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A B S T R A C T

Gasification of biomass at relatively low temperatures (770–880 °C) yields producer gas mixtures containing H2,
CO and CO2, along with CH4, C2H6, and C2H4. It is of economic importance to recover C2H4 by selective ad-
sorption using cation-exchanged zeolites such as LTA-5A. However, calculations of mixture adsorption equili-
brium for LTA-5A using the Ideal Adsorbed Solution Theory (IAST) predict that the mixture adsorption equili-
brium is selective to CO2, and recovery of C2H4 is not feasible. In sharp contrast to IAST predictions, transient
breakthrough experiments with H2/CH4/C2H6/CO/CO2/C2H4 feed mixtures of different compositions show that
selective recovery of C2H4 from the producer gas is feasible provided the C2H4/CO2 molar ratio in the feed
mixture is below unity; for C2H4/CO2 molar ratios exceeding unity, the selectivity is in favor of CO2. The se-
lectivity reversal phenomena signifies strong non-idealities in mixture adsorption. Such non-idealities can be
quantified using the Real Adsorbed Solution Theory (RAST). This article underscores the need for performing
transient breakthrough experiments with realistic producer gas mixtures for process modelling and development
purposes.

1. Introduction

Biomass derived fuels are often considered as replacement for fossil
fuel to contribute to the energy transition to renewable energy sources.
Syngas is a product from biomass gasification, containing H2, CO and
CO2, which can be further used for the production of synthetic natural
gas (SNG or bio-methane). Medium temperature gasification is per-
formed at relatively low temperatures (770–880 °C) and the resulting
producer gas contains significant amounts of alkanes, alkenes and
aromatics. These products are valuable base chemicals and can be
produced in significant amounts; for example, up to 16% C2H4 can be
present based on energy content [1]. Recovery of C2H4 by selective
adsorption can contribute significantly to the economic viability of
biomass to SNG via medium temperature gasification.

LTA-5A zeolite is a potent and commonly used adsorbent for se-
lective adsorption of C2H4 from gaseous mixtures containing one or
more of the following constituents: H2, N2, CO, CH4, and C2H6 [2–10].
The selectivity in favor of C2H4 is caused by electrostatic interactions
between the π-orbitals of C2H4 with the extra-framework cations (Na+,
and Ca++) of LTA-5A. LTA-5A zeolite is also used in pressure swing
adsorption (PSA) technologies for H2 purification from gaseous mix-
tures containing N2, Ar, CH4, CO, and CO2 [4–8,11–16]; the selectivity

towards CO2, which has a quadrupole moment, is also attributable to
electrostatic interactions with the extra-framework cations. The ad-
sorptive separation of effluent gases from oxidative coupling of me-
thane also involves the selective recovery of C2H4 from N2/CH4/C2H6/
CO2/C2H4 mixtures using LTA-5A zeolite [17]. For recovery of C2H4

from gaseous mixtures that are typical of effluent gas streams from
biomass gasification (typically containing CH4, C2H6, CO, CO2, C2H4,
lower alkanes, and alkenes), the efficacy of LTA-5A as adsorbent is
crucially dependent on the C2H4/CO2 adsorption selectivity.

In the design and development of PSA technologies, the Ideal
Adsorbed Solution Theory (IAST) of Myers and Prausnitz [18] is com-
monly used for estimation of mixture adsorption equilibrium. Briefly,
the basic equation of IAST is the analogue of Raoult’s law for vapor-
liquid equilibrium, i.e.

= =p P x i n; 1, 2, ...i i i
0 (1)

where xi is the mole fraction in the adsorbed phase
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where q f( )i
0 is the pure component adsorption isotherm, and f is the gas

phase fugacity. The units of A
RT

are mol kg−1 and is referred to as the
adsorption potential [19]. The adsorption potential can be determined
by analytic integration of the unary isotherm data fits for each com-
ponent.

A key assumption of the IAST is that the enthalpies and surface
areas of the adsorbed molecules do not change upon mixing. If the total
mixture loading is qt , the surface area per mole of adsorbed mixture is
A
qt
. Therefore, the assumption of no surface area change due to mixture
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The entire set of Eqs. (1)–(4) need to be solved numerically to obtain
the molar loadings, qi of the individual components in the mixture.

The use of the IAST allows calculation of the adsorption selectiv-
ities, Sads, defined by

=S
q q
y yads
1 2

1 2 (5)

where q1 and q2 are the molar loadings of the components 1, and 2 in
the adsorbed phase in equilibrium with a bulk gas phase mixture with
mole fractions y1 and y2. For a binary C2H4(1)/CO2(2) mixture, the
IAST calculations of the adsorption selectivity for a range of bulk phase
mole fractions y1 are presented in Fig. 1 for three different pressures
pt = 1, 6 and 11 bar and temperature T=313 K; the unary isotherm
data for C2H4, and CO2 are taken from Mofarahi and Salehi [2], and
Mofarahi and Gholipour [20]. At all three pressures, <S 1ads , i.e. the
adsorption selectivity is in favor of CO2. The selectivity Sads decreases
further at a lower temperature, T=293 K. From the IAST calculations
in Fig. 1 we would conclude that selective adsorption of C2H4 from CO2-
bearing gas mixtures is not possible.

The primary objective of this communication is to demonstrate that
the conclusions drawn from the IAST calculations, shown in Fig. 1 for
C2H4/CO2 mixture adsorption, may be misleading due to strong

thermodynamic non-idealities. In order to demonstrate the short-
comings of IAST calculations, transient breakthrough experiments were
performed for N2/Ar/H2/CH4/C2H6/CO/CO2/C2H4 feed mixtures of
different compositions, with Ar as internal standard N2 as balance gas,
in tubes packed with LTA-5A zeolite, operating at 313 K and three
different pressures pt = 1, 6 and 11 bar. A total of 28 different cam-
paigns of transient breakthrough experiments were performed in a
Flowrence set-up, described in earlier work [10]; the experimental
details are summarized in the Supplementary Material accompanying
this publication.

2. Transient breakthrough experiments

Fig. 2 presents a representative set of transient breakthrough ex-
periments for feed mixtures N2/Ar/H2/CH4/C2H6/CO/CO2/C2H4 of

Nomenclature

Latin alphabet

A surface area per kg of framework, m2 kg−1

C constant used in Eq. (8), kg mol−1

f gas phase fugacity, Pa
n number of species in the mixture, dimensionless
pi partial pressure of species i, Pa
pt total system pressure, Pa
Pi

0 sorption pressure, Pa
qA molar loading species A, mol kg−1

qi,sat molar loading of species i at saturation, mol kg−1

qt total molar loading of mixture, mol kg−1

R gas constant, 8.314 Jmol−1 K−1

Sads adsorption selectivity, dimensionless
T absolute temperature, K
xi mole fraction of species i in adsorbed phase, dimensionless
yi mole fraction of species i in bulk fluid mixture,

dimensionless

Greek letters

γi activity coefficient of component i in adsorbed phase, di-
mensionless

Λij Wilson parameters, dimensionless
spreading pressure, N m−1

ρ framework density, kg m−3

Subscripts

i,j components in mixture
t referring to total mixture

Superscripts

0 referring to pure component loading
excess referring to excess parameter

 y

p T
p T
p T
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Fig. 1. IAST calculations for the adsorption selectivity for binary C2H4(1)/
CO2(2) mixtures as a function of the bulk phase mole fraction of C2H4, y1. The
calculations are presented for three different pressures pt = 1, 6 and 11 bar and
temperature T=313 K, and for pt = 6 bar, T=293 K. The unary isotherm data
for C2H4, and CO2 are from Mofarahi and Salehi [2], and Mofarahi and Gho-
lipour [20]. See Supplementary Material for information on the unary isotherm
fit parameters and details of IAST calculations.
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four different compositions in a fixed bed tube packed with LTA-5A
zeolite operating at a total pressure pt = 1 bar, and T=313 K. The
C2H4/CO2 mole ratio in the four feed mixtures are (a) 2.3, (b) 1.38, (c)
0.96, and (d) 0.48. For the two experiments (a, b) with C2H4/CO2 mole
ratios exceeding unity, the breakthrough times for CO2 exceed that of
C2H4; i.e. mixture adsorption is selective to CO2. In both these cases,
selective adsorption of C2H4 is not possible. However, for the experi-
ments (c, d) with C2H4/CO2 mole ratios lower than unity, the break-
through times for C2H4 exceed that of CO2; i.e. mixture adsorption is
selective to C2H4. In both these cases, selective adsorption of C2H4 is
feasible. The experiments in Fig. 2(c,d) indicate the failure of the IAST,
that anticipates the selectivity to favor CO2, irrespective of the feed
composition (see Fig. 1).

To underscore the failure of the IAST to predict mixture adsorption,
transient breakthrough simulations for the set of four experiments were
carried out using the methodology described in detail in earlier works
[6–8,21] ; details are provided in the Supplementary Material. The
transient breakthrough simulations are shown in Fig. 3(a,b,c,d); these

simulations use the IAST for calculation of mixture adsorption equili-
brium. For all four feed mixtures, CO2 is the last component to break
through, i.e. the mixture adsorption is in favor of CO2 irrespective of the
feed composition, in line with the IAST calculations presented in Fig. 1.

