�] for a tray column is
analogous to a square matrix of efficiency-like quantities, (n �
1)2 in number. These entities are not the conventional Mur-
phree efficiencies (although there is a simple relationship be-
tween them; see Chapter 13 of Taylor and Krishna3).

Computational procedure

To compute the composition trajectories and residue curves
we need to augment the differential Eqs. 29 with Eq. 31 or Eq.
32 and Eqs. 33 and 34 for the matrix of transfer units, and an
appropriate correlation for the binary numbers of transfer units.
Equation 3, with an appropriate thermodynamic model, is
needed to compute the equilibrium vapor composition ( y*) and
bubble point temperature. This leads to a set of differential–
algebraic equations (DAEs). In the calculations carried out for
this investigation we integrated the set of DAEs using BE-
SIRK,9 which is a semi-implicit Runge–Kutta method origi-
nally developed by Michelsen10 and extended with an extrap-
olation scheme,11 thereby improving the efficiency of solving
the DAE problem. A Taylor approximation has been used for
the evaluation of exponential matrix in Eq. 23.

It must be noted that the matrix of overall mass transfer
coefficients (or that of overall numbers of transfer units) needs
to be reevaluated at every step of the calculation. The structure
of these matrices is a function of composition and changes as
the boundaries of composition space are approached. If the
matrix of overall mass transfer coefficients is maintained con-
stant, having been evaluated just once at some representative
average composition, then it is possible for the composition
trajectories to leave meaningful composition space (0 � xi � 1,
i � 1, 2, . . . , n).

Illustrative Examples

It follows from the above discussion that to investigate the
effects of finite mass transfer rates on composition trajectories
in distillation columns (at total reflux) we need to consider the
influence of differences between the component efficiencies, as
manifested by differences between binary M-S mass transfer
coefficients. Differences between binary mass transfer coeffi-
cients occur solely because of differences between the binary
M-S diffusion coefficients. The resistance to mass transfer in
the liquid phase is ignored in what follows, and the numbers of
binary transfer units for the vapor phase estimated from a
simple model

�i, j � C1�Di, j

Dref
�C2

(40)
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where Dref is a reference diffusion coefficient; a value of 1 �
10�5 m2/s was used here. The influence of various mixture
physical properties, column design, and operational variables
are lumped into C1 to which we will later assign a numerical
value. The constant C2 is a parameter of the system and the
hydrodynamic regime in the column. A value of 0.5 is sug-
gested (by mass transfer theory as well as by empirical data) for
distillation in the spray/froth regime on trays. A value of unity
is needed for the bubbling regime.12 The parameter C1 depends
on the operating conditions and can be manipulated by chang-
ing such parameters as the residence time and bubble size. In a
real distillation column this parameter may not be constant over
the entire height of the device.

Ethanol–water–acetone in a tray column

Our first illustration is with the ethanol–water–acetone sys-
tem. The ratio of largest to smallest vapor phase diffusion
coefficient is about 3 in this system. This is typical of systems
encountered in distillation operations (as opposed to gas ab-
sorption where the ratio of largest to smallest coefficient can be
somewhat higher).

Figure 1 shows the residue curves and composition vectors
for the ethanol–water–acetone system determined using the
procedure described above with the mass transfer coefficients
estimated from Eq. 40 with C1 � 0.65 and C2 � 1. Figure 1b
shows measured composition trajectories from Springer et al.12

and computed composition trajectories on either side of the
distillation boundary connecting the pure acetone vertex to the
ethanol–water binary azeotrope. Data from some additional
experiments on either side of the distillation boundary are
shown in Figure 2. Also shown is the computed equilibrium
distillation boundary. The important points here are as follows:

● The nonequilibrium and equilibrium distillation bound-
aries are not always the same (although their end points are
identical).

● The nonequilibrium model is a much more accurate rep-
resentation of the actual composition trajectory than is the
equivalent residue curve.

