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Condensation of Vapor Mixtures. 1 Nonequilibrium Models and 
Design Procedures 
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Nonequilibrium models of multicomponent condensation are reviewed with particular attention to the various ways 
in which the rates of condensation can be calculated. Ways of solving the mixed set of differential and algebraic 
equations that constitute the model are discussed, and it is suggested that differential conservation equations be 
approximated by finite differences and the resulting set of only algebraic equations solved simultaneously (using 
Newton's method) with the nonlinear equations representing the processes of interphase transport and interfacial 

' equilibrium. WRh regard to the various models of vapor-phase transport, it is shown that simple effective diffusivity 
models may lead to significant over- or underdesign when compared to more soundly based models which take 
vapor-phase diffusional interaction effects into account. I t  is also demonstrated that there is little to distinguish 
models based on the use of the Chilton-Colburn analogy to obtain the heat- and mass-transfer coefficients from 
turbulent eddy diffusivity models when both are used to predict the performance of multicomponent condensers. 

Introduction 
Condensation of vapor mixtures is an operation of great 

significance in the chemical process industries. The two 
words "vapor mixture" cover a wide range of situations. 
One limit of this range is one in which all components have 
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* Present address: General Electric Corporate Research and 
NJ 07974. 

Development, Schenectady, NY 12301. 

boiling points above the maximum coolant temperature; 
in this case, the mixture can be totally condensed. The 
other limit is a mixture in which at least one cqmponent 
in the initial vapor stream has a boiling point lower than 
the minimum coolant temperature and, also, is negligibly 
soluble in the liquid condensate formed from the other 
components and hence cannot be condensed at  all. Ex- 
amples of such components include nitrogen and helium. 
An intermediate case of some importance is typified by 
a mixture of light hydrocarbons in which the lightest 
members often cannot be condensed as pure components 
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at  the temperatures encountered in the condenser but, 
instead, will dissolve in the heavier components. In each 
of these cases, the vapor mixture may form a partially or 
totally immiscible condensate. 

Existing methods for designing heat exchangers to 
condense multicomponent mixtures are of two basic kinds: 
equilibrium methods, such as those of Kern (1950), Silver 
(1947), and Bell and Ghaly (1972), and the differential or 
nonequilibrium methods that have developed following the 
original work of Colburn and Drew (1937). In the latter 
class of methods, a set of one-dimensional differential 
material and energy balances is integrated numerically 
along the length of the condenser. Each step of the in- 
tegration requires the local mass- and energy-transfer rates 
to be calculated by using, for example, equations based on 
a film model (Colburn and Drew, 1937; Schrodt, 1973; 
Price and Bell, 1974; Krishna et al., 1976; Krishna and 
Panchal, 1977; Krishna, 1979a; Rohm, 1980; Bandrowski 
and Kubaczka, 1981; Webb and McNaught, 1980; Webb 
and Sardesai, 1981; Webb, 1982; Taylor and Noah, 1982; 
Shah and Webb, 1983). Still more sophisticated none- 
quilibrium models based on boundary layer theory are 
limited primarily to describing the condensation of binary 
vapors or of one vapor in the presence of a noncondensing 
gas. Extensions of the boundary layer models to multi- 
component systems are few in number (Taitel and Tamir, 
1974; Tamir and Merchuk, 1979; Sage and Estrin, 1976) 
and have not been developed to the point where they could 
be used in the design of heat exchangers of complex ge- 
ometry. While the equilibrium methods are widely used 
(the reasons being because they are simple, rapidity in 
computation and because there is no need to compute 
intermediate vapor compositions or to obtain diffusivity 
data), the one-dimensional nonequilibrium methods are 
more soundly based and appear to be attracting increasing 
interest (see, for example: McNaught, 1983a,b; Owen and 
Lee, 1983; Butterworth, 1983). It is interesting to observe 
that Butterworth (1983) has included a summary of both 
the equilibrium and the one-dimensional nonequilibrium 
approaches in his chapter on condensation in Vol2, which 
covers the fundamentals of fluid mechanics and heat 
transfer, of the recently published “Heat Exchanger Design 
Handbook” (Schlunder, 1983), whereas Vol 3, which 
presents design procedures for heat exchangers of all kinds, 
includes only a procedure based on the equilibrium 
methods in the chapter on condensers. It is our belief that 
it will be only a short time before the more fundamental 
nonequilibrium models are accorded a section of their own 
in future editions of Vol 3. 

It is the objective of this paper to describe a new vari- 
ation on this latter class of models, to discuss an efficient 
method of solving the nonlinear algebraic equations that 
constitute our model, and, finally, to present some nu- 
merical examples that demonstrate the features of the 
models. In particular, we compare the predictions of the 
various multicomponent film models to the recently de- 
veloped turbulent eddy diffusivity model of Krishna 
(1982). In part 2 of this series, we show that the most 
rigorous models do a better job of predicting the per- 
formance of some test condensers. 

Model of Multicomponent Condensation 
A schematic representation of a short section of a single 

condenser tube is shown in Figure 1. The heat lost by the 
vapor, thereby causing some of it to condense, is trans- 
ferred through the condensate, through the tube wall, and 
into the coolant. The coolant may flow cocurrently with 
or countercurrently to the vapor and liquid streams which 
are flowing cocurrently along the tube. 

A / I -rv 

A + dA I I \ I 
Figure 1. Schematic representation of a section of a condenser. 

Material and Energy Balance Relations. As always 
with chemical process calculations, we start from the ap- 
propriate material and energy balances which, here, are 
written around a section of condenser tube of differential 
area (Figure 1). For the vapor phase, the component 
material balance reads 

dui _ -  dA - -N)’ i = I, 2, ..,, n 

and for the liquid phase 
dli 
- = NF 
dA i = 1, 2, ..., n 

The terms on the right-hand sides of eq 1 and 2 are the 
molar fluxes of species i in the vapor and liquid phases, 
respectively; we assume that transfers from the vapor 
phase to the liquid phase are positive. From a component 
material balance around the entire differential section, we 
conclude that 

NY = NF = Ni i = 1, 2, ..., n (3) 

Equation 3, which expresses the requirement that the 
fluxes be continuous across the vapor/liquid interface, will 
prove useful when the nonlinear equations from which the 
mass-transfer rates are calculated are solved numerically; 
more on this below. 

The differential energy balance for the vapor phase is 
dTV 
dA vcv- = -QV (4) 

where qv is the conductive heat flux out of the bulk vapor. 
The energy balance for the liquid phase is 

(5) 

where qL is the heat flux into the liquid and qw is the heat 
flux across the tube wall into the coolant. The energy 
balance for the coolant in this section of the condenser is 

L Cc- = f q w  (+, cocurrent; -, countercurrent) (6) 

From an energy balance around the entire differential 
section, we find that 

E V  = E’ = EL = E W  = E (7) 
where E is the energy flux, related to the conductive heat 
fluxes by (Krishna and Standart, 1979) 

dTL 
dA 

LCL- = qL - w 4 

d F  
P d A  

n 

i = l  
E = q + xNig, (8) 

gi is the partial molar enthalpy of component i. Equation 
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The structure of the matrices [k"] and [@I is most easily 
defined by introducing a square matrix [MI which has 
elements 

8 can be written for each phase, vapor, condensate, and 
coolant (for which the second term drops out). Equation 
7 expresses the requirement that the energy fluxes be 
continuous across a phase boundary. Differences between 
the area of the vapor/liquid, liquid/wall, and wall/coolant 
interfaces are ignored in the present analysis; it would, 
however, be easy to allow for such variations. 

The balance equations presented above are quite inde- 
pendent of the methods used to calculate the mass- and 
energy-transfer rates. The equations that permit this 
calculation are the subject of the next sections. 

Mass Transfer in Multicomponent Gas/Vapor 
Mixtures. There are a large number of methods that 
could be used to calculate the mass-transfer rates in the 
vapor phase. The calculation of mass-transfer rates in 
multicomponent systems is complicated by the coupling 
between the individual composition gradients. This cou- 
pling gives rise to various interaction effects such as reverse 
or osmotic diffusion that are not possible in binary systems. 
Most prior work in this area has been carried out by using 
rate equations based on a film model of steady-state 
one-dimensional transfer (see the list of citations in the 
Introduction). Even for this, the simplest of all models 
of mass transfer, there is, rather, more than one way of 
performing the calculations. The methods fall into three 
categories: 

(i) The first is methods of the effective diffusivity type 
(which neglect interaction effects) with the molar fluxes 
given by 

(9) NY zs c:kxffEi,ff(YY - yf) + YYNY 
i = 1, 2, ..., n 

Eieff = ai,ff/(e*-ff - 1); @i,ff = Nr/(c?kxff) 
where kxff is an effective mass-transfer coefficient, a 
function of an effective diffusivity, Dkff (Bird et al., 1960). 
The effective diffusivity itself may be defined in a number 
of different ways (see Smith and Taylor (1983) for a com- 
parison of methods); a common choice, because it repre- 
sents an exact definition of the effective diffusivity for 
dilute gases-a situation sometimes approached at  the 
condenser outlet-is to take Dkff as Bin. Webb et al. (1981) 
discuss the conditions which must prevail in order that eq 
9 be an adequate representation of the more rigorous 
methods discussed below. One of them is that aieff be less 
than 0.4. This value is frequently exceeded in our con- 
denser simulations. 