The results presented in Fig. 2 (breakthrough experiments), and
Fig. 3 (corresponding breakthrough simulations using IAST for calcu-
lation of mixture adsorption equilibrrium) are representative of each of
the 28 experimental campaigns carried out with varying feed mixture
compositions at three different total pressures pt = 1, 6 and 11 bar; see
Figs. S5–S32 of Supplementary Material.

3. Modelling non-idealities in C2H4/CO2 mixture adsorption

The selectivity reversal phenomena witnessed in Fig. 2 are in-
dicative of strong deviations from the IAST model. Strong non-idealities
for adsorption of C2H4(1)/CO2(2) mixtures in LTA-5A zeolite were first
underscored by Calleja et al.[22] Their experimental data, obtained at
293 K and total pressure of 10 bar have been redrawn for further

 t  t

 t  t

Fig. 2. Transient breakthrough experiments for feed mixtures of four different compositions: (a) 69.59/3.15/8.25/19.01 N2/Ar/CO2/C2H4, (b) 56.78/1.93/13.17/
7.75/8.56/11.81 N2/Ar/H2/CH4/C2H6/CO/CO2/C2H4, (c) 69.28/3.39/6.37/6.76/7.24/6.97 N2/Ar/CH4/C2H6/CO2/C2H4, and 63.91/1.98/13.74/3.82/3.98/8.51/
4.06 N2/Ar/H2/CH4/C2H6/CO2/C2H4. The total pressure in all four experiments is 1 bar, and temperature T=313 K; these correspond to Runs 7, 8, 9 and 10 of the
total of 28 experimental campaigns. The % N2 in the outlet gas in the four experiments can be determined by the taking the sum of the mole %=100. Further
experimental details are provided in the Supplementary Material.
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analysis and discussion in Fig. 4(a). The Calleja et al.[22] data clearly
demonstrate the phenomenon of azeotropic adsorption,

= =y x y x;1 1 2 2, and selectivity reversals.
To account for non-ideality effects in mixture adsorption, we in-

troduce activity coefficients i into Eq. (1) [18]

=p P xi i i i
0 (6)

The implementation of the activity coefficients is termed as the Real
Adsorbed Solution Theory (RAST). Following the approaches of Myers,
Talu, and Sieperstein [19,23,24] the excess Gibbs free energy for binary
mixture adsorption is modeled as follows
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In Eq. (8), 1; 111 22 , and C is a constant with the units kg
mol−1. The introduction of ( )( )C1 exp A

RT imparts the correct lim-

iting behaviors 1; 0i
A

RT for the activity coefficients in the
Henry regime, p 0; 0t

A
RT . As pore saturation conditions are

approached, this correction factor tends to unity
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RT . The choice of Λ12= Λ21= 1 in Eq. (8), yields

unity values for the activity coefficients reduces to the IAST.
The excess reciprocal loading for the mixture can be defined as
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The excess reciprocal loading for the mixture can be related to the
partial derivative of the Gibbs free energy with respect to the

 t  t

 t  t

Fig. 3. Transient breakthrough simulations for the four sets of experimental data shown in Fig. 2. The methodology for transient breakthrough simulations, based on
IAST estimations of mixture adsorption equilibrium, are provided in the Supplementary Material; see Figs. S34–S44.
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adsorption potential at constant composition
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For calculation of the total mixture loading we need to replace Eq.
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The Calleja et al. [22] data are well represented by the choice of the
Wilson parameters = =C35; 0.75; 0.512 21 ; see Fig. 4(a).
Fig. 4(b) compares the IAST and RAST calculations of the C2H4(1)/
CO2(2) adsorption selectivity; selectivity reversals at <y 0.41 are evi-
dent. Fig. 4(c) presents a plot of the activity coefficients of C2H4, and
CO2 as a function of the adsorbed phase mole fraction of C2H4. The
infinite dilution activity coefficients reduce by one to three orders of
magnitude below unity, signaling strong thermodynamic non-idealities
most likely caused by congregation of guest molecules around the extra-
framework cations [9,16].

Drawing inspiration from the foregoing analysis of Calleja et al. [22]
data, we analyzed the entire set of 28 experimental campaigns on
transient breakthrough experiments to determine the adsorbed phase
mole fractions of C2H4 and CO2 using the shock-wave model for fixed-
bed adsorbers developed in earlier work [7,8]; see Supplementary
Material for calculation details. The x1 vs y1 plot, treating the mixture
adsorption as a pseudo-binary C2H4(1)/CO2(2) mixture are shown in
Fig. 5. The treatment of the feed mixtures as a pseudo-binary C2H4(1)/
CO2(2) mixture is justified because these two components are sig-
nificantly more strongly adsorbed than N2, Ar, H2, CH4, C2H6, and CO;
therefore the adsorption of C2H4, and CO2 may be assumed to be
practically independent of the presence of their partner species in the
feed mixtures. The entire data set at three different pressures pt = 1, 6
and 11 bar and 313 K are well described by the RAST model with the
fitted Wilson parameters: = = =C25; 1; 112 21 . For y1 < 0.5,

x

p

C

 x

 y

y x

p

 y

p

Fig. 4. (a) Experimental data, obtained at 293 K and total pressure, pt = 10 bar,
for adsorption of C2H4(1)/CO2(2) mixtures in LTA-5A zeolite; the mole fraction
of C2H4 in the bulk gas phase mixture is plotted as a function of the adsorbed
phase mole fraction of C2H4. The data are redrawn from Fig. 3 of Calleja et al.
[22] Also indicated at the IAST and RAST calculations of mixture adsorption
equilibrium. (b) Comparison of the IAST and RAST calculations for adsorption
selectivity at 293 K, and pt = 10 bar. (c) Activity coefficients of C2H4, and CO2

as a function of the adsorbed phase mole fraction of C2H4.

 x

 y

y x

Fig. 5. Experimental data, obtained at 313 K and total pressure of 1 bar, 6 bar,
and 11 bar, for adsorption of pseudo-binary C2H4(1)/CO2(2) mixtures in LTA-
5A zeolite; the mole fraction of C2H4 in the bulk gas phase mixture is plotted as
a function of the adsorbed phase mole fraction of C2H4. The plotted data are
based on the 28 experimental campaigns on transient experimental break-
through, determined using of the shock-wave model. Further details are pro-
vided in the Supplementary material.
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the selectivity is in favor of C2H4. This implies that for selective ad-
sorption of C2H4 from CO2-bearing mixtures is feasible provided the
C2H4/CO2 ratio in the feed mixture is lower than unity.

Simulations of the transient breakthrough experiments in Fig. 2
using the RAST description of mixture adsorption equilibrium are
presented in Fig. 6. The introduction of Wilson coefficients to describe
the non-idealities for the C2H4/CO2 pair of guest molecules is able to
capture the selectivity reversal phenomena, as observed in the set of
four experiments.

Further experimental evidence of selectivity reversals in favor of
C2H4 for feed mixtures with C2H4/CO2 lower than unity are provided in
the experiments reported by García et al. [17]. For breakthroughs of
CH4/N2, C2H6/N2, C2H4/N2, and CO2/N2 mixtures in a fixed bed
packed with LTA-5A zeolite, the hierarchy of breakthrough times is
CH4 < C2H6 < C2H4 < CO2, reflecting the stronger adsorption
strength of CO2 compared to C2H4; see Fig. 7(a). However, for break-
throughs of 20/80 C2H4/CO2 and 40/4/49/7 CH4/C2H6/CO2/C2H4

mixtures, selectivity reversals are observed and CO2 breaks through
earlier than C2H4; see Fig. 7(b, c, d). Breakthrough simulations using
the RAST model with the fitted Wilson parameters:

= = =C15; 1; 112 21 are shown by the continuous solid lines in
Fig. 7; the RAST simulations are able to capture, quantitatively, the
selectivity reversal in favor of C2H4 as observed in the experiments.

4. Conclusions

Transient breakthrough experiments with H2/CH4/C2H6/CO/CO2/
C2H4 feed mixtures in fixed beds packed with LTA-5A zeolite were
carried out to investigate the feasibility of recovery of C2H4. Analysis of
a set of 28 experimental breakthrough campaigns revealed that when
C2H4/CO2 ratios in the feed mixture are greater than unity, the CO2 is
selectively adsorbed and C2H4 recovery is infeasible. However, when
C2H4/CO2 ratios in the feed mixture are lower than unity, C2H4 is se-
lectively adsorbed and recovery of C2H4 is feasible. Use of the IAST for
prediction of mixture adsorption equilibrium does not anticipate the
observed selectivity reversals, and are indicative of strong non-ideal-
ities in mixture adsorption. Use of the RAST, with Wilson equation for
activity coefficients provides a quantitative description of selectivity
reversals. The overall conclusion to emerge from this study is that
thermodynamic non-idealities are the primary enablers for selective
recovery of C2H4 from producer gas. Our investigation also underscores
the need to perform transient breakthrough experiments with re-
presentative producer gas mixtures.