The component Murphree efficiencies are easily computed
from the results of a composition trajectory calculation. For a
three-component system we have

E1
MV �

�y1,L

�y*1
E2

MV �
�y2,L

�y*2

E3
MV �

�y3,L

�y*3
�

�y*1E1
MV � �y*2E2

MV

�y*1 � �y*2
(41)

where �yi,L � yi,L � yi,E � yi,L � xi and �y*i � y*i � yi,E � y*i
� xi. In general, these component efficiencies are not the same
for each component; they are also not required to take values
between zero and one because they are for a binary system and

Figure 1. Equilibrium residue curves (broken lines) and nonequilibrium composition trajectories (solid lines) for the
ethanol–water–acetone system.
Data from Springer et al.12

Figure 2. Experimental composition trajectories and
nonequilibrium and equilibrium distillation
boundaries for the ethanol–water–acetone
system.
The white and gray regions lie on opposite sides of the
nonequilibrium distillation boundary. Data from Springer et
al.12
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may indeed be found anywhere in the range � � Ei
MV � 

(there is abundant experimental evidence that demonstrates the
truth of this statement; see the compilation in Chapter 13 of
Taylor and Krishna3).

Figure 3 shows the calculated component efficiencies and
overall driving forces for this system. In the diagrams for water
and ethanol we see a line where the overall driving force is zero
(the ZDFL: zero driving force line); a short line near the top
corner for water and a long downward right sloping line for
ethanol. There is no ZDFL for acetone (except along the
ethanol–water boundary line). The component efficiencies pass
through a discontinuity along that line. On one side of the
ZDFL the efficiencies are greater than unity and on the other
side they are less than zero. In a large part of the composition
triangle the efficiency of water is about 70%, but the efficiency
of ethanol is much lower almost everywhere except for the
corner where water is in high concentrations. The efficiency of
acetone varies between 45 and 70%. The fact that the compo-
nent efficiencies change sign on either side of the ZDFL means
there should be a change in direction of the composition curves
as they cut the ZDFL.

The unbounded nature of the component efficiencies sug-
gests that these quantities are perhaps not the best indicators
of the differences between equilibrium (residue) curves and
composition trajectories. The arithmetic average Murphree
efficiency also is excessively sensitive to very large positive
or negative efficiencies that can arise when one of the
component driving forces is vanishingly small; something
better is needed.

A new type of distillation efficiency

The fragment of composition space in Figure 4 clearly shows
that the differences between residue curves and composition
trajectories are characterized by the angle between the compo-
sition vectors and by their relative length. The latter, here
denoted by the Greek letter 	, is given by

	 �
�¥i�1

n ��yi,L�
2

�¥i�1
n ��y*i�

2
(42)

For a binary system Eq. 42 simplifies as follows

	 �
���y1,L�

2 � ��y2,L�
2

���y*1�
2 � ��y*2�

2 �
�y1,L

�y*1
� E1

MV � E2
MV (43)

That is, 	 for a binary system is equal to the Murphree effi-
ciencies of the two species. For multicomponent systems, 	 can
be thought of as an average efficiency for a multicomponent
system. Unlike individual component efficiencies in multicom-
ponent systems, 	 cannot be negative.

For a ternary system the angle � between the composition
change vectors can be calculated from

cos��� �
¥i�1

n �y*i�yi,L

�¥i�1
n ��y*i�

2 ¥i�1
n ��yi,L�

2
(44)

Figure 3. Component Murphree efficiencies of the ethanol–water–acetone system.
Shading denotes the magnitude of the overall driving force x � y*. The zero driving force line corresponds to an inflection in the composition
trajectories.

Figure 4. Illustration of the differences between the
equilibrium (residue curve) and nonequilibrium
composition vectors.
�	 is the projection of the angle between these vectors onto
the coordinate system used here.
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Contour plots of the composition vector angle and 	 for this
system are shown in Figure 5. The diagram clearly shows that
the angle between the composition vectors is very small at the
boundaries of the composition triangle as well as in the vicinity
of the distillation boundary (as should be the case, of course).
However, there is a much greater influence of mass transfer (as
measured by the angle between the vectors) in the central
portion of the diagram. In this (and all other illustrations shown
here) of the angle between composition vectors we define the
angle as positive when �y*1�y*2(E2

MV � E1
MV) � 0.

Figure 6 shows the contour plots for � and 	 in which we
have again used Eq. 40 for the calculation of the number of
transfer units, but in this case C2 � 0.5. This has the effect of
making the mass transfer coefficients (numbers of transfer
units) more nearly equal. The off-diagonal elements of the
matrix of transfer units will be reduced in magnitude compared

to the diagonal elements, and the mixture behaves more like
one in which all species have an equal facility for mass trans-
fer. In this case � is smaller and 	 does not vary so widely over
the composition space.