(ii) The second is methods which take interaction effects 
into account and which are implicit in the molar fluxes NY. 
The method of Krishna and Standart (1976), based on an 
exact solution of the Maxwell-Stefan equations, and the 
solution of the linearized equations due to Toor (1964) and 
to Stewart and Prober (1964) are in this category. In these 
methods, the mass-transfer rates are obtained from a 
matrix equation of the form (Krishna and Standart, 1979) 

(10) 
where [kt] is a square matrix of the order n - 1 of mul- 
ticomponent mass-transfer coefficients. [ k t ]  can be 
written as the product of a matrix of low-flux mass-transfer 
coefficients and a matrix of correction factors [E] 

with 

(Nv) = c:[k+](YV - y')+ NYCyv) 

[k+] = [kv][E] (11) 

(12) 

and where [@I is a matrix of mass-transfer rate factors. 

with [E] given by 

[E] = [@]{exp[@] - [Ill-' 

k# i  

The Xi:s in eq 13 and 14 are binary mass-transfer coef- 
ficients; that is, they are the mass-transfer coefficients that 
would be used in the calculations if the vapor phase con- 
tained just two species. 

In the method of Krishna and Standart, [k"] is equal 
to [MI-' with mi equal to y)' and [a] is equal to [MI with 
mi = N)'/cY. In the linearized theory, [kv] is equal to MI-' 

(iii) The third is methods which account for interaction 
effects but which do not require an a priori knowledge of 
the mass-transfer rates themselves. There are two methods 
in this category, due to Krishna (1979b) and to Taylor and 
Smith (1982) (as a generalization and modification of a 
method due to Burghardt and Krupiczka (1975)). The 
fluxes are obtained from an expression of the form 

with mi = yiav and [@I is equal to [m with mi = yiJVt L / c y .  

Here, [Kv] is a matrix of multicomponent total mass- 
transfer coefficients (see Smith and Taylor (1983) for 
possible structures of [ P I )  and E is a scalar correction 
factor (unity in the method of Krishna (1979)) that de- 
pends only on the boundary conditions and flux ratios. 

The binary mass-transfer coefficients -Xi, appearing in 
equations 13-15 usually are estimated from an appropriate 
correlation of, for example, the Chilton-Colburn j-factor 
type 
st, = x ~ ~ / ( v / A , )  = (f/2)sCi;2/3 = u / 2 ) ( p t a ) i j / p ) 2 / 3  

(16) 
where f is the friction factor, a function of the Reynolds 
number, and where A, is the cross-sectional area for 
downstream flow. 

Another way of estimating [kv) for use with the line- 
arized equations is to generalize the Chilton-Colburn 
analogy as (Stewart and Prober, 1964) 
[Stl = tkvl / ( V / A , )  = V/2) [SCI-'/~ = (f/2N[Dlpt/r12~3 

(17) 
where [D] is the matrix of multicomponent diffusion 
coefficients relative to the molar average velocity (NY/ct). 
For gas mixtures, [D] is equal to [MI-' defined by eq 13 
and 14 if the X,'s are replaced by the binary diffusion 
coefficients ai? [D] should be evaluated at  a composition 
that is the average of the bulk and interface compositions. 
If eq 17 is used to obtain [kv], the rate fador matrix should 
be calculated from [@I = N~[KV]-l/ct. 

A fundamental objection to the use of the Chilton- 
Colburn analogy in order to obtain the matrix of mass- 
transfer coefficients may be raised on the grounds that it 
does not correctly allow for the decreasing influence of 
coupled diffusion effects as the level of turbulence increases 
(through increasing the Reynolds number). It is easy to 
check, using equations 12-14 and 16, that the ratio of 
mass-transfer coefficients k;/kl is independent of the 
numerical value of the Reynolds number. In fact, turbu- 
lent transport of mass is not species-specific, and this ratio 
should decrease as the Reynolds number increases. 
Krishna (1982) has developed a model of multicomponent 
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mass transfer in which the contributions of molecular and 
turbulent diffusion are separately allowed for. The final 
expression from which the muss fluxes, ni, are calculated 
is 
(nV) = pt [k; ] (wV - w') + nt(wv) = 

pt[kz][X](wv - w') + n,(oV) (18) 

where the wi are mass fractions and where [kz] the matrix 
of low-flux mass-transfer coefficients in the mass frame 
of reference is obtained from 

[Stl-l = (2/f)[I] + 
5(2/f)'/2([Sco] - [I] + In [[I] + 5/6[Sco - 4)) = u[kz]-' 

(19) 

Here, [Sc0]-' = [ D O ] p t / p  where [Do] is a matrix of multi- 
component diffusion coefficients relative to the mass av- 
erage velocity. The matrices [D] and [DO] are related by 
the transformation (Krishna and Taylor, 1985) 

[DO] = [BO]-'[x][w]-'[D][w][x]-'[BO] (20) 

The elements of the matrix [B,] are given by 

The correction factor [a] is still given by eq 12 but the 
matrix of rate factors [a] is given by 

[@I = [kXl-'.t/Pt (22) 

It is important to recognize a number of essential dif- 
ferences between the film models and the turbulent eddy 
diffusivity model of Krishna (1982). First, the film models 
are based on the assumption of constant molar density, 
whereas the turbulent eddy diffusivity model requires that 
the mass density be assumed constant. Second, a 
knowledge of the velocity profile in the thin region close 
to the interface is not necessary in the film models; in the 
turbulent eddy diffusivity model, the variation with pos- 
ition of the turbulent eddy diffusivity model and the ve- 
locity profile must be known in order that the integration 
of the continuity and diffusion equations be carried out. 
Thus, if we use the Von-Karman velocity profile, we obtain 
eq 19 above for the mass-transfer coefficient matrix [kv]. 
Other velocity profiles yield different expressions for the 
mass-transfer coefficient matrix (see Krishna and Taylor 
(1985) for details). Finally, as stated above, the turbulent 
eddy diffusivity model predicts that the degree of inter- 
action between the individual composition gradients should 
decrease as the Reynolds number increases. Krishna 
(1982) provides an illustrative example that shows that the 
turbulent eddy diffusivity models could predict directions 
of mass transfer for some species that are different from 
the directions predicted by using the Chilton-Colburn 
analogy to calculate [k"] .  

The Chilton-Colburn analogy may also be used in the 
mass frame of reference; the mass fluxes are still iven by 
eq 18 but the mass-transfer coefficient matrix [k,] is ob- 
tained from 
[St] = [ k x ] / ( V / A , )  = ( f / 2 ) [ S ~ ~ ] - ~ / ~  = 

% 

( f /  2) ( [ ~ 0 1 ~ ~ / ~ ) z / 3  (23) 

There is some evidence to show that the various film 
models that take interaction effects into account give very 
similar results when used to predict the performance of 
a condenser (Krishna et al., 1976; Krishna, 1979a; Rohm, 
1980; Bandrowski and Kubaczka, 1981; Webb and Sar- 
desai, 1981; Taylor and Noah, 1982). The film models that 

neglect interaction effects may sometimes give results that 
are quite different from those obtained by the more rig- 
orous models (Krishna and Panchal, 1977; Krishna, 1979a). 
This paper is the first in which the turbulent eddy diffu- 
sivity models are compared to the film models in a simu- 
lation calculation. 

Mass Transfer in the Liquid Phase. A description 
of the mass-transfer process in the liquid phase is not often 
included in condensation calculations because the principle 
resistance to mass and energy transfer resides in the vapor 
phase. For completeness, we provide a brief summary of 
possible approaches to modeling the liquid-phase resist- 
ance. We assume that the condensate is completely mis- 
cible (see, for example, Sardesai and Webb (1982) if it  is 
not). 

All the methods described above for calculating mass- 
transfer rates in gas/vapor mixtures may, in principle, be 
extended to deal with the liquid phase. Thus, for example, 
the effective diffusivity approach would lead to a rate 
equation of the form 

Nk = ckkkffe:(xy - x!) + X!Nk (24) 
i = 1, 2, ..., n 

= Nf./(Ckkkff) 

= exp(@)/(exp(+k) - 1) 

A more rigorous approach to the calculation of the mass 
transfer in the liquid phase would lead to the rate equation 

(NL) = C:[hL][zL](x' - XL) + N k ( x L )  (25) 

which is the analogue of eq 10. Methods of calculating the 
various coefficient matrices involved may be derived as 
extensions of the methods presented above for multicom- 
ponent gas mixtures (see, for example, Krishna (1977, 
1979b)). The most uncertain part of the calculation is 
obtaining the liquid-phase diffusivity matrix; this is still 
a subject for research. We shall deal with just two situa- 
tions in this paper, the first in which the condensate is a 
binary liquid (for which the calculation of a diffusion 
coefficient and a mass-transfer coefficient poses no real 
problem-see below and part 2) and the second, a con- 
densate formed from members of a homologous series of 
hydrocarbons for which the effective diffusivity approach 
is quite satisfactory. 