Further research is necessary to establish the precise reasons for
manifestation of thermodynamic non-idealities in C2H4/CO2 mixture
adsorption.

 t

C

 t

C

 t

C

 t

C

Fig. 6. Transient breakthrough simulations for the four sets of experimental data shown in Fig. 2. In these breakthrough simulations, the RAST model is used to
describe mixture adsorption equilibria. The Wilson parameters = = =C25; 1; 112 21 are used to describe the non-idealities for the C2H4/CO2 pair; all other
pairs of guest molecules are assumed to behave ideally. Further details are provided in the Supplementary material; see Figs. S34–S44.
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1 Preamble 

This Supporting Information accompanying the article Highlighting Non-Idealities in C2H4/CO2 

Mixture Adsorption in 5A Zeolite provides: 

(a) Structural information on LTA-5A zeolite 

(b) Brief summary of the IAST and RAST for calculation of mixture adsorption equilibrium  

(c) Methodology used for transient breakthroughs in fixed bed adsorbers 

(d) Unary isotherm data for guest molecules in LTA-5A zeolite 

(e)  Details of experimental breakthroughs, 28 campaigns at different operating pressures, 1 bar, 6 

bar, and 11 bar.  

(f) Detailed comparisons of experimental breakthroughs with transient breakthrough simulations 

For ease of reading, the Supplementary Material is written as a stand-alone document. 
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2 Structural properties of LTA-5A zeolite 

The crystallographic data are available on the zeolite atlas website of the International Zeolite 

Association (IZA).1, 2 LTA-5A consist of cages of 743 Å3 volume, separated by 4.11 Å × 4.47 Å 8-ring 

windows; the pore landscapes and structural details are provided in Figure S1 and  Figure S2.  

Per unit cell, LTA-5A has 96 Si, 96 Al, 32 Na+, 32 Ca++ with Si/Al=1. 



S

 

2

 

Structural p

2.1 List 

Figure S1.

properties o

of Figure

 Pore landsc

of LTA-5A z

es for Stru

cape of LTA

 

zeolite 

ctural pro

A zeolite. 

operties off LTA-5A zeolite 

 

S6 

 



S

 

 

Structural p

Figure S2.

properties o

 Structural d

of LTA-5A z

details for LT

 

zeolite 

TA-5A zeoliite. 

 

S7 

 



The Ideal Adsorbed Solution Theory (IAST)    

S8 
 

 

 

3 The Ideal Adsorbed Solution Theory (IAST) 

3.1 Brief outline of theory 

Within microporous crystalline materials, the guest molecules exist in the adsorbed phase. The Gibbs 

adsorption equation3 in differential form is 





n

i
iidqAd

1

  (S1)

 

The quantity A is the surface area per kg of framework, with units of m2 per kg of the framework of 

the crystalline material; qi is the molar loading of component i in the adsorbed phase with units moles 

per kg of framework; i is the molar chemical potential of component i. The spreading pressure   has 

the same units as surface tension, i.e. N m-1. 

The chemical potential of any component in the adsorbed phase, i, equals that in the bulk fluid phase.  

If the partial fugacities in the bulk fluid phase are fi, we have 

ii fRTdd ln  (S2)

where R is the gas constant (= 8.314 J mol-1 K-1). 

 Briefly, the basic equation of Ideal Adsorbed Solution Theory (IAST) theory of Myers and Prausnitz4 

is the analogue of Raoult’s law for vapor-liquid equilibrium, i.e. 

nixPf iii ,...2,1;  0   (S3)

where xi is the mole fraction in the adsorbed phase 

n

i
i qqq

q
x

...21 
  (S4)
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and 0
iP  is the pressure for sorption of every component i, which yields the same spreading pressure,   

for each of the pure components, as that for the mixture:  

...
)()()(

0
3

0
2

0
1

0

0
3

0

0
2

0

0
1  

PPP

df
f

fq
df

f

fq
df

f

fq

RT

A
 (S5)

where )(0 fqi  is the pure component adsorption isotherm. The units of 
RT

A
, also called the adsorption 

potential,5  are mol kg-1. 

The unary isotherm may be described by say the 1-site Langmuir isotherm   

 
bf

bf

bf

bf
qfq sat 





1

;
1

0   (S6)

where we define the fractional occupancy of the adsorbate molecules,   satqfq0 . The superscript 0 

is used to emphasize that  fq0  relates the pure component loading to the bulk fluid fugacity. More 

generally, the unary isotherms may need to be described by, say, the dual-site Langmuir model 

0
, ,( )

1 1
A B

A sat B sat
A B

b f b f
q f q q

b f b
 

 
 (S7)

Each of the integrals in Equation (S5) can be evaluated analytically: 

     
0

0

0
0 0

, ,

0

0

, ,

0

( )
ln 1 ln 1

( )
ln 1 ln 1

i

i

P

A sat A i B sat B i

f

P

i i
A sat A B sat B

i if

q f
df q b P q b P

f

f fq f
df q b q b

f x x





   

      
                  




 (S8)

The right hand side of equation (S8) is a function of 0
iP . For multicomponent mixture adsorption, 

each of the equalities on the right hand side of Equation (S5) must be satisfied. These constraints may 

be solved using a suitable equation solver, to yield the set of values of 0
1P , 0

2P , 0
3P ,.. 0

nP , all of which 

satisfy Equation (S5). The corresponding values of the integrals using these as upper limits of 

integration must yield the same value of 
RT

A
 for each component; this ensures that the obtained solution 

is the correct one. 
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The adsorbed phase mole fractions xi are then determined from  

ni
P

f
x

i

i
i ,...2,1;

 
0

  (S9)

A key assumption of the IAST is that the enthalpies and surface areas of the adsorbed molecules do 

not change upon mixing. If the total mixture loading is tq , the area covered by the adsorbed mixture is 

tq

A
 with units of m2 (mol mixture)-1. Therefore, the assumption of no surface area change due to 

mixture adsorption translates as      000
2

0
2

2
0

1
0
1

1

nn

n

t Pq

Ax

Pq
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q

A
 ; the total mixture loading is tq  is 

calculated from  
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(S10)

in which )( 0
1

0
1 Pq , )( 0

2
0
2 Pq ,… )( 00

nn Pq  are determined from the unary isotherm fits, using the sorption 

pressures for each component 0
1P , 0

2P , 0
3P ,.. 0

nP  that are available from the solutions to equations 

Equations (S5), and (S8). 

The entire set of equations (S3) to (S10) need to be solved numerically to obtain the loadings, qi of the 

individual components in the mixture.  
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4 The Real Adsorbed Solution Theory (RAST) 

To account for non-ideality effects in mixture adsorption, we introduce activity coefficients i  into 

Equation (S3) 4   

iiii xPf 0    (S11)

Following the approaches of Myers, Talu, and Sieperstein5-7  we model the excess Gibbs free energy 

for binary mixture adsorption as follows 

   2211 lnln  xx
RT

Gexcess

  (S12)

The Wilson model for activity coefficients are given for binary mixtures by 
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In Equation (S13), 1;1 2211  , and C is a constant with the units kg mol-1. The introduction of 

















RT

A
C


exp1  imparts the correct limiting behaviors 0;1 
RT

A
i

  for the activity 

coefficients in the Henry regime, 0;0 
RT

A
ft


. As pore saturation conditions are approached, this 

correction factor tends to unity 1exp1 















RT

A
C


.  The choice of 12 = 21 = 1 in Equation (S13),  

yields unity values for the activity coefficients.   

The excess reciprocal loading for the mixture can be defined as 







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 (S14)

The excess reciprocal loading for the mixture can be related to the partial derivative of the Gibbs free 

energy with respect to the adsorption potential at constant composition 
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 For calculation of the total mixture loading we need to replace Equation (S10) by 

   

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(S16)

The parameters 12, 21, and C can be fitted to match the experimental data on mixture adsorption. 

The implementation of the activity coefficients is termed as the Real Adsorbed Solution Theory 

(RAST).  
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5 Simulation methodology for transient breakthroughs 

Fixed beds, packed with crystals of microporous materials, are commonly used for separation of 

mixtures (see schematic in Figure S3); such adsorbers are commonly operated in a transient mode, and 

the compositions of the gas phase, and component loadings within the crystals, vary with position and 

time. During the initial stages of the transience, the pores are loaded up gradually, and only towards the 

end of the adsorption cycle are conditions corresponding to pore saturation attained.  Put another way, 

separations in fixed bed adsorbers are influenced by both the Henry regime of adsorption as well as the 

conditions corresponding to pore saturation. For a given separation task, transient breakthroughs provide 

more a realistic evaluation of the efficacy of a material, as they reflect the combined influence of 

adsorption selectivity, and adsorption capacity.8, 9   

We describe below the simulation methodology used to perform transient breakthrough calculations 

that are presented in this work. This simulation methodology is the same as that used in our previous 

published works.8-11  

Assuming plug flow of an n-component gas mixture through a fixed bed maintained under isothermal, 

isobaric, conditions, the molar concentrations in the gas phase at any position and instant of time are 

obtained by solving the following set of partial differential equations for each of the species i in the gas 

mixture.12  

   
ni

t

ztq

z

ztcztv

t

ztc iii ,...2,1;0
),(1),(),(),(



















 (S17)

In Equation  (S17), t is the time, z is the distance along the adsorber,  is the framework density,  is the 

bed voidage, v is the interstitial gas velocity, and ),( ztqi  is the spatially averaged molar loading within 

the crystallites of radius rc, monitored at position z, and at time t. The time t = 0, corresponds to the time 
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at which the feed mixture is injected at the inlet to the fixed bed. Prior to injection of the feed, it is 

assumed that an inert, non-adsorbing, gas flows through the fixed bed. 