Methanol–water–methylacetate in a tray column

Figure 7 compares the composition trajectories and residue
curves for the methanol–water–methylacetate system. This sys-
tem features two binary azeotropes, methanol–methylacetate
and water–methylacetate, that are joined by a distillation
boundary.

The portion of composition space near the pure methylac-
etate vertex that includes the binary azeotropes and distillation
boundary is shown in Figure 8. We can see that the distillation
boundaries computed from the equilibrium and nonequilibrium

Figure 5. Contour plots for the ethanol–water–acetone system showing the vector angle � and the average efficiency.
Numbers of transfer units calculated from Eq. 40 with C1 � 0.65, C2 � 1.

Figure 6. Contour plots for the ethanol–water–acetone system showing the vector angle � and the average efficiency.
Numbers of transfer units calculated from Eq. 40 with C1 � 0.65, C2 � 0.5.
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models are different, although their end points are identical (the
binary azeotropes). The nonequilibrium profiles in this figure
were computed using Eq. 40 for the transfer units with C1 �
0.9 and C2 � 1.

Contour plots for � (left) and 	 are shown in Figure 9 for
three cases in which C1 � 0.9, C1 � 1.5, and C1 � 3,
respectively; C2 � 1 in all three cases. We see here that 	

increases as the number of transfer units increases (as it
should). 	 is close to unity throughout the composition
triangle for the case in which C1 � 3, even near the distil-
lation boundary. At the same time, � decreases as the
number of transfer units increases. Again, this is at it should
be, based on the fact that as the number of transfer units
increases the nonequilibrium composition trajectories be-
come more aligned with the equilibrium-based residue
curves.

The experimental work of Springer et al.13 for the water–
ethanol–methylacetate system confirms the need for including
rigorous Maxwell–Stefan equations in describing the compo-
sition trajectories during distillation in a tray distillation col-
umn. These experiments also demonstrate that classic EQ dis-
tillation boundaries can be crossed.

Efficiencies in a packed column

For a packed column the efficiency, defined by Eq. 42, has
a simple and appealing physical significance. The differential
arc length of the composition trajectory in composition space is
given by

ds � ��
i�1

n �
 yi���


� � 2

d� (45)

where s is the arc length. For short arc lengths the partial
derivatives in Eq. 45 may be assumed to be constant and we
may approximate the arc length of the composition trajectory
by

Figure 7. Equilibrium and nonequilibrium composition
trajectories for the methanol–water–methylac-
etate system.

Figure 8. Equilibrium and nonequilibrium distillation boundaries for the methanol–water–methylacetate system.
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�s � ��
i�1

n

��yi,L�
2�� (46)

This approximation (and that below) follows from the differ-
ential equations that describe the composition curves. The
relationship between the arc length and the numerator of Eq. 42
is clear. The denominator is related to the arc length of the
composition trajectory for what we refer to as a virtual column,
one in which all species have the same facility for mass transfer
([�] � [�OV] � � �[I]) and where � � � ��a	H/uV � 1. ��

is the mass transfer coefficient that makes the number of
transfer units for this virtual column equal to unity. The arc
length of the composition curve for this virtual column may be
approximated by

�s� � ��
i�1

n

��y*i�
2��� (47)

Thus, 	 simply is the local ratio of the arc length of the
composition trajectory to the arc length of the corresponding
virtual column: 	 � �s/�s� (after making the assumption that

the arc length is evaluated over the same height of packing, so
�� � ���).

For binary systems in packed columns the efficiency be-
comes

	 �
�2��OV�y*1�

2

�2����y*1�
2 � �OV (48)

Thus, the HTU is related to the average efficiency by HOV �
H/�OV � H/	 and assuming that the equilibrium line is straight
(with local slope m), we obtain the well-known relations be-
tween the NTU, HTU, HETP, and the number of equilibrium
stages

HETP � HOV

ln�m�

�m � 1�
�

H

	

ln�m�

�m � 1�
(49)

with the number of equivalent theoretical stages given by

N* �
H

HETP
� 	

�m � 1�

ln�m�
(50)

Figure 9. Contour plots for the methanol–water–methylacetate system in a tray column showing the vector angle �
(top row) and the geometric average efficiency (bottom row).
Numbers of transfer units calculated from Eq. 40 with three different values of C1 as shown.
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It should be noted that the composition trajectory of the
virtual column is coincident with a residue curve. Thus, in a
sense, the denominator in the definition of 	 is related to the arc
length of the corresponding residue curve. It should also be
noted that for a tray column the average efficiency can be
considered to be the ratio of the arc length of the actual
composition curve to the arc length of the composition trajec-
tory in a virtual tray column in which [�] � EMV

� [I], where
EMV

� � 1 � e��OV � 1. Thus the virtual tray column is an
equilibrium stage device and the composition curve for this
virtual tray column is also coincident with a residue curve.