Two limiting cases of condensate behavior may be de- 
rived from eq 24 and 25: 

(i) The liquid phase is completely mixed with regard to 
composition (but not to temperature), corresponding to 
infinite liquid-phase mass-transfer coefficients and the 
liquid composition calculated from a material balance 
along the flow path 

x:  = x c  = l ; /L  (26) 
(ii) The liquid phase is completely unmixed, corre- 

sponding to zero liquid-phase mass-transfer coefficients. 
In this case, the interfacial composition is given by the 
relative rates of condensation 

xf = N i / N t  (27) 

Most prior work in this area has used one or the other of 
these two limiting cases (see, for example: Schrodt, 1973; 
Krishna and Panchal, 1977). The former is applicable to 
vertical condensers where the two phases remain in close 
proximity, the latter to horizontal condensers where the 
condensate is continuously separated from the vapor (see 
for further discussion of this point: Schrodt, 1973; Webb 
and McNaught, 1980; Butterworth, 1983). Since there is 
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erence temperature (Tref) is immaterial, no condensate a t  the top of a vertical condenser, initial 
condensation rates have usually been calculated by using 
the no-mixing limiting case. In fact, it is easy to show that 
the two limiting cases (eq 27 and 28) are equivalent at the 
vapor inlet. There is some evidence that the final design 
is insensitive to whichever extreme is chosen if inert species 
are present in the vapor mixture (Webb and Sardesai, 
1981). We shall return to this topic later in this paper. 

Energy Transfer. As noted above, eq 7, the local en- 
ergy flux is made up of a conductive heat flux and a con- 
vective contribution due to the transport of energy by 
interphase mass transport. 

EV = qv + CN@Y(Tv) = E' = qIL + CNi@(T1) = 
n n 

i=l i=l 
n 

i=l 
EL = qL + CNi@(TL) = EW = qw (28) 

The film model of simultaneous mass and energy 
transfer leads to the following expression for the heat flux 
out of the bulk vapor, qv (Krishna and Standard, 1979) 

where tv is defined by 
n 

i=l 
tv = CNiC:i/hV (30) 

and where hV is the low-flux heat-transfer coefficient. The 
function eV(exp(tV) - 1) serves to correct the low-flux 
coefficient for the effects of simultaneous mass transfer 
and is known as the Ackermann correction factor. In 
practice, hV is estimated from an appropriate correlation, 
the jH half of the Chilton-Colburn analogy, for example, 

hV = .%I,,C,V,(LeV)2/3 (31) 

A turbulent eddy diffusivity model of simultaneous heat 
and mass transfer can easily be derived by paralleling the 
treatment of the corresponding mass-transfer problem, eq 
23, derived by Krishna (1982). The final result, see 
Krishna and Taylor (1985) for a derivation, is identical in 
form with eq 23; the only difference is that the low-flux 
heat-transfer coefficient is given by (cf. eq 31) 
StH-l = (puC,/hV) = 

(2/f) + 5(2/f)1/2(Pr - 1 + In (1 + YJPr - 1))) (32) 

For the liquid phase, a relation similar to eq 29 can be 
written 

qIL = h,L(T' - Tw); qL = hL(T' - TL) (33) 
where hk is the heat-transfer coefficient that accounts for 
the resistance to heat transfer in the entire condensate 
film. Here, we have ignored the high-flux correction to hL; 
the resistance to heat transfer in the liquid phase is very 
much smaller than in the vapor phase, and the correction 
factor would be very close to unity. The heat-transfer 
coefficient for the condensate can be estimated from, for 
example, Nusselts equation; other methods are discussed 
by Webb and McNaught (1980) and by Butterworth 
(1983). 

There is no mass transfer through the tube wall into the 
coolant; thus the energy flux EW is given by 

(34) 
where hC is the heat-transfer coefficient in the coolant. 

If we substitute eq 29, 33, and 34 into the energy flux 
continuity eq (7), we find, noting that the choice of ref- 

EW = qw = hc(Tw - F )  

n 

i=l  

t v (Tv - TI) + hVtV(TV - 7") + CNiXi = hv- 
(et'' - 1) 

hk(T' - Tw) = hc(Tw - F)  = h,(T' - F )  (35) 

where h, is an overall heat-transfer coefficient accounting 
for the resistances to conductive heat transfer in the 
condensate and in the coolant (the resistance in the tube 
walls will normally be neglible). 

l / ho  = 1/hk + l / hc  (36) 

h, can be estimated from correlations applicable to the 
geometry of the condenser. 

Interface Model. We adopt the conventional model 
of a phase interface, a surface offering no resistance to mass 
transfer and where equilibrium prevails. The usual 
equations of phase equilibrium relate the mole fractions 
on each side of the interface 

yt = Kixi i = I, 2, ..., n (37) 

where Ki are the equilibrium ratios defined in the usual 
way. 

This completes the formal development of the model; 
it remains to discuss how the equations can be solved. This 
is the subject of the next section. 
The Computational Problem 

The set of differential and algebraic equations given 
above must be solved numerically in general. The calcu- 
lations start at the inlet to the condenser where the vapor 
temperature, pressure, and composition are known and 
proceed until either a specified area has been reached (a 
simulation problem) or until a specified amount has been 
condensed (a design problem). Each time the derivatives 
are calculated, the nonlinear algebraic equations from 
which the fluxes are obtained must be solved. If the simple 
forward Euler method of integration is used, then the rate 
equations need be solved only once per step. However, the 
solution so obtained pertains to the conditions at the be- 
ginning of the step where driving forces and, consequently, 
condensation rates are highest. Thus, the use of only a 
"few" Euler steps-by, for example, Webb and McNaught 
(1980)- may result in overprediction of the condensation 
rates and to an underdesigned condenser. For greater 
accuracy, a larger number of steps will have to be taken 
or, alternatively, a higher order integration method will 
have to be used; fourth order Runge-Kutta, for example, 
used by Webb and Sardesai (1981) and by Schrodt (1973). 
In either case the nonlinear rate equations will need to be 
solved quite a number of times in order to obtain a safer 
design. One way to obtain a more conservative design 
using a "first-order'' method would be to use an implicit 
Euler method (Finlayson, 1980) and calculate the fluxes 
at the conditions pertaining to the end of the step where 
driving forces and concensation rates will be lowest. 
Perhaps a compromise solution in which the transfer rates 
are evaluated at some average conditions over the length 
of the step would be best. Either of these two approaches 
would lead to a more conservative design with relatively 
few integration steps. What we do is replace the deriva- 
tives in eq 1-6 by finite difference approximations (as is 
done in the simple Euler method); thus the balance 
equations become algebraic equations which can then be 
solved simultaneously with the rate equations to give the 
conditions at the end of the step. The difference between 
our approach and a correct implementation of the Euler 
method of integration is that we no longer need a separate 
routine for advancing the differential balance equations 
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and the fluxes can be calculated by using, as boundary 
conditions, any combination of the conditions at  the be- 
ginning and end of the step. In effect, we are dividing the 
condenser into a number of sections as shown on Figure 
2. The equations representing the j th  section (written in 
the form F(X) = 0 for reasons which the next section will 
make clear) are summarized below. 

Equations and Variables for a Section of the  Con- 
denser. The balance equations for the j t h  section are as 
follows (derived from eq 1-6 as described above): 
(i) material balance for the vapor phase 

A" 11 E U. IJ-1 - u.. LJ - N..AA. 11 J 0 i = 1, 2, ..., n (38) 

(ii) material balance for the liquid phase 

JNL 51 = lij-l - 1, + NijAAj = 0 i = 1, 2, ..., n (39) 

(iii) energy balance for the vapor phase 

GY E T'jCzj(Ty1 - TY) + qYAA, =O (40) 

with vj = 0.5(Vj + Vj-J 
(iv) energy balance for the liquid phase 

E t  E L.CL.(TL - TL) - (qL - q W ) a j  = 0 (41) I PI 1-1 I 

with Lj = 0.5(Lj + L j - l )  

(v) energy balance for the coolant 

GF E LcCgj(Tf-l - T f )  + qYJAA, = 0 (42) 

The subscript j denotes the conditions at  the end of the 
j th  section (second subscript if component properties are 
involved) unless it is attached to a physical property or to 
a quantity with an overline (the significance of these 
quantities is discussed below). 