At any time t, during the transient approach to thermodynamic equilibrium, the spatially averaged 

molar loading within the crystallite rc is obtained by integration of the radial loading profile 

drrtrq
r

tq
cr

i
c

i
2

03
),(

3
)(   (S18)

For transient unary uptake within a crystal at any position and time with the fixed bed, the radial 

distribution of molar loadings, qi, within a spherical crystallite, of radius rc, is obtained from a solution 

of a set of differential equations describing the uptake 

 i
i Nr

rrt

trq 2
2

11),(










 (S19)

The molar flux Ni of component i may be described by the appropriate formulations of Maxwell-Stefan 

equations, discussed in the foregoing sections.   

Summing Equation (S19) over all n species in the mixture allows calculation of the total average 

molar loading of the mixture within the crystallite 





n

i
it ztqztq

1

),(),(  (S20)

The interstitial gas velocity is related to the superficial gas velocity by 


u

v   (S21)

The adsorber bed is assumed to be initially free of adsorbates, i.e. we have the initial condition 

0),0(;0  zqt i  (S22)

Equation (S22) is relevant to the operation of the transient breakthrough experiments on a laboratory 

scale, but are not truly reflective of industrial operations. 

At time, t = 0, the inlet to the adsorber, z = 0, is subjected to a step input of the n-component gas 

mixture and this step input is maintained till the end of the adsorption cycle when steady-state 

conditions are reached.  
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00 ),0(;),0(;0 utuptpt ii   (S23)

where 00 vu   is the superficial gas velocity at the inlet to the adsorber.  

If the value of 
2

c

i

r

Ð
 is large enough to ensure that intra-crystalline gradients are absent and the entire 

crystallite particle can be considered to be in thermodynamic equilibrium with the surrounding bulk gas 

phase at that time t, and position z of the adsorber 

),(),( ztqztq ii   (S24)

The molar loadings  at the outer surface of the crystallites, i.e. at r = rc, are calculated on the basis of 

adsorption equilibrium with the bulk gas phase partial pressures pi at that position z and time t. The 

adsorption equilibrium can be calculated on the basis of the IAST or RAST descriptions of mixture 

adsorption equilibrium, as appropriate.  

For convenience, the set of equations describing the fixed bed adsorber are summarized in Figure S3. 

Typically, the adsorber length is divided into 100 – 200 slices. Combination of the discretized partial 

differential equations (PDEs) along with the algebraic IAST or RAST equilibrium model, results in a set 

of differential-algebraic equations (DAEs), which are solved using BESIRK.13 BESIRK is a sparse 

matrix solver, based on the semi-implicit Runge-Kutta method originally developed by Michelsen,14 and 

extended with the Bulirsch-Stoer extrapolation method.15 Use of BESIRK improves the numerical 

solution efficiency in solving the set of DAEs. The evaluation of the sparse Jacobian required in the 

numerical algorithm is largely based on analytic expressions.12 Further details of the numerical 

procedures used in this work, are provided by Krishna and co-workers;12, 16-18 interested readers are 

referred to our website that contains the numerical details.16  
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5.1 List of Figures for Simulation methodology for transient breakthroughs 

 

Figure S3. Schematic of a packed bed adsorber. 
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6 Fitting of unary isotherm data from literature sources 

The unary isotherm data for C2H4 and C2H6 in LTA-5A zeolite  as reported in Table 2 and Table 3 of 

Mofarahi and Salehi19 at temperatures of 283 K, 303 K, and 323 K. were fitted with the dual-site 

Langmuir model 

pb

pb
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pb
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qq
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B
satB
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
11 ,,  (S25)

with T-dependent parameters bA, and bB 
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The fitted parameter values are presented in Table S1. 

The unary isotherm data for CO2 in LTA-5A zeolite as reported in Table A1 of Mofarahi and 

Gholipour20 at temperatures of 273 K, 283 K, 303 K, 323 K, and 343 K were fitted with the dual-site 

Langmuir model; the parameter fits are presented in Table S2.  

The unary isotherm data for CH4 and N2 in LTA-5A zeolite, as reported in Table 3 and Table 4 of 

Bakhtyari and Mofarahi21 at temperatures of 273 K, 283 K, 303 K, 323 K, and 343 K were fitted with 

excellent accuracy with the single-site Langmuir model  












RT

E
bb

bp

bp
qq sat exp;

1 0  (S27)

The fitted parameter values are presented in Table S3.  

The dual-site Langmuir parameter fits for H2 and CO in LTA-5A zeolite are provided in Table S4; 

these parameters are those reported in Table 3 of Jamali et al.22 

In the breakthrough simulations, the isotherm fits for N2 in LTA-5A zeolite were assumed to also hold 

for Ar.  
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6.1 List of Tables for Fitting of unary isotherm data from literature sources 

Table S1. Dual-site Langmuir parameter fits for C2H4 and C2H6 in LTA-5A zeolite. These parameters 

are based on the unary isotherm data reported in Table 2 and Table 3 of Mofarahi and Salehi19 at 

temperatures of 283 K, 303 K, and 323 K.  

 

 Site A Site B 

 qA,sat 

mol kg-1
 

bA0 
1Pa   

EA 

kJ mol-1 
qB,sat 

mol kg-1 
bB0 

1Pa   

EB 

kJ mol-1 

C2H4 2.5 6.98E-08 19 0.75 4.18E-18 67 

C2H6 2.1 1.35E-08 20 0.33 4.22E-23 96 

 

 

Table S2. Dual-site Langmuir parameter fits for CO2 in LTA-5A zeolite. These parameters are based 

on the unary isotherm data reported in Table A1 of Mofarahi and Gholipour20  at temperatures of 273 K, 

283 K, 303 K, 323 K, and 343 K.  

 Site A Site B 

 qA,sat 

mol kg-1
 

bA0 
1Pa   

EA 

kJ mol-1 
qB,sat 

mol kg-1 
bB0 

1Pa   

EB 

kJ mol-1 

CO2 1.5 4.5E-10 23.5 2.5 2.99E-12 49 
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Table S3. Single-site Langmuir parameter fits for CH4 and N2 in LTA-5A zeolite. These parameters 

are based on the unary isotherm data reported in Table 3 and Table 4 of Bakhtyari and Mofarahi21 at 

temperatures of 273 K, 283 K, 303 K, 323 K, and 343 K. 

 qsat 

mol kg-1
 

b0 
1Pa   

E 

kJ mol-1 

CH4 3.1 9.43E-10 19 

N2 2.5 1.68E-09 16.6 

 

 

Table S4. Dual-site Langmuir parameter fits for H2 and CO in LTA-5A zeolite. These parameters are 

those reported in Table 3 of Jamali et al.22 

 Site A Site B 

 qA,sat 

mol kg-1
 

bA0 
1Pa   

EA 

kJ mol-1 
qB,sat 

mol kg-1 
bB0 

1Pa   

EB 

kJ mol-1 

H2 0.4965 1.65E-08 7.62 0.03725 5.59E-09 14.1 

CO 2.502 6.56E-11 24.13 1.182 1.88E-11 34.48 
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7  Experimental transient breakthrough experiments vs simulations 

7.1 The Flowrence set-up 

A Flowrence set-up is modified for the transient breakthrough experiments (Figure S4) such that the 

feed selector valve selects one reactor (= fixed-bed adsorber) tube, which is fed with the adsorption gas 

mixture. Meanwhile, all other reactors are fed with nitrogen (the desorption gas). A selector valve in the 

effluent is used to lead the effluent gas from the selected reactor to the mass spectrometer (Hiden 

Analytical HPR-20 QIC) and compact GC (Interscience) with TCD detector. The selected reactor is fed 

with the mixed gas feed and continuously monitored by the MS (10 s interval) and GC (1 min interval) 

to record breakthrough curves. 23  

 The Flowrence has four heated reactor blocks (40 - 300 °C), each containing four reactors of 560 mm 

height, 6 mm OD and 4 mm ID that can be pressurized (0-10 barg). The isothermal zone was 

determined to be 200 mm. During a run, one blank and 15 sorbent materials can be tested. At the bottom 

of the reactor a diluent gas (N2) can be mixed with the effluent, which be used to dilute the gas flow 

before analysis,  increase the flow rate and prevent back mixing under the reactor. At the start of each 

run, the materials are dried in the reactor under 25 mL/min N2 per reactor at 473 K for 2 h. The same 

procedure is used to desorb the sorbents between adsorption cycles. 