Figure 10 shows the average efficiency and the vector angle
maps for the methanol–isopropanol–water ternary system in a
packed column. As in our illustrations for tray columns we
have used a simple correlation, Eq. 40, for the numbers of
binary transfer units. The efficiency maps demonstrate that the
packed column efficiency is directly proportional to the value
of the constant C1 (this would be expected in view of Eq. 48).
The vector angle maps show that the angle between composi-
tion vectors depends only on the exponent C2. In other words,
the composition trajectory itself is independent of the param-
eter C1. Composition trajectories for the methanol–isopropa-
nol–water ternary system are shown in Figure 11a. This figure
provides another illustration of the fact that the distillation

boundaries computed from the equilibrium and nonequilibrium
models may differ. Composition curves for the methanol–
isopropanol–acetone–water quaternary system in a packed col-
umn are shown in Figure 11b. Here we see that the nonequi-
librium trajectory ends up at the water vertex, whereas the
residue curve (corresponding to the composition trajectory for
the virtual column) ends at the isopropanol vertex! The exper-
imental data of Pelkonen et al.7 included in Figure 11 show that
the mass transfer model more accurately represents the com-
position trajectories. The data demonstrate crossing of the EQ
distillation boundary and not the NEQ distillation boundary.
This emphasizes the need for NEQ modeling to describe the
composition trajectories near the boundary region.

Conclusions

The standard model for residue curves as described by, for
example, Doherty and Malone,1 is completely consistent. Pub-
lished attempts to modify this model to take into account mass
transfer effects are flawed. A framework for constructing com-
position trajectories in tray and packed distillation columns at
total reflux and that take into account mass transfer has been
described in this paper. For packed columns the procedure is
essentially equivalent to that of Pelkonen et al.7

Figure 10. Contour plots for the methanol–water–isopropanol system in a packed column showing the vector angle
� (bottom row) and the geometric average efficiency (top row).
Numbers of transfer units calculated from Eq. 40 with three different values of C1 as shown.
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Residue curves and composition curves in tray and packed
columns at total reflux may be represented by the following
expression (in c � 1 dimensional matrix form):

d� x�

d�
� ���� x � y*� (51)

where ( y*) is the matrix of mole fractions of a vapor in
equilibrium with the liquid of composition (x) and where

For Residue Curves

��� � �I� (52)

For Tray Columns

��� � �I� � �Q� �Q� � exp����OV�� (53)

For Packed Columns

��� � ��OV� (54)

These formulas for tray and packed distillation columns rest on
the following assumptions:

(1) The resistance to mass transfer in the liquid phase is
totally negligible.

(2) The molar flows in the column are constant (this requires
the latent heats to be equal and the sensible heat fluxes to be
negligible in comparison to the enthalpy fluxes; the latter is
very likely in practice).

(3) The temperature of the system is the bubble point tem-
perature of the liquid phase.
The relaxation of the assumptions listed above requires only a
moderately more complicated numerical solution to the model

equations but would not be expected to lead to significant
differences in the results.

The stationary points of these equations are the same (pure
components and azeotropes). Thus, mass transfer effects do not
change the basic structure of the RCM. However, the bound-
aries computed from a mass transfer model might not be
identical to those computed from the RCM.

The packed and tray column composition trajectories col-
lapse to the residue curves when each species in the vapor
phase has an identical facility for mass transfer. That is, all
binary numbers of transfer units (mass transfer coefficients) are
equal.

�i,k
V � �V i, k � 1, 2, . . . , c (55)

The tray column composition trajectory also collapses to the
residue curve when the binary pair vapor phase mass transfer
coefficients (or numbers of binary transfer units) approach
infinity. Differences between binary pair (M-S) mass transfer
coefficients can lead to the composition trajectory taking a
direction different from that of the residue curve at the same
point in composition space. Differences between residue
curves and composition trajectories are characterized by the
relative length of and angle between the two composition
vectors. The relative length of the composition vectors can be
thought of as an average efficiency for a mixture of more than
two components. For both types of column this new definition
of efficiency has a simple and appealing physical significance:
it is the ratio of the arc lengths of the composition trajectory to
the arc length of the corresponding residue curve. For a binary
system in a tray column this geometric efficiency is equal to the
component Murphree efficiencies. For a binary system in a
packed column the geometric average efficiency is the overall
number of transfer units.