These equations are augmented by 
(vi) rate equations for the vapor phase 

n-1 
C kijz(jix - y i )  - N .-v = 0 j"!! 2 N. .  - (43) LJ V tlk,l tlY iJ 

i = 1, 2, ..., n - 1 

if the Krishna-Standart or Toor-Stewart-Prober film 
models are used or 

n-1 

k = l  
23 E Nij - {p: C k&,ik(ax - W i )  - ntja$]/Mi = O (44) 

i = 1, 2, ..., n - 1 

if the turbulent eddy diffusivity models are used. 
(vii) rate equations for the liquid phase, for example 

3: E Nij - kkffEk(x! - fc) - N tl b L  1 = 0 

i = 1, 2, ..., n - 1 

(45) 

(viii) energy balance at  the vapor liquid interface 

+VI n 

Gf E hv-(T'y - Tj) + CNiXi - h,j(Tj - q) (46) 
(eCV1-1) i= 1 I 

(ix) energy balance at the wall 

&? E hF(TYJ - F) - hjL(Tj - y) = 0 (47) 

(x) equilibrium equations for the interface 

($1. U =KKx! . -y ; j  11 51 = 0 i = 1, 2, ..., n (48) 

In compiling the above list of independent equations, 
we have used the mass continuity equations (3) to elimi- 
nate one set of molar fluxes (Ny or e). The bulk- hase 

appearing in the rate equations may be calcdtea'by using 
the inlet conditions [e.g., y$ = uij-l/Vj-l], the outlet con- 
ditions [e.g., y: = uij/ y], or at some average condition [e.g., 
y: = O . ~ [ U ~ ~ - ~ / V . - ~  + uij/Vj]. All physical properties are 
evaluated at the ' h k  conditions used in the determination 
of the mass- and energy-transfer rates and are considered 
constant in the section. The interface state and wall 
temperature also are considered to be uniform in the j th  
section; thus the maw- and 'energy-transfer rate equations 
as well as the equilibrium equations need to be solved only 
once per step. 

Given the state of all streams leaving section j - 1, then 
there is a total of 5n + 3 unknown quantities for each 
section j .  These are the component vapor flow rates (u i j :  
n in number), the component liquid flow rates (Zij: n in 
number), the vapor temperature (TT), the liquid temper- 
ature ( T f ) ,  the interface temperature (Tj), the wall tem- 
perature (TT),  the coolant tem erature (e), the vapor 

liquid composition at  the interface (xf,: n - 1 in number), 
and the mass-trasfer rates (Nit n). d e  5n + 3 equations 
that permit the calculation of these unknowns are as 
follows: component material balances for the vapor phase 
(Mv: n), component material balances for the li uid phase 

uid-phase energy balance (Ef), the interface energy bal- 
ance (E;), the coolant energy balance (q), the interface 
equilibrium equations (Qf .: n),  the vapor-phase mass- 

liquid-phase mass-transfer rate equations (R;: n - 1 in 
number). 

The independent equations are ordered into a vector of 
functions as a 

conditions denoted by the overlines, y;, Tv f L  T j ,  E -  ?, 

composition at  the interface (yip p. n - 1 in number), the 

(Mi; f! n),  the vapor-phase energy balance ( E j ) ,  7 the liq- 

transfer rate equations (Rij: + n - 1 in number), and the 

(Fj)T 3 (A$, A&, ..., J N z j ,  A?,, Akj, ..., Akj, CY, &$, GF, 
Gr, 35, 98, ..., RX-Ij, Ef, Q!j ,  Q i j ,  ..., Qf-lj ,  Q f j ,  Bkj, 

j"k j ,  ..., nf;_lj, 
The vector of variables corresponding to this set of 
equations is 
(Xj)T E ( ~ l j ,  ~ 2 j ,  ..., unj, l l j ,  12j,  ..., I,, TY, T f , q ,  TF, 
NIj, N2j, ***,Nn-I j ,  Nnj, Y{j ,  A j ,  ~ n - l j ,  TI, X i j ,  X i j ,  

X L J )  

Solving the MERQ Equations. We now address the 
problem of solving what we refer to as the MERQ (an 
acronym for material balance, energy balance, rate, and 
equilibrium) equations represented by the function vectors 
(Fj). The equations are nonlinear (due to the presence of 
K values, enthalpies, and the mass- and energy-transfer 
rate terms) and must therefore be solved by some iterative 
method. Most of the methods described in the literature 
employ some kind of tearing strategy to solve the con- 
densation equations. Equation tearing involves iteratively 
solving a subset of the complete set of governing equations 
for a subset (the tear variables) of the complete set of 
unknowns. Within the loop that determines how the tear 
variables are to be reestimated, all other equations are 
satisfied exactly. Thus, if the remaining subset of equa- 
tions also requires iteration (or, possibly, further tearing), 
the end result is a series of nested iteration loops. For 
example, Krishna et al. (1976) solve the mass- and ener- 
gy-transfer rate equations (by repeated substitution of the 
N,)  and the vapor/liquid equilibrium equations (bubble 
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point calculations) within an outer loop that, in effect, 
solved the liquid mixing equations by using Newton’s 
method. The outer-loo tear variables were the n - 1 

of Price and Bell (1974) and of Webb and co-workers 
(Webb and McNaught, 1980; Webb and Taylor, 1982; 
Webb, 1982) involve up to three levels of iteration loop. 

One problem with tearing is the number of times 
physical properties must be evaluated (several times per 
outer-loop iteration) if temperature- and composition-de- 
pendent physical properties are used. It is the physical 
property calculations that generally dominate the cost of 
chemical process design problems (Westerberg et al., 1979) 
(the present problems are no exception). A second prob- 
lem can arise if the inner iteration loops are hard to con- 
verge. The mass-transfer rate equations, R:, can some- 
times be hard to converge by using repeated substitution 
of the Ni (Taylor and Webb, 1981), and the difficulties of 
converging bubble and dew point calculations are well- 
known. All these problems have been encountered in 
solving by tearing the condenation equations presented 
above. We wonder what point there is to requiring subsets 
of the complete set of equations to be satisfied exactly (by 
iteration) if the current estimate of the tear variables does 
not pertain to the solution. We suggest that a better 
strategy is to solve all the equations simultaneously by 
guessing enough unknown quantities to permit all other 
quantities appearing in eq 38-48 to be calculated explicitly 
and by not requiring any of the equations to be satisfied 
until complete convergence has been achieved. In the 
present case, this means solving the MERQ equations 
simultaneously for the vector of unknowns that gives (Fj) 
= (0). 

Having decided to solve all of the MERQ equations 
simultaneously, we must now choose a particular method 
to get us the solution. There are a great many methods 
that one may choose from (see, for example, the book by 
Ortega and Rheinbolt (1970)). However, we recommend 
that Newton’s method, or the so-called hybrid method of 
Lucia and co-workers (Lucia and Machietto, 1983; West- 
man, Lucia and Miller, 1984; Lucia and Westman, 1984) 
be used. A brief description of their method follows. 

The direct prediction Newton correction is given by a 
solution of the equations (F) linearized about the current 
estimate (xk) of ( X )  

(49) 
where [Jk] is the Jacobian matrix with elements 

J~~ = a F i / a x j  (50) 

If a problem with Newton’s method exists, it is the com- 
putation of [A. For most engineering problems of rea- 
sonable complexity, complete derivative information is 
rarely available in analytic form. Thus, finite differences 
must be used to approximate all or part of [J1. In the 
present case, these “unavailable” derivatives include de- 
rivatives of K values with respect to composition, deriva- 
tives of the mass-transfer coefficients with respect to the 
molar fluxes, and so on. Finite difference approximations 
to these derivatives are very expensive since many more 
physical property calculations are required. Moreover, it 
is not always a good idea to simply ignore these derivatives 
as this can increase the number of iterations needed or 
even cause failure (Lucia and Machietto, 1983). 

One way to avoid the repeated calculation of [J1 is to 
use one of the “quasi-Newton” methods (see Dennis and 
More (1977) for a recent review of these methods). The 
idea here is to approximate the Jacobian matrix in some 
way by using only an initial approximation to [J1 and some 

interfacial compositions xi. P Other tearing algorithms, t h w  

[ J k l ( X k + l  - xk) = -(Fk) 

information on the changes in ( X )  and (F) from one it- 
eration to the next. This can result in a very large re- 
duction in the computational cost per iteration. Unfor- 
tunately, there may be a penalty for approximating the 
Jacobian using a quasi-Newton formula. If the initial 
approximation is poor, a (much) larger number of itera- 
tions may be required or, worse still, convergence may 
never be achieved. Also, quasi-Newton methods are not 
scale invariant (Newton’s method is) and may, as a result, 
perform poorly on problems that are ill-conditioned. This 
is an important consideration in the present case; if SI 
units are used in the calculations, then the numerical 
values of the variables and functions in (F) vary over 10 
orders of magnitude (10-5-105). 

In the hybrid method of Lucia and co-workers, the Ja- 
cobian matrix is split into two parts, a computed part, [ ck], 
and an approximated [Ak] :  

[ J k l  = [ c k l  + LAkl (51) 

[ck] contains all the partial derivatives of (F) which can 
be obtained from analytical expressions. [Ak]  is made up 
of any partial derivatives that are difficult or impossible 
to obtain from analytical expressions. [C]  is computed in 
each iteration while [ A ]  only is updated from an initial 
approximation using a quasi-Newton method. The cor- 
rection to (xk) is given by eq 49 with [A given by eq 51. 
A step-by-step procedure for implementing the hybrid 
method can be found in the aforementioned papers by 
Lucia and others. We had earlier described the use of the 
hybrid method to solve only the equilibrium and rate 
equations and found it to be a robust and efficient pro- 
cedure (Taylor et al., 1983). Additional remarks pertaining 
to the use of the hybrid method to solve these equations 
can be found in that paper. We note here that including 
the material balance, or M, equations in the vector (F) only 
serves to increase the advantages of the hybrid method 
over all other methods that we have considered. 