The sorbent bed is 4 mm in diameter, and 37 cm +/- 0.7cm height. The sorbent beds are packed with 

8-12 mesh 5A mol sieves from Acros. A layer of zirblast (inert diluent, particle size of 250 μm) was 

loaded in the reactors first to make sure that the sorbent bed is located in the isothermal zone. Zirblast is 

also used to fill up the interstitial void space between adsorbent particles and top of the reactors up to a 

height of 55 cm.  

Different gas mixtures were used for testing of C2H4 adsorption; see Table S11. CO2, and H2 are 

mixed with the gas feed via separate mass flow controllers, using a total feed flow of 25 mL/min per 
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reactor. Transient breakthrough experiments are performed for N2/Ar/H2/CH4/C2H6/CO/CO2/C2H4 

mixtures in tubes packed with LTA-5A zeolite, operating at 313 K, and total pressures of 1 bar (10 

campaigns), 6 bar (7 campaigns), and 11 bar (5 campaigns). The feed mixture compositions for each 

campaign are specified in Table S5, Table S6, and Table S7.  The fixed-bed tube is first flushed with 

pure N2 at the specified total pressure, before injection of the feed mixture, at time t = 0. Ar is used as an 

inert internal standard to monitor the start of the adsorption experiment. 

In the MS, ions are produced by electron ionization (EI), separated by a quadrupole analyzer and 

detected by a secondary electron multiplier (SEM). The raw signal was monitored at the selected m/z 

values, corrected for spectral overlap by taking into account the relative abundancies of the different 

peaks. The data was subsequently normalized to the signal of N2 (relative sensitivity = 1). The selected 

m/z values and their relative sensitivities (RS) were calibrated using known concentrations of the gases. 

The percentage of each component is calculated based on the total normalized response. It should be 

noted that the molecular ion peaks of N2, ethylene and CO are all observed at m/z 28. To overcome this 

spectral overlap, the ethylene signal is monitored at m/z 27. The signal from CO can therefore not be 

deconvoluted from the MS signal. Therefore, CO is monitored by GC and subtracted from the signal 

obtained at m/z 28 after correction for C2H4. Ethane is monitored at m/z 30 and concentrations are 

calculated taking into account the relative abundancies of the fragments.  

7.2 Comparison of experimental breakthroughs with simulations 

For the 28 experimental campaigns, transient breakthrough simulations were carried out with the 

assumption the equilibrium between the bulk gas mixture and the adsorbed phase in 5A zeolite could be 

described by the IAST. For the simulations of transient breakthroughs, the unary isotherm data fits are 

provided in Table S1, Table S2, Table S3, and Table S4.  

In all of the experiments using the Flowrence set-up, the  transient breakthroughs do not have 

distended characteristics; this indicates that intra-crystalline diffusion influences may be considered to 
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be of negligible importance.  Consequently, in the transient breakthrough simulations, the values of 
2

c

i

r

Ð
 

are chosen to be large enough to ensure that intra-crystalline gradients are absent and the entire 

crystallite particle can be considered to be in thermodynamic equilibrium. The adsorber dimensions, and 

interstitial gas velocities are chosen to match the experimental conditions in each case.  

The comparisons of experimental and simulated breakthoughs are presented in Figure S5, Figure S6, 

Figure S7, Figure S8, Figure S9, Figure S10, Figure S11, Figure S12, Figure S13, Figure S14, Figure 

S15, Figure S16, Figure S17, Figure S18, Figure S19, Figure S20, Figure S21. Figure S22, Figure S23, 

Figure S24, Figure S25, Figure S26, Figure S27, Figure S28, Figure S29, Figure S30, Figure S31, and 

Figure S32.  In each simulation the operating conditions corresponding to the experiments (mass of 5A 

zeolite, molar flow rate of gas mixture, temperature, pressure, gas compositions) were employed.  The 

following general observations apply to each of the 28 experimental campaigns. The breakthrough times 

of Ar, C2H4, C2H6, H2, CH4, CO, and N2 are simulated adequately .  However, in all cases, the 

breakhthough times for CO2 in the simulations were significantly higher, in the simulations than 

observed in the experiments.  More importantly, the selectivity reversals in favor of C2H4 as observed in 

Figure S13, and Figure S14 are not anticipated by the simulations, based on IAST calculations.  The 

reasons for such deviations is attributable to non-idealities in mixture adsorption thermodynamics.24-26 
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7.3 List of Tables for Experimental transient breakthrough experiments vs 

simulations 

Table S5. Set of 13 experimental campaigns carried out at a total pressure of 1 bar.  

 

Run  P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

1 1 4.37 23.09 0.00 0.00 0.00 0.00 0.00 0.00 72.55 

2 1 3.05 16.44 0.00 16.83 0.00 0.00 0.00 0.00 63.68 

3 1 2.63 14.10 0.00 19.98 0.00 0.00 0.00 0.00 63.29 

4 1 2.95 17.81 0.00 10.20 0.00 0.00 0.00 0.00 69.05 

5 1 3.59 19.14 0.00 6.06 0.00 0.00 0.00 0.00 71.21 

6 1 3.93 23.24 0.00 0.00 0.00 0.00 0.00 0.00 72.83 

7 1 3.15 19.01 0.00 8.25 0.00 0.00 0.00 0.00 69.59 

8 1 1.93 11.81 0.00 8.56 13.17 0.00 0.00 7.75 56.78 

9 1 3.39 6.97 6.76 7.24 0.00 0.00 6.37 0.00 69.28 

10 1 1.98 4.06 3.98 8.51 13.74 0.00 3.82 0.00 63.91 

11 1 2.77 15.91 0.00 6.64 6.64 0.11 0.00 6.45 61.47 

12 1 3.10 15.89 0.00 6.61 6.61 0.11 0.00 6.45 61.22 

13 1 3.08 15.76 0.00 6.58 6.60 0.11 0.00 6.49 61.38 
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Table S6. Set of 8 experimental campaigns carried out at a total pressure of 6 bar.  

 

Run  P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

14 6 3.92 22.25 0.00 0.00 0.00 0.00 0.00 0.00 73.83 

15 6 3.01 16.02 0.00 17.11 0.00 0.00 0.00 0.00 63.86 

16 6 2.54 13.70 0.00 19.88 0.00 0.00 0.00 0.00 63.87 

17 6 2.81 17.98 0.00 10.21 0.00 0.00 0.00 0.00 69.00 

18 6 3.50 19.39 0.00 5.43 0.00 0.00 0.00 0.00 71.69 

19 6 4.97 15.55 4.88 18.04 0.10 0.05 5.01 0.77 50.63 

20 6 3.86 11.41 3.66 12.86 24.84 0.04 3.61 0.50 39.24 

21 6 2.78 15.40 0.00 6.66 6.68 0.11 0.00 6.35 62.01 
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Table S7. Set of 7 experimental campaigns carried out at a total pressure of 11 bar.  

 

Run  P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

22 11 3.66 20.82 0 0 0 0 0 0 75.53 

23 11 2.7 14.5 0 17.44 0 0 0 0 65.35 

24 11 2.47 14.46 0 19.37 0 0 0 0 63.69 

25 11 2.74 17.57 0 9.98 0 0 0 0 69.71 

26 11 3.28 19.29 0 5.12 0 0 0 0 72.31 

27 11 3.04 14.97 0 6.98 6.51 0.13 0 6.7 61.67 

28 11 2.68 15.72 0 7.39 6.25 0.13 0 0 67.83 
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Table S8. Set of 13 experimental campaigns carried out at a total pressure of 1 bar.  

 

Run  P/ bar t1 

min 

 t2 

min 

y1 

 

 y2 

 

x1 

 

x2 

 

1 1 15.14  1 0 1 0 

2 1 15.14 15.14 0.494138864 0.505861136 0.494138864 0.505861136

3 1 14.87 14.6 0.413732394 0.586267606 0.413732394 0.586267606

4 1 16.22 19.47 0.635844341 0.364155659 0.635844341 0.364155659

5 1 16.22 26.77 0.75952381 0.24047619 0.75952381 0.24047619 

6 1 14.9  1 0 1 0 

7 1 17.24 21.97 0.697358767 0.302641233 0.697358767 0.302641233

8 1 21.3 23 0.579774178 0.420225822 0.579774178 0.420225822

9 1 30 28 0.490499648 0.509500352 0.490499648 0.509500352

10 1 37 28.5 0.322991249 0.677008751 0.322991249 0.677008751

11 1 21 31 0.705543237 0.294456763 0.705543237 0.294456763

12 1 7.6 11 0.706222222 0.293777778 0.706222222 0.293777778

13 1 14.36 21.46 0.705461056 0.294538944 0.705461056 0.294538944
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Table S9. Set of 8 experimental campaigns carried out at a total pressure of 6 bar.  