Figure 11. Composition profiles for ternary and quaternary systems in a packed column.
(a) Methanol–water–isopropanol system. (b) Methanol–water–isopropanol–acetone system. Experimental data from Pelkonen et al.7
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Notation

a	 � interfacial area per unit volume, m2 m�3

Ac � cross-sectional area of the column, m2

Ab � bubbling area of tray column, m2

ct � total concentration, mol m�3

C � numerical constants
D � Maxwell–Stefan diffusion coefficient, m2 s�1

EMV � Murphree efficiency
�Hi,vap � heat of vaporization of component i, J mol�1

H � height of packing, m
hf � froth height, m
h � heat transfer coefficient, J m�2 K�1 s�1

Ji � molar diffusive flux of component i, mol s�1 m�2

K � equilibrium ratio
[k] � matrix of multicomponent mass transfer coefficients, m s�1

[KOV] � matrix of overall multicomponent mass transfer coeffi-
cients, m s�1

M � molar hold up, mol
n � number of components

Ni � molar flux transfer rate of component i, mol s�1 m�2

[�OV] � matrix of overall multicomponent number of transfer units
P � pressure, Pa

[Q] � matrix defined by Eq. 23
q � heat flux, J m�2 s�1

R � gas constant, J mol�1 K�1

[R] � inverse matrix of multicomponent mass transfer coeffi-
cients, m�1 s

s � arc length of composition curve
T � temperature, K
t � time, s

V � molar vapor flow rate, mol s�1

xi � mole fraction of component i in liquid phase
yi � mole fraction of component i in vapor phase
y*i � vapor mole fraction of component i in equilibrium with

liquid
zi

� � mole fraction i in phase �

Greek letters

� � difference operator
	 � relative length of composition vectors defined by Eq. 42
� � dimensionless length coordinate

�i,k � binary pair mass transfer coefficient components i and k,
m s�1

[�] � matrix defined by Eqs. 30–32
� � dimensionless time

Superscripts

� � denotes phase (V or L)
L � liquid-phase quantity or property
V � vapor-phase quantity or property
� � property of virtual (reference) column in which all species

have an equal facility for mass transfer

Subscripts

E � entering
i, j, k � component number

L � leaving
OV � overall (pertaining to both phases)

t � total, summation over all components

Matrix notation

[ ] � square matrix of order n � 1
[ ]�1 � inverse of a square matrix

( ) � column matrix of dimension n � 1
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Appendix: More on Residue Curves

In this appendix we review three attempts to incorporate
mass transfer rate equations in the calculation of residue
curves.

Sridhar et al.5 model

Sridhar et al.5 begin their analysis of simple batch evapora-
tion in much the same way, as do all others, with the differ-
ential material balance for the liquid phase (expressed here in
a form slightly different from, but formally equivalent to, that
in Sridhar et al.5)

d�Mxi
L�

dt
� �Ni

La (A1)

where M is the liquid holdup, xi
L is the bulk liquid composition,

Ni
L is the molar flux of species i leaving the liquid phase, and

a is the area of the vapor liquid interface.
The component material balance for the vapor phase is5

Vyi
V � Ni

Va (A2)

It follows from Eq. A2 that the bulk vapor composition is given
by the ratio of fluxes

yi
V � Ni

V/Nt
V (A3)
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where Nt
V is the total molar flux. Equation A3, analogous to the

conditions at the top of a vertical tube condenser where there is
not yet any liquid condensate and the composition of the first
droplet, is given by the ratio of molar fluxes (see Chapter 15 of
Taylor and Krishna3). However, there are some more interest-
ing consequences. If we combine Eq. A3 with the Maxwell–
Stefan Eq. 8, assuming that the binary mass transfer coeffi-
cients are the same for all pairs of species, we will find that �yi

� 0. Further, if the latent heats are equal (often assumed to be
true in distillation) then, as discussed in the body of the paper,
the total molar flux will be zero and the individual species
fluxes will be zero! This implies (see Eq. A1) that the compo-
sition of the liquid phase does not change at all!