Calculation Procedure. We are now in a position to 
summarize our recommended calculation procedure. The 
conditions of the entering streams (V,, uio, and T: and the 
pressure must be specified (Lo and li0 must also be specified 
if they are non-zero-see part 2). The coolant temperature 
at the vapor entrance end of the condenser is required if 
the coolant temperature is to be included as a variable (or 
else specified if it is not). The number of sections, s, must 
be known in advance as well as the area of each section 
(this can be calculated from the geometry of the condenser 
and must be fixed prior to performing a simulation cal- 
culation). 

The MERQ equations for step 1 are solved in order to 
obtain the conditions at  the end of section 1 and at  the 
beginning of section 2 and so on. If Newton’s method or 
the hybrid approach are used, this will require the calcu- 
lation of the function vector (F) at least once per iteration. 
A possible ropte is summarized below. Note that a t  any 
time, the discrepancy functions (F) are to be calculated 
by using the current values of the independent variables 
(X). This means that an initial guess of each quantity 
appearing in (X) must be supplied for section 1. There- 
after, good initial estimates of the unknowns for section 
j (j = 2, ..., s) become available from the solution to the 
equations for step j - 1. 

(i) Using the current values of the component flows at 
the end of the section, vi, and l i j ,  calculate the compositions 
of the bulk vapor and liquid streams; any combination of 
the following may be used as desired 
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(a) inlet 
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yY u . .  /v;-l; f L  1J = l . ,  CJ-1 / L .  1-1 
1J CJ-1 

(b) average 

(ii) In a similar way, calculate the bulk temperatures, 
TY. T?, and T!. 

J '... " 
(111) Calculate all physical and transport properties a t  

the required conditions. In some cases, film average tem- 
peratures and compositions may need to be used. These 
average conditions can easily be calculated with the in- 
formation presently available. 

(iv) Calculate the mass- and heat-transfer coefficients 
by using whatever method is preferred (see discussion 
above). 

(v) Calculate K values and latent heats of vaporization 
at  the current estimate of the interfacial conditions. 

(vi) Complete the calculation of the MERQ equations 
(38)-(48). 

Following the calculation of (F), the Jacobian matrix 
must be calculated as outlined above and the next estimate 
of (X) computed from the solution of the linear system 
(49). The calculations are then repeated until convergence 
of all functions has been obtained. In practice, this means 
converging the energy balances since these functions have 
numerical values far larger than any of the others. Once 
convergence has been obtained, the solution vector ( X * )  
is used to initialize the calculations for the next section. 
In this way, we proceed until the end of the condenser is 
reached. 

Some Variations on a Theme. There are many in- 
stances in which the equation and variable sets presented 
above can be simplified somewhat. We consider several 
special cases below. 

(i) One approximation that might be worth consideration 
is to set the condensate temperature to the arithmetic 
average of the wall and interface temperatures. If this is 
done, the liquid-temperature and liquid-phase energy 
balance can be removed from the set of independent 
varibles and equations, respectively. This leaves us with 
a total of 5n + 2 independent equations and variables per 
section: 

(Fj)T E (As, A;, ..., &yj, AFj, Ai,, ..., &kj, GY, GF, 
GjW, B;, B& ..., By-l,j, GI!, Q i j ,  Q i j ,  ..., Q;2X-1,jt Q i j ,  BFj, 

%$;, ..., B:-l j )  

(X;IT E (vi;, uZ;, ..., u,;, li;, lz;, ..., l n j ,  TY, q,TjW, NI;, 
I I Ny,  ..., Nn-lj, Nnj, y:;, yzj, . . a ,  yn-lj,  TJ, xi;, xij, e . . ,  xn-lj) 

It should be noted that this approximation is made in all 
the numerical simulations of multicomponent condensers 
described in this paper and in all the other special cases 
described below. 

(ii) If we choose to approximate the mass-transfer pro- 
cess in the liquid phase by one of the two limiting cases 
(eq 25 and 26), then the rate equations 72: need to be 
replaced by the mixing equations, X$. 

X$ = xj j  -x$ = 0 (mixed) (52) 

Xb = x t  -Nij/Ntj = 0 (unmixed) (53) 

(Fj)T E (As, A;, ..., &yj, Ab, A$, ..., Aij, GY, GF, 
GjW, 38, B;, .,., By-ij, Gf, Q i j ,  QI,, ..., Qi-ij, a:;, Xb, 

x:;, ..., ?&j) 

(Xj)' E ( V I ; ,  uzj, *.., unj ,  l l j ,  l z j ,  e.. ,  ln j ,  TY, T,TjW, NIj, 
I 1  I 1  I 

N2j3 ..., Nn-l,j, Nnj, Y l j ,  Y Z ~ ,  . * . t  yfi-lj, Tj, xij, xij, * * * ,  xn-1 j )  

In either case, we might choose to delete the xij and lij from 
the set of variables and compute them directly from eq 52 
and 53 which, therefore, would be removed from the set 
of independent equations. 

(F;)T E (As, ..., Alj, €7, GF, GjW, B?, ..., BY-Ij, Gf, Q i j ,  

..., QX-lj, Qij) 
(Xj)T 5 .*., unj, 7'7, T,  TT, Nlj, * * e ,  Nn-lj, Nnj, Y!j, 

..., yft-lj, TJ)  

(iii) If one component in the vapor is truly noncon- 
densable (or the calculations are to be made assuming that 
it is noncondensable), then the equations pertaining to that 
component (lets call it component n) will need to be 
modified. To start with, component n cannot, by defini- 
tion, be present in the condensate which, therefore, con- 
tains n - 1 species. The set of mass-transfer rate equations 
in the liquid phase must be reduced in number by one, and 
the flux N ,  dropped from the set of variables. Also, the 
equilibrium equation corresponding to component n and 
the liquid-phase composition xIj must be removed from the 
set of equations and variables. If, in addition, the con- 
densate is considered to be well-mixed or completely un- 
mixed, we are left with the following vectors of equations 
and variables: 

(Fj)' 3 (A$, ..., Axj, GY, E?, GjW, 35, ..., %:-1j, GI!, Q!j, 

..., Qfi-lji 

(X;)' = 
.-., unji TY, q, y, NI;, ..e, Nn-lj, Tf, Y;;, .Y;2X-lji 

Notice that the interface temperature, Tj, now is paired 
with the interface energy balance function EJ, not the 
equilibrium equation Qkj which has been dropped. As in 
all other cases, the interface mole fraction y', is computed 
from the requirement that the mole fractions sum to unity. 

(iv) If the wall temperature profile is known, as is the 
case in some of the test condensers described in part 2, 
then it is convenient to remove the coolant temperature 
and coolant energy balance from the sets of variables and 
equations. 

(F,)' E 

(At$, ..., &$, €7, 36, ..., Gf, Q j j ,  ..., c2;2X-lj) 

(Xj)T E (ul j ,  ..., un;, TY, Ni;, ..., Nn-ij, Ti, y:;, ..., ~ k - i j )  

where we have also incorporated the simplifications that 
were made in (iii) above. 

(v) The last (but by no means the least important) sim- 
plification that we sometimes make is to remove the vapor- 
and liquid-phase material balance equations (&:, &$ 
from the set of independent equations. These equations 
are linear if the fluxes Nij are included in the set of var- 
iables ( X i  (which, of course, they must be if the rate 
equations are to be solved simultaneously with the other 
equations). Thus, the balance equations (38) and (39) can 
be solved directly for the component flow rates at the end 
of the jth section given estimates of the molar fluxes and 
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energy balance reflects the area per pass. The energy 
balance at the wall also needs to be modified to allow for 
heat transfer to each pass. Thus, we have a total of 5c + 
4 independent equations and variables per section. The 
assumption of uniform interface and wall temperature is, 
no doubt, unrealistic and can be replaced if desired, the 
penalty being an increase (perhaps a large one) in the 
number of equations being solved. 

Both of the procedures discussed above for the single- 
pass exchanger can be adapted for the multipass device. 
If the former procedure is used, the guessed variable is the 
coolant exit temperature or the coolant turn temperature 
depending on whether the coolant enters (and leaves) at 
the vapor inlet end or not, 

Computational Results and Discussion 
We have carried out a very large number of simulations 

of multicomponent condensers using the model and cal- 
culation procedure descirbed above. Four example prob- 
lems only, adapted from the literature on multicomponent 
condensation, must suffice to illustrate the features of the 
model and calculation procedure. 