 

Run  P/ bar t1 

min 

 t2 

min 

y1 

 

 y2 

 

x1 

 

x2 

 

14 6 20.55  1 0 1 0 

15 6 19.18 19.45 0.483549653 0.516450347 0.483549653 0.516450347

16 6 18.39 18.39 0.407980941 0.592019059 0.407980941 0.592019059

17 6 20.28 26.5 0.637814828 0.362185172 0.637814828 0.362185172

18 6 20.82 37.85 0.781224819 0.218775181 0.781224819 0.218775181

19 6 11.8 12.1 0.462935397 0.537064603 0.462935397 0.537064603

20 6 10.65 11 0.47012773 0.52987227 0.47012773 0.52987227 

21 6 17.9 28.05 0.698096102 0.301903898 0.698096102 0.301903898
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Table S10. Set of 5 experimental campaigns carried out at a total pressure of 11 bar.  

Run  P/ bar t1 

min 

 t2 

min 

y1 

 

 y2 

 

x1 

 

x2 

 

22 11 24.34  1 0 1 0 

23 11 22.17 22.98 0.453976205 0.546023795 0.453976205 0.546023795

24 11 21.09 21.09 0.427431274 0.572568726 0.427431274 0.572568726

25 11 23.52 30.28 0.637749546 0.362250454 0.637749546 0.362250454

26 11 23.79 42.72 0.790249898 0.209750102 0.790249898 0.209750102

27 11 22.98 34.34 0.682004556 0.317995444 0.682004556 0.317995444

28 11 23 34.34 0.680225011 0.319774989 0.680225011 0.319774989
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Table S11. Gas mixtures available.  

 Mixture 1 

mol% 

Mixture 2 

mol % 

C2H4 30 10 

C2H6 0 10 

CH4 0 10 

CO 0 0 

Ar 5 5 

N2 65 65 
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Figure S5. Run 1 at 1 bar. 

  

(a) Breakthrough experiments (b) Breakthrough simulations based on IAST
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T/ K P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

313 1 4.37 23.09 0.00 0.00 0.00 0.00 0.00 0.00 72.55 
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Figure S6. Run 2 at 1 bar. 

  

(a) Breakthrough experiments (b) Breakthrough simulations based on IAST
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T/ K P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

313 1 3.05 16.44 0.00 16.83 0.00 0.00 0.00 0.00 63.68 
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Figure S7. Run 3 at 1 bar. 
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(a) Breakthrough experiments (b) Breakthrough simulations based on IAST

 

T/ K P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

313 1 2.63 14.10 0.00 19.98 0.00 0.00 0.00 0.00 63.29 

 

(c) RAST simulations (d) RAST simulations
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Figure S8. Run 4 at 1 bar. 

  

(a) Breakthrough experiments (b) Breakthrough simulations based on IAST

time, t / min 

0 10 20 30 40

%
 c

om
po

ne
nt

 in
 o

ut
le

t 
ga

s

0

5

10

15

20

25

30

35

C2H4

CO2

Ar

N2/Ar/CO2/C2H4

LTA-5A; 313 K, 100 kPa 

time, t / min 

0 10 20 30 40

%
 c

om
po

ne
nt

 in
 o

ut
le

t 
ga

s

0

5

10

15

20

25

30

35

C2H4

CO2

Ar

N2/Ar/CO2/C2H4

LTA-5A; 313 K, 100 kPa 

 

T/ K P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

313 1 2.95 17.81 0.00 10.20 0.00 0.00 0.00 0.00 69.05 
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Figure S9. Run 5 at 1 bar. 

  

(a) Breakthrough experiments (b) Breakthrough simulations based on IAST
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T/ K P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

313 1 3.59 19.14 0.00 6.06 0.00 0.00 0.00 0.00 71.21 
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Figure S10. Run 6 at 1 bar. 

  

(a) Breakthrough experiments (b) Breakthrough simulations based on IAST
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313 1 3.93 23.24 0 0 0 0 0 0 72.83 
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Figure S11. Run 7 at 1 bar. 
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(a) Breakthrough experiments (b) IAST breakthrough simulations

T/ K P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

313 1 3.15 19.01 0 8.25 0 0 0 0 69.59 

 

(c) RAST simulations
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Figure S12. Run 8 at 1 bar. 
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(a) Breakthrough experiments

T/ K P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

313 1 1.93 11.81 0 8.56 13.17 0 0 7.75 56.78 
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Figure S13. Run 9 at 1 bar. 
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Figure S14. Run 10 at 1 bar. 
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(a) Breakthrough experiments

T/ K P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

313 1 1.98 4.06 3.98 8.51 13.74 0 3.82 0 63.91 
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(b) IAST breakthrough simulations
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Figure S15. Run 11 at 1 bar. 

  

(a) Breakthrough experiments (b) Breakthrough simulations based on IAST
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Figure S16. Run 12 at 1 bar. 
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(a) Breakthrough experiments (b) Breakthrough simulations based on IAST
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Figure S17. Run 13 at 1 bar. 

  

(a) Breakthrough experiments (b) Breakthrough simulations based on IAST
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Figure S18. Run 14 at 6 bar. 

  

(a) Breakthrough experiments (b) Breakthrough simulations based on IAST
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T/ K P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

313 6 3.92 22.25 0.00 0.00 0.00 0.00 0.00 0.00 73.83 
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Figure S19. Run 15 at 6 bar. 

  

(a) Breakthrough experiments (b) Breakthrough simulations based on IAST
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T/ K P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

313 6 3.01 16.02 0.00 17.11 0.00 0.00 0.00 0.00 63.86 
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Figure S20. Run 16 at 6 bar. 

  

(a) Breakthrough experiments (b) Breakthrough simulations based on IAST
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T/ K P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

313 6 2.54 13.70 0.00 19.88 0.00 0.00 0.00 0.00 63.87 
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Figure S21. Run 17 at 6 bar. 

  

(a) Breakthrough experiments (b) Breakthrough simulations based on IAST
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T/ K P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

313 6 2.81 17.98 0.00 10.21 0.00 0.00 0.00 0.00 69.00 
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Figure S22. Run 18 at 6 bar. 

  

(a) Breakthrough experiments (b) Breakthrough simulations based on IAST

time, t / min 

0 10 20 30 40 50 60

%
 c

om
po

ne
nt

 in
 o

ut
le

t 
ga

s

0

5

10

15

20

25

C2H4

CO2

Ar

N2/Ar/CO2/C2H4

LTA-5A; 313 K, 600 kPa 

N2/Ar/CO2/C2H4

LTA-5A; 313 K, 600 kPa 

time, t / min 

0 10 20 30 40 50 60

%
 c

om
po

ne
nt

 in
 o

ut
le

t 
ga

s

0

5

10

15

20

25

C2H4

CO2

Ar

 

T/ K P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

313 6 3.50 19.39 0.00 5.43 0.00 0.00 0.00 0.00 71.69 
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Figure S23. Run 19 at 6 bar. 

  

(a) Breakthrough experiments (b) Breakthrough simulations based on IAST

T/ K P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

313 6 4.97 15.55 4.88 18.04 0.1 0.05 5.01 4543 50.63 
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Figure S24. Run 20 at 6 bar. 

  

(a) Breakthrough experiments (b) Breakthrough simulations based on IAST
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313 6 3.86 11.41 3.66 12.86 24.84 0.04 3.61 0.5 39.24 
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Figure S25. Run 21 at 6 bar. 

  

(a) Breakthrough experiments (b) Breakthrough simulations based on IAST
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Figure S26. Run 22 at 11 bar. 

  

(a) Breakthrough experiments (b) Breakthrough simulations based on IAST
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T/ K P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

313 11 3.66 20.82 0.00 0.00 0.00 0.00 0.00 0.00 75.53 
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Figure S27. Run 23 at 11 bar. 

  

(a) Breakthrough experiments (b) Breakthrough simulations based on IAST
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T/ K P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

313 11 2.70 14.50 0.00 17.44 0.00 0.00 0.00 0.00 65.35 
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Figure S28. Run 24 at 11 bar. 

  

(a) Breakthrough experiments (b) Breakthrough simulations based on IAST
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T/ K P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

313 11 2.47 14.46 0.00 19.37 0.00 0.00 0.00 0.00 63.69 
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Figure S29. Run 25 at 11 bar. 

  

(a) Breakthrough experiments (b) Breakthrough simulations based on IAST
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T/ K P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

313 11 2.74 17.57 0.00 9.98 0.00 0.00 0.00 0.00 69.71 
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Figure S30. Run 26 at 11 bar. 

  

(a) Breakthrough experiments (b) Breakthrough simulations based on IAST
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T/ K P/ bar %Ar %C2H4 %C2H6 %CO2 %H2 %H2O %CH4 %CO %N2 

313 11 3.28 19.29 0.00 5.12 0.00 0.00 0.00 0.00 72.31 
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Figure S31. Run 27 at 11 bar. 