Clearly these results are at odds with our intuitive under-
standing of what happens as we heat a flask containing our
liquid mixture. We are still in a predicament, even if do not
assume the partial molar enthalpies are equal, but neglect the
sensible heat terms (a simplification often made)

�
i�1

n

Ni�Hi,vap � 0 (A4)

This is the relationship used by Sridhar et al.5 and implies
that the molar fluxes have mixed signs (given that the heats of
vaporization have the same sign). That is, some components
would evaporate, whereas others would be condensing. But
from where do they condense? A possible conclusion is that the
sensible heat transfer terms must not be ignored and evapora-
tion cannot be an isothermal process. In fact, evaporation often
is modeled as a nonisothermal process (see, for example,
Mills14). In such models it is often assumed that a liquid
evaporates into a gas (such as a pool of water into air or a liquid
droplet into a gas stream). The solubility in the liquid phase of
the gaseous components is so low that these latter components
are assumed to exist only in the gas phase. However, it is
important to note that the liquid phase does not evaporate into
nothing. Again, this is analogous to the situation in condensa-
tion where the sensible heat transfer terms must have a mag-
nitude sufficient to cause the nonzero molar fluxes to have the
same sign (direction) (Chapter 15 of Taylor and Krishna3).

Let us consider, once again, the actual situation at hand. The
temperature of the liquid in the heated flask continues to
increase until the mixture reaches its boiling point, at which the
first infinitesimally small bubbles of vapor are created. The
composition of the vapor in these tiny bubbles is indeed that of
a vapor in equilibrium with the liquid. If, as is assumed by the
standard model of an RCM given by Doherty and Malone,1 the
vapor is removed immediately from any further contact with
the liquid, then no further mass transfer can take place. The fact
that the rate equations are not needed thus should not come as
a complete surprise, and the model as posed by Doherty and
Malone1 is completely consistent.

The above demonstration of the inconsistency in a published
nonequilibrium model for an open evaporation rests on an
assumption that all species have the same facility for mass
transfer. This is unlikely in practice. However, any consistent
mass transfer model must allow for that possibility, no matter
how unlikely that actual occurrence may be in practice. In any
event, we would reach the same conclusion (�yi � 0) even if
we use the complete set of M-S equations.

One way out of the difficulties elucidated here is to not
require the continuity of fluxes across the vapor–liquid phase
boundary. In that event, we would have to consider accumu-
lation of material in the interface itself. Most chemical engi-
neers shy away from attempting to deal with that eventuality in
an engineering model!

The Silva et al.6 model

The analysis developed above strongly suggests that a recent
paper by Silva et al.6 would also appear to be incorrect. Silva
et al.6 begin from the material balance Eqs. 1 and A2, and the
following expression for the molar flux in the vapor film

Ni
V �

1

RT
ki

V�PIyi
I � Pyi

V� (A5)

where PI is the pressure at the vapor–liquid interface and P is the
pressure in the bulk vapor. Equation A5 is a somewhat uncon-
ventional form for the vapor-phase rate equation but it can be
written in the following equivalent, and more recognizable, form

Ni
V �

1

RT
ki

V� pi
I � pi

V� (A6)

There is nothing particularly unusual about the choice of partial
pressure driving forces for gas-phase mass transfer. It should
also be noted that Silva et al.6 neglect the liquid-phase resis-
tance to mass transfer in their model (there is nothing unusual
in that assumption either).

Silva et al.6 state that because they do not consider the
energy equation, their development applies to isothermal pro-
cesses. This is misleading; the interfacial energy balance ap-
plies to isothermal processes just as much as it applies to
nonisothermal processes. Their calculations are carried out at
constant (specified) temperature. The consequence is that the
pressure (rather than the temperature) must be determined during
the calculations. There is nothing fundamentally wrong with this
procedure, although residue curve calculations normally are car-
ried out at constant (specified) pressure (if for no other reason than
that it is rather more useful to process design than is an isothermal
RCM). What is very unusual is the assumption by Silva et al.6 that
the total pressure at the interface differs from that in the bulk vapor
phase. In their procedure Silva et al.6 calculate the interface
pressure from a standard bubble point calculation. Because their
illustrative calculations are for ideal systems only, the interface
pressure is calculated directly using an expression that can be
derived using Raoult’s law

PI � �
i�1

n

xi
LP*i (A7)

where P*i is the (known or easily estimated) vapor pressure of
species i at the specified system temperature. The pressure in
the bulk vapor phase is calculated from
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�
i�1

n ki
VPIyi

Ia

RTV � ki
VPVa

� 1 (A8)