Problem 1 involves the condensation of methanol and 
water in the presence of air, a system studied earlier by 
Schrodt (1973) and by Krishna and Panchal (1977) and 
Krishna (1979). Problem 2 is similar to problem 1 but 
involves helium instead of air as the noncondensing species. 
This change serves to increase the importance of diffu- 
sional interaction effects which are quite considerable in 
this system (Krishna, 1979). Problem 3 involves the con- 
densation of a mixture of straight-chain hydrocarbon va- 
pors taken originally from Kern (1950) and reconsidered 
by Webb and McNaught (1980) who used an effective 
diffusivity model to calculate the vapor-phase mass- 
transfer rates. Problem 4 is a variation on a problem 
considered by Krishna et al. (1976); it involves the same 
hydrocarbons as problem 3 with the addition of hydrogen 
(which, in fact, has a significant effect on the results). 
Unlike Krishna et al., we do not consider hydrogen to be 
a noncondensing gas; it is, however, only sparingly soluble 
in the condensate. In all cases, physical and transport 
properties, K values, and enthalpies were calculated by the 
methods used by those who last considered the problems 
and, with appropriate modifications to out computer code, 
we are able to reproduce their results. The problem 
specifications are summarized in Table I. Figures 3-12 
present our solutions to these problems; the percentage 
of the vapor condensed, the composition of selected species, 
the temperatures are plotted as a function of condenser 
surface area for each problem in turn. In our discussion 
of these figures, we focus attention on the following: (i) 
a comparison of the noninteractive film models (the ef- 
fective diffusivity methods) with the film models that take 
multicomponent interaction effects into account (Krish- 
na-Standart, Toor-Stewart-Prober, Krishna (19791, and 
Taylor-Smith), (ii) a comparison of the molar frame models 
that use the Chilton-Colburn analogy to obtain the heat- 
and mass-transfer coefficients with the mass frame models, 
(iii) the influence of the model used to approximate the 
mass-transfer behavior in the liquid phase (Le. mixed, 
unmixed, and rate model), and (iv) the importance of step 
size and choice of bulk-phase conditions (i.e., inlet, outlet, 
or average) on the conservatism and accuracy of the cal- 
culation. 

Significance of Interaction Effects. In considering 
very many condenser simulation and design calculations 
(not just those reported here), we have yet to find an 
application where the differences between any of the molar 
frame models that account for interaction effects (Krish- 

the bulk conditions calculated as desired. The inclusion 
of linear equations in the vector of functions (F) does 
nothing to affect the rate of convergence since they are 
always satisfied on every iteration after the first. Including 
the linear equations in (9 increases the computational cost 
slightly but it does reduce the initial effort of deriving and 
coding expressions for the partial derivatives of (F) and, 
in our experience, can sometimes improve the stability of 
the hybrid method by allowing more complete expressions 
for the partial derivatives to be included in the computed 
part [C] and fewer derivatives in the approximated part 
[AI. 

The model presented above may also be used, with only 
two small changes, to describe a cocurrent separation 
process in, for example, an adiabatic wetted wall column. 
In this case, the energy balance equations for the coolant 
and at  the wall (eq 42 and 47) are dropped from the set 
of model equations and F and .crC are dropped from the 
set of variables. The energy balance for the liquid phase, 
eq 7, must be included here but is simplified by deleting 
the heat flux qw from the right-hand side. We shall, in- 
deed, solve the resulting set of equations in our simulations 
of some experiments to be described in part 2. 

Other ways to simplify the general model may also be 
derived. 

Counterflow and Multiple Passes. Thus far, we have 
focused on the initial-value problem where we specified 
the coolant temperature a t  the vapor inlet end of the 
condenser. In a counterflow exchanger, we will know the 
coolant inlet temperature, not the exit temperature, and 
so the procedure discussed above needs to be modified. 
Two possible approaches come to mind. First, we can 
guess the coolant exit temperature by using the method 
exactly as described above to predict, among other things, 
the coolant inlet temperature. Any discrepancy between 
the specified and calculated values is used as a basis for 
choosing a new coolant exit temperature and the procedure 
repeated until reasonable agreement is reached. The 
second approach is to solve the total of S(5c + 3) nonlinear 
equations for the entire device simultaneously (not just 
the equations for one section at  a time). In this case, the 
Jacobian is block-tridiagonal in structure. This is precisely 
what is found when the equations used to model multistage 
separation processes are solved simultaneously. The linear 
system (49) that results from this approach is efficiently 
solved by using one of several numerical methods (Wes- 
terberg et al., 1979). Of these two approaches, the former 
is easier to implement given a code for solving the ini- 
tial-value problem with exit temperature specified. The 
latter approach would be more efficient if a large number 
of sections were used to model the device. However, the 
problems being solved here are unlikely to be very large 
so we would advocate the former approach, particularly 
if a good initial estimate of the coolant exit temperature 
can be obtained. 

Multiple pass exchangers pose interesting modeling and 
computational problems; here we encounter cocurrent and 
countercurrent flow in the same device. An exchanger in 
which the condensing vapor is cooled by a coolant stream 
that takes two passes through the device provides the basis 
for illustrating a possible computational procedure. We 
will denote the temperature of the coolant leaving the jth 
section by 7' and T2, the second superscript denoting 
the pass number. For simplicity, we will assume here that 
the conditions in the vapor condensate side are uniform 
throughout the section. Thus, we need only one additional 
equation, an energy balance similar to eq 42 for the 
counterflow coolant pass, the surface area in each coolant 
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Figure 2. Model of a shell and tube condenser: (a) the entire 
condenser, (b) dividing the condenser into s sections, (c) a model of 
the j th  section. 
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Figure 3. Percentage condensed as a function of condenser 
length-example 1. Key to Figures 3-8 (-) molar frame film 
model; ( - - - )  mass frame model (turbulent eddy diffusivity and 
Chilton-Colburn) if different from molar frame model; (---) effec- 
tive diffusivity model. All linea are drawn through solutions obtained 
with condenser divided into 40 sections; (0) molar frame model with 
condenser divided into 5 sections. 

na-Standart; Toor-Stewart-Prober; Krishna, 1979; Tay- 
lor-Smith) are really significant. However, effective dif- 
fusivity methods may yield results that can differ quite 
markedly from the resulta obtained by using an interactive 
model. Figures 5, 6,9, and 11 can be used to determine 
the relative amounts of vapor that would condense in a 
device of given size. Consider problem 2 (for example): 
from Figure 6 we find that the tube length needed to 
condense 60% of the incoming vapor is 1.16 m predicted 
by using an interactive model but as much as 1.66 m 
predicted by using the effective diffusivity model, an in- 
crease in tube length of 43%! The temperature and com- 
position of the vapor- and coolant-leaving condensers of 
either size (or and other size for that matter) can be de- 
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Figure 4. Vapor temperature as a function of condenser length- 
example 1. 
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Figure 5. Condensate composition 88 a function of condenser 
length-example 1. 
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Figure 6. Percentage condensed as a function of condenser 
length-example 2. 

termined directly from Figure 7. The condensate com- 
position can be determined from Figure 8. For this par- 
ticular example, we find that the molar frame and mass 
frame models that account for interaction effects are in 
good agreement on all these quantities but the effective 
diffusivity method predicts a mole fraction of methanol 
in the condensate quite different to that predicted by the 
interactive models (Figure 8). The large differences be- 
tween the percentage condensed predicted by the inter- 
active and noninteractive models is indicative of large 
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Figure 7. Vapor temperature as a function of condenser length- 
example 2. 
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Figure 8. Condensate composition as a function of condenser 
length-example 2. 
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Figure 9. Percent condensed as a function of condenser length- 
example 3. Key to Figures 9-12: (---) molar frame film model with 
completely mixed condensate; (-1 molar frame film model with 
condensate unmixed; (- - - -) mass frame model with condensate 
unmixed; (- - -) effective diffusivity model with condensate unmixed. 

differences between the respective predictions of the total 
fluxes; the disagreement between the two predictions of 
the condensate composition is a measure of the disagree- 
ment between the predictions of the component fluxes. 

For example 1, we find that the interactive models 
suggest that tubes 1.41 m long will condense 65% of the 
incoming vapor, whereas the effective diffusivity method 
suggests that 1.84 m would be needed, a 30% larger con- 
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Figure 11. Percent condensed as a function of condenser length- 
example 4. 
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Figure 12. Temperature as a function of condenser length- 
example 4. 

denser. The same relative difference in the size of device 
needed to condense 50% of the inlet vapor is found for 
example 3 (Figure 9). 

In each of these three examples, the effective diffusivity 
model gave the most conservative design (larger condenser 
surface area). That this is not always the case is demon- 
strated in example 4 where the effective diffusivity method 
requires some 44% less area to condense 30% of the inlet 
stream (Figure 11). 

It is clear from these few results that the effective dif- 
fusivity methods may result in a significantly over- or 
underdesigned condenser. Further evidence of the influ- 
ence of interaction effects in condensation can be found 
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Table I. Suecification of Condenser Design Problems 
problem 
no. of components 
components 

1 
2 
3 
4 
5 
6 

tube orientation 
tube diameter, m 
surface area per m length of one tube, m2 
inlet vapor flow rates, kmol/s X lo6 per tube 

component 
1 
2 
3 
4 
5 
6 

vapor inlet temp, K 
coolant temp at top, K 
coolant flow rate, kg/s 
coolant flow direction 
heat-transfer coeff (assumed const) 

hk, W / b 2  K) 
hC, W/(m2 K) 

1 
3 

methanol 
water 
air 

vertical 
0.0254 
0.08 

128.9 
36.8 
18.4 

360.0 
308.15 
0.06 
counter 

1700 

in the papers by Krishna et al. (1976), Krishna (1979a), 
and Rohm (1980). We shall return to this topic in part 
2 where we provide some experimental support for our 
recommendation that an interactive model be used in 
design or simulation calculations. It is important to em- 
phasize here that there are no computational advantages 
to using an effective diffusivity approach; if the calculations 
are done as we suggest, then all methods take roughly the 
same amount of time. Indeed, it is quite simple to devise 
problems in which the effective diffusivity methods require 
more computer time than the more rigorous methods. 