  

(a) Breakthrough experiments (b) Breakthrough simulations based on IAST
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Figure S32. Run 28 at 11 bar. 
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8 Non-idealities in C2H4/CO2 mixture adsorption 

8.1 Analysis of Calleja data for C2H4/CO2 mixture adsorption in 5A zeolite 

The paper by Calleja et al.26 presents convincing evidence of strong non-idealities for adsorption of   

C2H4(1)/CO2(2) mixtures in LTA-5A zeolite. Their experimental data, obtained at 293 K and total 

pressure of 10 bar as presented in Figure 3 of their paper has been redrawn for further analysis and 

discussion in Figure S33. 

The Calleja et al.26 data clearly demonstrate the phenomenon of azeotropic adsorption, 

1 1 2 2;y x y x  , and selectivity reversals at y1 < 0.4. The experimental data are well represented by the 

Real Adsorbed Solution Theory (RAST) with the choice of the Wilson parameters 

12 2135; 0.75; 0.5C     . 

8.2 Analysis of non-idealities in the transient breakthrough experiments 

We now analyze the transient breakthrough experiments to demonstrate remarkable similarities with 

the Calleja et al.26 data. Using the shock-wave model for fixed-bed adsorbers,10 we can determine the 

adsorbed phase loadings of C2H4(1), and CO2(2) for each of the experimental campaigns. 

We illustrate the application of the shock-wave model for Run 4 at 1 bar total pressure; see Figure S8,  

The mole fractions of the four components in the feed gas mixture are 

 C2H4: yf1 = 0.178; CO2: yf2 = 0.102; Ar: yf3 = 0.0295;   N2: yf4 = 0.6905 

The breakthrough times for C2H4(1), and CO2(2) are t1 = 16.22 min; and t2 = 19.47 min 

If the total molar flow rate of the gas mixture is Q mol min-1, and the mass of adsorbent 5A is mads kg, 

we can calculate the molar loading of CO2(2) in the adsorbed phase at final equilibrium: 

2 2 2f
ads

Q
q y t

m
  (S28)

The molar loading of C2H4(1) in the adsorbed phase at final equilibrium is 
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  1 1 2 3 4 2 11f f f
ads

Q
q y t y y t t

m
        (S29)

The second term on the right member of equation (S29) is the amount of C2H4(1), of composition 

 3 41 f fy y   that is purged during the time interval  2 1t t . 

For comparison with the data in Figure S33 we determine the adsorbed phase mole fractions of 

C2H4(1), and CO2(2) for a pseudo-binary adsorbed phase mixture; the adsorbed phase mole fractions are 

1 2
1 2

1 2 1 2

;
q q

x x
q q q q

 
 

 (S30)

The corresponding mole fractions of C2H4(1), and CO2(2) in the pseudo-binary bulk feed mixture are  

1 2
1 2

3 4 3 4

;
1 1

f f

f f f f

y y
y y

y y y y
 

   
 (S31)

For the transient breakthrough experiments in Run 10 at 1 bar total pressure (see Figure S14), the 

component to breakthrough last is C2H4.  The mole fractions of the components in the feed mixture are  

C2H4: yf1 = 0.0406; CO2: yf2 = 0.0851; Ar: yf3 = 0.0198;   N2: yf4 = 0.6391; CH4: yf5 = 0.0382;  

C2H6: yf6 = 0.0398; H2: yf7 = 0.1374;  

 The breakthrough times for C2H4(1), and CO2(2) are t1 = 37 min; and t2 = 28.5 min 

If the total molar flow rate of the gas mixture is Q mol min-1, and the mass of adsorbent 5A is mads kg, 

we can calculate the molar loading of C2H4(1) in the adsorbed phase at final equilibrium: 

1 1 1f
ads

Q
q y t

m
  (S32)

The molar loading of CO2(2) in the adsorbed phase at final equilibrium is 

  2 2 2 3 4 5 6 7 2 11f f f f f f
ads

Q
q y t y y y y y t t

m
           (S33)

The second term on the right member of equation (S33) is the amount of CO2(1), of composition 

 3 4 5 6 71 f f f f fy y y y y      that is purged during the time interval  2 1t t . 
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For comparison with the data in Figure S33 we determine the adsorbed phase mole fractions of 

C2H4(1), and CO2(2) for a pseudo-binary adsorbed phase mixture; the adsorbed phase mole fractions are 

1 2
1 2

1 2 1 2

;
q q

x x
q q q q

 
 

 (S34)

The corresponding mole fractions of C2H4(1), and CO2(2) in the pseudo-binary bulk feed mixture are  

   
1 2

1 2

3 4 5 6 7 3 4 5 6 7

;
1 1

f f

f f f f f f f f f f

y y
y y

y y y y y y y y y y
 

         
 (S35)

All of the 28 experimental breakthrough experiments were analyzed using the shock-wave model, 

using the foregoing set of equations. The calculated data are summarized in Table S8, Table S9, and 

Table S10 The plots of the adsorbed phase mole of C2H4(1), x1, in the adsorbed phase vs the bulk gas 

phase mole fraction of C2H4(1), y1 are shown in Figure S34a.  The strong deviations of the experimental 

x1 vs y1 data from the IAST can be adequately captured by the RAST model with the Wilson 

parameters: 12 2125; 1; 1C     . The departures of the experimental data from the IAST 

predictions are the highest for any data on binary mixture adsorption.24, 25  Figure S34b compares the 

RAST calculations for two sets of Wilson parameters: 12 2125; 1; 1C     , and 

12 2115; 1; 1C     . The entire set of experimental data lie within the bounds of these two 

parameters 

For y1 < 0.5, the selectivity is in favor of C2H4.  This implies that for selective adsorption of ethylene 

from CO2-bearing mixtures is feasible provided the C2H4/CO2 ratio in the feed mixture is lower than 

unity. 

Transient breakthrough simulations using the RAST description of mixture adsorption captures the 

selectivity reversal adequately for Run 3, Run 9, and Run 10; see Figure S7(c,d), Figure S13(c,d), and 

Figure S14(c,d) 
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8.3 List of Figures for Non-idealities in C2H4/CO2 mixture adsorption 

 

 

 

 

Figure S33. Experimental data, obtained at 293 K and total pressure of 10 bar, for adsorption of  

C2H4(1)/CO2(2) mixtures in LTA-5A zeolite; the mole fraction of C2H4 in the bulk gas phase mixture, 

y1, is plotted as a function of the adsorbed phase mole fraction of C2H4, x1.. The data are redrawn from 

Figure 3 of Calleja et al.26 Also indicated at the IAST and RAST calculations of mixture adsorption 

equilibrium. 
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Figure S34. Experimental data for adsorption of  pseudo-binary C2H4(1)/CO2(2) mixtures in LTA-5A 

zeolite at 313 K; the mole fraction of C2H4 in the bulk gas phase mixture, y1, is plotted as a function of 

the adsorbed phase mole fraction of C2H4, x1. The plotted data are based on the 28 experimental 

campaigns on transient experimental breakthrough, and use of the shock-wave model. The IAST and 

RAST model calculations are for pt = 2 bar which is the average of the total of partial pressures of 

C2H4(1) and CO2(2) in all of the 28 experimental campaigns. Two different sets of Wilson parameters 

are in the RAST calculations in (b). 
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9 Analysis of the experimental data of García et al. 

Further experimental evidence of selectivity reversals in favor of C2H4 for feed mixtures with 

C2H4/CO2 lower than unity are provided in the experiments reported by García et al.27  

Figure S35(a,b,c,d) show experimental data for transient breakthroughs of CH4/N2, C2H6/N2, C2H4/N2, 

and CO2/N2 mixtures in a fixed bed packed with LTA-5A zeolite at four different operating conditions, 

as reported in Figure 3 of García et al.27 For all these mixtures, thermodynamic non-idealities are not 

important and the hierarchy of breakthrough times are CH4 < C2H6 < C2H4 < CO2, reflecting the 

stronger adsorption strength of CO2 compared to C2H4 for unary adsorption. 

Figure S36(a,b) show experimental data for transient breakthroughs of 20/80 C2H4/CO2 mixtures at 

303 K and 363 K, as reported in Figure 5 of García et al.27 The data indicate selectivity reversal in favor 

of C2H4, contrary to the expectations that are raised by the data in Figure S35(a,b,c,d). 

Figure S37(a,b,c,d) show experimental data for breakthroughs 40/4/49/7 CH4/C2H6/CO2/C2H4 

mixtures at four different operating conditions, as reported in Figure 7 of García et al.27 In all cases, the 

breakthrough of C2H4 at a later time than that of CO2, signifying selectivity reversals in favor of the 

unsaturated alkene. 

In order to quantify the non-idealities in Figure S36, and Figure S37, all of the 6 experimental 

breakthrough experiments were analyzed using the shock-wave model. The unary isotherm data fits are 

provided in Table S1, Table S2, Table S3, and Table S4.The plots of the adsorbed phase mole of 

C2H4(1), x1, in the adsorbed phase vs the bulk gas phase mole fraction of C2H4(1), y1 are shown in 

Figure S38(a,b) for the pseudo-binary C2H4(1)/CO2(2) mixture. The deviations from the  IAST can be 

adequately captured by the RAST model with the Wilson parameters: 12 2115; 1; 1C      for 

operation at 303 K. The non-ideality effects at 363 K are significantly lower, and can be captured using 

the Wilson parameters: 12 212; 1; 1C     . 