This relation, derived from the fact that the mole fractions in the
bulk vapor phase must sum to unity, normally will lead to a bulk
vapor-phase pressure that differs from that at the surface. Al-
though it is entirely to be expected that there will be partial
pressure differences over the film, total pressure changes normally
lead to bulk fluid flow, not to mass transfer by molecular diffusion.
In fact, it is far more likely for the process to be isobaric, than for
it to be isothermal; pressure equilibrium normally is established
fairly rapidly in any real process. It is standard practice in mass
transfer models to assume that the pressure is constant, at least
over any thin film adjacent to a phase boundary. Thus, their model
is highly unusual to say the least.

Silva et al.6 state that their model is equivalent to that of
Doherty and coworkers if the process is isobaric (rather than
isothermal) and the vapor flow is zero. This is incorrect. It may
be true that Doherty and many others compute RCMs at con-
stant pressure (for the reasons given above), but that does not
mean that the vapor flow rate is zero because that requires the
liquid composition to remain constant so as not to violate the
bulk liquid material balance Eq. 1.

We could (and should) assume constant pressure over the
film, in which case the rate Eq. A6 simplifies to

Ni
V � ct

Vki
V� yi

I � yi
V� (A9)

where ct
V � P/RT is the molar density of the vapor phase as

given by the ideal gas equation of state. This is the dilute
solution approximation of the M-S equations, valid when all
species but one are present in very low relative amounts (see
Chapters 6 and 8 of Taylor and Krishna3). Equation A9 is very
widely used in mass transfer modeling (even in conditions for
which it does not apply). Let us further assume that the heats of
vaporization are the same for all species (we admit that this
might be unlikely, but it is a possibility that we must be able to
accommodate); then the simplified energy balance becomes

�
i�1

n

ki
V�yi � 0 (A10)

However, because the mole fraction driving forces sum to
zero, this relationship cannot always be satisfied unless all of
the mass transfer coefficients have the same value. The real
problem is the use of Eq. A9 for each species in the mixture. In

fact, only n � 1 mass transfer rate equations can be used in a
mass transfer model. Although it appears as though Silva et al.6

integrate the requisite number of n � 1 combined material
balance/rate equations, their entire procedure requires values
for n mass transfer coefficients (see Eq. A8). In their illustrative
calculations for three component mixtures, Silva et al.6 assign
numerical values to three vapor-phase mass transfer coeffi-
cients (they are provided in the figure captions). In all but one
case, the numerical values differ from each other, although in
no case do they satisfy Eq. A10. In one of their examples, the
ratio of largest to smallest mass transfer coefficient is no less
than 4 orders of magnitude. This ratio is at least 2.5 orders of
magnitude larger than anything that could be encountered in
any real mixture! It is worth noting that the M-S equations
correctly sum over all species to zero, provided only that the
values of the binary M-S mass transfer coefficients satisfy the
symmetry requirement �i,k

� � �k,i
� .

In view of the foregoing inconsistencies in their model and
calculation procedure, we believe that the computational re-
sults and conclusions of Silva et al.6 should be regarded as
incorrect.

Castillo and Towler4 model

The compositions of the vapor and liquid phases leaving a
tray in a real distillation column are not in equilibrium with
each other. One way to account for departures from equilib-
rium in tray distillation columns is through the use of an
efficiency factor. Castillo and Towler4 use a Murphree-type
efficiency and write (for total reflux conditions)

yi � �1 � Ei
MVKi � Ei

MV� xi (A11)

This is the relationship used by Castillo and Towler4 in con-
junction with the material balance (Eq. 2) to relate the compo-
sition of the vapor and liquid phases. Assuming (or computing)
values for the component efficiencies allows us to integrate the
differential material balance relations.

The problem with this approach is that the above expression
applies to a steady-state countercurrent flow process in which
vapor and liquid phases are deliberately brought into contact
with one another. This is very different from the model of
simple distillation described by Doherty and Malone.1 How-
ever, there is no similar inconsistency in the use of an effi-
ciency model in their calculation of distillation lines. Their
method then bears a relationship to that described in this paper,
except that the method described here does not have to deal
with unbounded efficiencies.

Manuscript received Dec. 12, 2003, and revision received Apr. 15, 2004.

3148 AIChE JournalDecember 2004 Vol. 50, No. 12