Film Model or Turbulent Eddy Diffusivity Model. 
It must be stated at  the outset that we have found that 
there is little to distinguish the mass frame models (tur- 
bulent eddy diffusivity and Chilton-Colburn) from the 
molar frame models (all of which use the Chilton-Colburn 
analogy) in these (and other) examples (see, however, part 
2) .  Two ways of using the analogy need to be considered; 
the first in the molar frame of reference, the second in the 
mass frame of reference. First, there is very little differ- 
ence between the turbulent eddy diffusivity model (which 
is necessarily based in the mass reference frame) and the 
Chilton-Colburn-based film model in the mass frame. 
Even at  very high vapor flow rates, corresponding to inlet 
Reynolds numbers in the range of 60 000-100 000, we are 
unable to find situations where the turbulent eddy diffu- 
sivity models differ from the mass frame Chilton-Colburn 
methods to any extent. This is an important result for it 
indicates that the Chilton-Colburn analogy, widely used 
in design calculations, is perhaps unlikely to lead to large 
discrepancies when compared to the more sophisticated 
turbulent eddy diffusivity models. This is also important 
from the computational viewpoint; the Krishna-Standart, 
Toor-Stewart-Prober, and the explicit methods are 
somewhat less demanding of computer time than are the 
turbulent eddy diffusivity models. This is due to the 
necessity of computing the eigenvalues of [DO] and the 
matrix function in eq 19 using Sylvester’s theorem. The 
matrix functions required in the Krishna-Standart and 
Toor-Stewart-Prober methods can be computed very 
much more efficiently (particularly if there are more than 
three or four components in the mixture) from a power 
series (Taylor and Webb, 1981; Taylor, 1982). 

2 
3 

methanol 
water 
helium 

vertical 
0.0254 
0.08 

92.1 
46.0 
46.0 

350.0 
308.15 
0.06 
counter 

3 
5 

n-octane 
n-heptane 
n-hexane 
n- butane 
propane 

vertical 
0.0254 
0.08 

204.4 
245.5 
40.9 
204.6 
122.7 

413.06 
300.0 

4 
6 

n-octane 
n-heptane 
n-hexane 
n-butane 
propane 
hydrogen 
vertical 
0.0254 
0.08 

8.4 
4.2 
12.6 
6.3 
10.5 
28.0 
345.4 
283.15 
0.04376 
counter 

1700 1700 
1700 

The differences between the mass reference frame and 
molar reference frame models are only a little more 
marked. In examples 1, 2,  and 3,  it is difficult, if not 
impossible, to distinguish between them. Only in example 
4 is there a noticeable difference with the mass frame 
models, predicting that a condenser slightly larger than 
that given by the molar frame models is required. 

A clue to the success of the Chilton-Colburn analogy can 
be found in the analysis carried out recently by Fletcher, 
Maskell, and Patrick (1982). Using a modified von-Driest 
mixing length model, Fletcher et al. showed that for Sc > 
1, this model predicted a -213 power dependence of the 
Stanton number on the Schmidt number, in agreement 
with the Chilton-Colburn assumption. It is, however, 
pertinent to point out that the studies of Fletcher et al. 
also showed that for Sc < 1, the Stanton number varies 
inversely with the Schmidt number. One might expect 
from this result that for high molecular diffusivities of a 
particular binary pair the predictions of the Chilton- 
Colburn analogy are in error. Systems 2 and 4 of our study 
are of this kind and yet we find no serious disagreement 
using the Chilton-Colburn analogy. Why? 

One reason for the close agreement between the molar 
frame models and the mass frame model is the tendency 
for different models to predict very similar total fluxes and 
fluxes of the major transferring species (with the same 
boundary conditions used for all models). Even the ef- 
fective diffusivity models benefit from this. Serious dis- 
crepancies between the interactive models generally occur 
only for species whose fluxes are small relative to the major 
flux. In such cases, it is very likely that two different 
models will predict different directions of mass transfer 
for the minor transferring species; i.e., one model might 
predict that a species is evaporating while another may 
predict that the same species is condensing. The calcu- 
lations made by Krishna (1982) are a case in point. There 
is, however, more to it; the close agreement between com- 
position and temperature profiles is largely due also to the 
constraints of material and energy balance which we must 
impose on each section of the device. In order to illustrate 
this point, let us assume that two different mass-transfer 
models predict total fluxes and fluxes of the major 
transferring species that are in close agreement, with, say 
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a 590 relative discrepancy (this is quite typical; see Smith 
and Taylor (1983)). Let us further assume that the two 
methods predict different directions of transfer for a minor 
transferring species and that the magnitude of this flux 
is about 10 times smaller than the major contribution to 
the total flux (in our experience, these are the only cir- 
cumstances in which different interactive models can 
predict different directions of transfer for a species). It 
is easy to see with reference to the material balance 
equations (38) that the component flow rates (or the mole 
fractions) of all species will still be in reasonably good 
agreement a t  the end of the current section, even though 
one model has predicted a small increase in the flow rate 
of one component whereas another model predicted a small 
decrease. Moreover, it is also easy to check (with a few 
elementary calculations) that this conclusion is not affected 
by the relative amounts of the various species present in 
the vapor. 

There is yet another reason why the various interactive 
models are usually in excellent agreement, also related to 
the requirements of mass and energy conservation. If one 
mass-transfer model predicts a high flux of one species in 
one section of the condenser, more of that component will 
condense in that section, leading to a lower driving force 
and, therefore, lower condensation rate in the next section. 
On the other hand, if another model predicts a lower 
condensation rate in one section of the condenser, not as 
much of that component is predicted to condense, leading 
to higher driving forces and condensation rates in the next 
section. In this way, overprediction in one section is 
compensated by underprediction in the next (or, of course, 
the opposite). To a very large extent, the effective diffu- 
sivity methods benefit from this as well; witness the rel- 
atively good predictions of the total amount condensed and 
of the total heat load in many of the experimental simu- 
lations in part 2 (although not in all the examples con- 
sidered here). 

Liquid-Phase Models. There is no significant differ- 
ence between the two extremes of condensate mixing (i.e., 
completely mixed or completely unmixed) if there is a 
noncondensing or sparingly soluble gas present in the 
vapor stream (problems 1, 2, and 4). This conclusion was 
also reached by Krishna et al. (1976), Webb and Sardesai 
(1981), and Taylor and Noah (1982). However, in problem 
3, in which all the components are condensable, there is 
a very considerable difference between these two extremes 
at  the higher percentages of vapor condensed (Figure 7). 
McNaught (1983a) writes that it is common practice to 
assume complete mixing of the condensate when applying 
the Silver (1947) (equilibrium) method and “it is well-es- 
tablished that this can lead to underdesign if significant 
separation of the phases occurs” (as in a horizontal con- 
denser). We find that the same thing can be said if com- 
plete mixing of the condensate is assumed in the none- 
quilibrium models described in this paper. A design based 
on the well-mixed condensate model might lead to a sig- 
nificant underdesign. We have also made some calcula- 
tions for system 3 by using an effective diffusivity model 
for the mass-transfer process in the condensate. The use 
of a noninteracting model is justifiable in this case since 
the binary pair diffusivities are so close together. The 
low-flux mass-transfer coefficients were estimated from a 
penetration-type model of mass transfer (Bird et al., 1960, 
p 540) with the velocity of the liquid used as an adjustable 
parameter. Not surprisingly, we obtained results that were 
intermediate between the two extreme cases, eq 26 and 27; 
just how close the results are to one or other of the two 
extreme cases depends on the condensate velocity used in 

the calculations. Using a similar model for the liquid-phase 
transport in the other problems has a negligible effect on 
the results. We conclude from these and other results that 
we have obtained with similar systems that the more 
conservative design is, in general, obtained with the con- 
densate assumed to be completely unmized. We would 
emphasize once more that there is no computational 
penalty for adopting either one of the two extreme cases. 
Interestingly enough, it is impossible to predict situations 
where some components condense while others evaporate, 
using the no-mixing option. It is quite possible to predict 
this situation with a rate model or with the well-mixed 
condensate; indeed, our computations indicate that this 
happens in problem 3 in some of the sections close to the 
vapor inlet. 

Big Steps or Little Steps. The cost of a design cal- 
culation is directly proportional to the number of times 
the model equation set is to be solved. In turn, this 
number depends on the size of the area or length increment 
used in the calculations. Thus, a doubling of the length 
increment gives rise to about a 50% reduction in the 
computational cost. Krishna and Panchal (1977) and 
Krishna (1979) used the Euler method with steps only 5.3 
cm in length. Webb and Sardesai (1981) used Merson’s 
method of Runge-Kutta type to integrate over 1 m in five 
steps. This is roughly equivalent to a first-order method 
with steps of 4 cm. Is this the optimum size of length 
increment? The question we address now therefore is just 
exactly what size of area or length increment should be 
used in the calculations? The answer depends on the 
choice of bulk-phase conditions used in the rate equations. 
As noted above, there are three possibilities: using the inlet 
conditions, the outlet conditions, or some average of the 
two. 

The shorter the length increment, the smaller is the 
discrepancy between the three averaging procedures. This, 
of course, is only to be expected since a large number of 
steps reduces the magnitude of the change in any partic- 
ular quantity over any one length increment to the point 
where it does not matter much which conditions are used 
in the rate equations. Somewhat to our surprise, for a 
given number of steps, all three choices yield quite similar 
predictions of the total amount condensed and of the heat 
load. As expected, the use of the end-of-section conditions 
in the rate equations leads to the most conservative design 
(i.e., the lowest condensate flow). Also, the fewer the 
number of steps taken (or the longer the length increment), 
the more conservative the design and the cheaper the 
calculation. 

It is in the prediction of the composition of the exit 
stream that leads to the largest discrepancies between the 
various alternatives. Using the arithmetic average of the 
mole fractions and temperatures a t  the beginning and at 
the end of the section in the rate equations for section j 
often gives good estimates of the composition and tem- 
perature of the exit stream with as few as four sections (or, 
sometimes, only two) if noncondensing or sparingly soluble 
gases are present. This is the case in all the example 
problems considered by Taylor and Noah (1982) (two of 
which are problems 1 and 2 in this paper) and in problem 
4. In Figures 3-8, for example, the lines are drawn through 
40 points (length increments of 5.3 cm-a little over 2 in.). 
However, a line drawn through 10 points (length incre- 
ments of 21.2 cm) or even only 5 points (length increments 
of 41.4 cm-about 16 in.) would be virtually coincident 
with these lines (Figures 3 and 8). If all components 
condense (as in problem 3), it appears to be better to use 
the end of section conditions in the rate equations. It 
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proved to be impossible to obtain solutions to problem 3 
using either the beginning or average conditions with 
length increments as long as 61 cm (about 2 ft). This is 
due to the overprediction of the fluxes in the first sections 
of the condenser with the result that negative amounts of 
some species are present in downstream sections. This 
usually has disastrous consequences in the subroutines 
used to calculate the physical properties. With the end 
conditions used in the rate equations for problem 3, the 
predicted exit vapor composition does not change all that 
much as the size of each length increment is increased. 
Moreover, the results obtained with length increments as 
long as 61 cm are remarkably close to the results obtained 
using much smaller length increments (4 or 5 cm). The 
situation is completely different if the beginning conditions 
are used; with length increments of 30 cm (about 1 ft), the 
total amount condensed and heat load may be well enough 
predicted, but the mole fractions in the exit vapor may be 
in error by as much as an order of magnitude. 

Based on all of our numerical computations, we find that 
condenser design or simulation calculations can be satis- 
factorily carried out with length increments in the range 
25-50 cm (roughly 1-2 ft) provided that the appropriate 
bulk conditions are used in the rate equations. Such length 
increments are about 5-6 times longer than most of those 
used in the past; this results in a calculation that is about 
5-6 times cheaper than those carried out previously. 

Conclusions and Recommendations 
We have reviewed in this paper a nonequilibrium model 

of multicomponent condensation. In particular, we have 
considered various approaches to calculating the rates of 
mass and energy transfer in the vapor and condensate, 
respectively. A new way of solving the model equations 
has been proposed, in which the differential conservation 
equations are approximated by finite differences and the 
resulting set of algebraic equations solved simultaneously 
with the nonlinear equations representing the processes 
of interphase transport and interfacial equilibrium. A 
number of special cases of the general model have also been 
identified. 

With regard to the various models of vapor-phase mass 
transfer, we conclude the following: 

1. Effective diffusivity models should not be used in the 
determination of the rates of mass transfer in the vapor 
phase. They are not justified on theoretical grounds nor, 
as we shall see in part 2, on experimental grounds, and 
their use offers no reduction in the cost of obtaining a 
solution or any increase in the ease by which that solution 
is obtained. 

2. In agreement with earlier work in this area, we find 
that the film models that take interaction effects into 
account (Krishna-Standart, Toor-Stewart-Prober, 
Krishna (1979), Taylor-Smith) yield temperature and 
composition profiles that, for all practical purposes, are 
indistinguishable. 

3. There is little to choose between the molar frame 
models that use the Chilton-Colburn analogy to obtain the 
heat- and mass-transfer coefficients and the mass frame 
methods (Chilton-Colburn and turbulent eddy diffusivity) 
when they are used to predict the performance of multi- 
component condensers. 

With regard to the liquid phase, we find (also in 
agreement with previous work) that there is very little to 
distinguish between the results obtained using the two 
extremes of condensate mixing if noncondensing or spar- 
ingly soluble gases are present in the vapor phase. There 
can be a very considerable different if all species condense. 
More conservative design is obtained with the liquid phase 

assumed to be completely unmixed. 
We conclude from our calculations that the end-of-sec- 

tion conditions should be used in the determination of the 
rates of heat and mass transfer if all species condense. If 
noncondensing or sparingly soluble gases are present, the 
average of the beginning and end conditions should be 
used. The possibility of being able to complete a simu- 
lation calculation with fewer than ten sections (possibly 
with as few as two or four steps) or a design calculation 
with very long length incrementa, with a consequent large 
reduction in the computer time requirements (as compared 
to the numerical integration of the differential equations 
that we started with), overcomes one of the published 
objections to the use of the more realistic nonequilibrium 
models of condensation (Butterworth, 1983; McNaught, 
1983a). 
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Nomenclature 
AA, = interfacial area in the jth section of a condenser, m2 
[Ad = approximated part of Jacobian matrix, various 
[B  ] = transformation matrix 
ct = mixture molar dentisy, kmol m-3 

% = molar heat capacity of mixture, J kmol-' [E] = computed part of Jacobian matrix, various 
a,, = diffusivity for pair i - j ,  m2 s-l 
D,,R = effective diffusivity of component i in multicomponent 

[D] = matrix of Fickian diffusion coefficients, m2 s-l 
E = energy flux in stationary coordinate frame of reference, 

G = energy balance equation, W m-2, W 
f = Fanning friction factor 
(Fj = vector of independent equations, various 
h_ = heat-transfer coefficient, W m-2 K-' 
H = partial molar enthalpy of component i, J kmol-' [a = identity matrix 
j ,  = Chilton-Colburn j factor for mass transfer 
j ,  = Chilton-Colburn j factor for heat transfer [a = Jacobian matrix, various 
XI = mass-transfer coefficient in a binary mixture, m s-l 
[ k j  = matrix of multicomponent mass-transfer coefficients, 

k,,ff = pseudobinary (effective) mass-transfer coefficient of 

[ K ]  = matrix of multicomponent overall mass-transfer coef- 

K, = equilibrium ratio [K value] 
1, = molar flow rate of component i in liquid phase, kmol s-l 
MI = molecular weight of component i, kg kmol-I 
[MI = symbol for a general matrix, various 
Jn = material balance equation, kmol s-l 
n = number of components in the mixture 
n, = mass flux of component i referred to a stationary coor- 

n, = mixture total mass flux referred to a stationary coordinate 

N,  = molar flux of component i referred to a stationary co- 

Nt = mixture molar flux of component i referred to a sta- 

Pr = molecular Prandtl number 
q = conductive heat flux, W m-2 
Q = equilibrium equation 
Re = Reynolds number 
Y? = mass-transfer rate equation, kmol m-2 s-l, kmol s-' 
s = number of sections 
Sc = Schmidt number 
[Sc] = matrix of Schmidt number 

= molar heat capacity of component i, J kmol-' 

mixture, m2 s-l 

W m-2 

m s-l 

component i in a mixture, m s-l 

ficients, m s-l 

dinate reference frame, kg m-2 s-l 

reference frame, kg m-2 s-l 

ordinate reference frame, kmol m-2 s-l 

tionary coordinate reference frame, kmol m-2 s-' 
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St = Stanton number 
T = temperature, K 
V = molar flow rate of vapor mixture, kmol s-l 
ui = molar flow rate of vapor component i, kmol s-l 
x i  = mole fraction of component i 
(X) = matrix of independent variables, various 
yi = mole fraction of component i 
Greek Letters 
6ik = Kronecker delta, 1 if i = k ,  0 if i # k 
Xi = molar heat of vaporization of component i, J kmol-I 
p = molecular (dynamic) viscosity of mixture, Pa s 
2 = correction factor for high fluxes in explicit methods 
Zieff = correction factor for high fluxes in pseudobinary (ef- 

[ E ]  = matrix of high flux correction factors 
pt = mixture mass density, kg m-3 
@ieff = mass-transfer rate factor in pseudobinary (effective 

[@] = matrix of mass-transfer rate factors 
e = heat transfer rate factor 
wi = mass fraction of component i 
Subscripts 
eff = pseudobinary or “effective” parameter 
I = referring to the interface 
i = component i property or parameter 
i, j ,  k = component indexes or section numbers, j only 
m = refers to the mass reference frame 
n = nth component 
o = overall parameter 
t = referring to total mixture 
Superscripts 
C = referring to the coolant 
I = referring to the interface 
L = referring to the liquid phase 
0 = referring to the mass average velocity 
V = referring to the vaporlgas phase 
W = referring to the wall 

= denotes parameter under conditions of high transfer rates 
Miscellaneous 
- = overbar denotes partial molar property; also averaged 

parameter 
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