We now compare the experimental breakthroughs, as reported in Figures 3, 5, 6, and 7 of García et 

al.27  with transient breakthrough simulations using the methodology described in Chapter 5. In the 
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breakthrough simulations, non-ideality effects are applied only for the binary C2H4/CO2 pair in the 

mixture; all other binary pairs are assumed to be ideal. In all of the transient breakthrough experiments 

reported by García et al.,27 the transient breakthroughs have distended characteristics; this indicates that 

intra-crystalline diffusion influences are not entirely negligible. Consequently, in the transient 

breakthrough simulations reported here-under, we take 
2

0.001i

c

Ð

r
  for each individual guest molecule, 

for operations at both 303 K and 363 K. The adsorber dimensions, and interstitial gas velocities are 

chosen to match the experimental conditions in each case. For the simulations of transient 

breakthroughs, the unary isotherm data fits are provided in Table S1, Table S2, Table S3, and Table S4. 

Indeed, transient breakthrough simulations invoking the IAST or RAST, as appropriate, for 

calculation of mixture adsorption equilibrium are able to match the experimentally observed 

breakthroughs for all of the experiments as reported in Figures 3, 5, 6, and 7 of García et al.27   

 Figure S39(a,b) compare experimental data on transient breakthroughs with breakthrough simulations 

of 20/80 mixtures: CH4/N2, C2H6/N2, C2H4/N2, and CO2/N2 mixtures. The experimental breakthroughs 

are well matched by simulations for these mixtures, for which the IAST is used for describing mixture 

adsorption equilibrium. 

Figure S40 compares experimental data for breakthroughs of (a) 20/80 C2H6/CO2, (b) 20/80 CH4/CO2, 

(c) 20/80 C2H6/C2H4, (d) 20/80 C2H4/CH4, (e) 20/80 C2H6/CH4, and (f) 20/80 C2H4/CO2  mixtures in a 

fixed bed packed with LTA-5A zeolite operating at 303 K and pt = 6 bar. The breakthrough simulations 

using the IAST are of good accuracy in (a), (b), (c), (d), and (e).  The use of IAST is unable to anticipate 

the selectivity reversal for 20/80 C2H4/CO2 mixtures. 

Use of the RAST for describing mixture adsorption equilibrium provides a very good match with 

experimental breakthroughs for 20/80 C2H4/CO2 mixtures, at both 303 K, and 363 K; see Figure 

S41(b,d). The selectivity reversal phenomena are well described by the RAST model. For the 

breakthrough simulations at 303 K, the RAST model uses the Wilson parameters: 

12 2115; 1; 1C     . For describing the non-ideality effects at 363 K we use the Wilson 
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parameters: 12 212; 1; 1C     . The choice of the Wilson parameters are based on the analysis 

presented in Figure S38 

Figure S42 compares the experimental data for breakthroughs of 56/7/23/14 CH4/C2H6/N2/C2H4 

mixtures with breakthrough simulations using IAST for mixture adsorption equilibrium. The 

breakthrough simulations are in good agreement with experimental data for this mixture that does not 

display non-idealities in view of the absence of CO2. 

Figure S43 compares the experimental breakthroughs with simulations of 40/4/49/7 

CH4/C2H6/CO2/C2H4 mixtures operating at 303 K. Use of the IAST fails to anticipate the CO2/C2H4 

selectivity reversals; see Figure S43(a, b). Use of the RAST with Wilson parameters 

11 2215; 1; 1C      is able to match the experimental breakthroughs nearly quantitatively; see 

Figure S43(c, d).  

Figure S44 compares the experimental breakthroughs with simulations of 40/4/49/7 

CH4/C2H6/CO2/C2H4 mixtures operating at 363 K. Use of the IAST fails to anticipate the CO2/C2H4 

selectivity reversals; see Figure S44(a, b). Use of the RAST with Wilson parameters 

11 222; 1; 1C      is able to match the experimental breakthroughs nearly quantitatively; see 

Figure S44(c, d). 
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9.1 List of Figures for Analysis of the experimental data of García et al. 

 

Figure S35. (a, b, c, d) Experimental data for breakthroughs of 20/80 mixtures: CH4/N2, C2H6/N2, 

C2H4/N2, and CO2/N2 mixtures in a fixed bed packed with LTA-5A zeolite operating at (a) 303 K, and pt 

= 2 bar, (b) 303 K, and pt = 6 bar,  (c) 363 K, and pt = 2 bar,  and (d) 363 K, and pt = 6 bar.  The 

experimental data are re-drawn from the information in Figure 3 of García et al.27 
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Figure S36. (a, b) Experimental data for breakthroughs of 20/80 C2H4/CO2 mixtures in a fixed bed 

packed with LTA-5A zeolite operating at 6 bar and (a) 303 K, and (b) 363 K. The experimental data are 

re-drawn from the information in Figure 5 of García et al.27  
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Figure S37. (a, b, c, d) Experimental data for breakthroughs of 40/4/49/7 CH4/C2H6/CO2/C2H4 

mixtures in a fixed bed packed with LTA-5A zeolite operating at (a) 303 K, and pt = 2 bar, (b) 303 K, 

and pt = 6 bar,  (c) 363 K, and pt = 2 bar,  and (d) 363 K, and pt = 6 bar.  The experimental data are re-

drawn from the information in Figure 7 of García et al.27 The continuous solid lines are breakthrough 

simulations in which the (a, b) IAST, and (c, d) RAST is used to calculate mixture adsorption 

equilibrium.  
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Figure S38. Experimental data for adsorption of (pseudo)-binary C2H4(1)/CO2(2) mixtures in LTA-5A 

zeolite at (a) 303 K, and (b) 363 K; the mole fraction of C2H4 in the bulk gas phase mixture, y1, is 

plotted as a function of the adsorbed phase mole fraction of C2H4, x1. The plotted data are based on the 6 

experimental campaigns (3 campaigns at 303 K and 3 campaigns at 363 K) on transient experimental 

breakthroughs shown in Figure S36, and Figure S37, along with the use of the shock-wave model.  
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Figure S39. (a, b) Comparison of experimental data on transient breakthroughs with breakthrough 

simulations of 20/80 mixtures: CH4/N2, C2H6/N2, C2H4/N2, and CO2/N2 mixtures in a fixed bed packed 

with LTA-5A zeolite operating at (a) 303 K, and pt = 2 bar, and (b) 303 K, and pt = 6 bar.  In these 

simulations, the IAST is used to calculate mixture adsorption equilibrium.  
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Figure S40. (a, b) Experimental data for breakthroughs of (a) 20/80 C2H6/CO2, (b) 20/80 CH4/CO2, (c) 

20/80 C2H6/C2H4, (d) 20/80 C2H4/CH4, (e) 20/80 C2H6/CH4, and (f) 20/80 C2H6/CO2  mixtures in a 

fixed bed packed with LTA-5A zeolite operating at 303 K and pt = 6 bar. The experimental data are re-

drawn from the information in Figure 5 of García et al.27 The continuous solid lines are breakthrough 

simulations in which the IAST is used to calculate mixture adsorption equilibrium. 
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Figure S41. (a, b, c, d) Experimental data for breakthroughs of 20/80 C2H4/CO2 mixtures in a fixed 

bed packed with LTA-5A zeolite operating at 6 bar and (a, b) 303 K, and (c, d) 363 K. The experimental 

data are re-drawn from the information in Figure 5 of García et al.27 The continuous solid lines are 

breakthrough simulations in which the (a, c) IAST, and (b, d) RAST is used to calculate mixture 

adsorption equilibrium. 
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Figure S42. (a, b) Experimental data for breakthroughs of 56/7/23/14 CH4/C2H6/N2/C2H4 mixtures in 

a fixed bed packed with LTA-5A zeolite operating at (a) 303 K, pt = 2 bar, and (b) 303 K, pt = 6 bar.   

The experimental data are re-drawn from the information in Figure 6 of García et al.27 The continuous 

solid lines are breakthrough simulations in which the IAST is used to calculate mixture adsorption 

equilibrium.  
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Figure S43. (a, b, c, d)  Comparison of experimental breakthroughs with simulations of 40/4/49/7 

CH4/C2H6/CO2/C2H4 mixtures in a fixed bed packed with LTA-5A zeolite operating at 303 K and (a, c) 

pt = 2 bar, and (b, d) pt = 6 bar. In (a, b), the IAST is used to calculate mixture adsorption equilibrium. 

In (c, d), the mixture adsorption equilibrium is calculated using the RAST. For the simulations of 

transient breakthroughs, the unary isotherm data fits are provided in Table S1, Table S2, Table S3, and 

Table S4.  
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Figure S44. (a, b, c, d) Comparison of experimental breakthroughs with simulations of 40/4/49/7 

CH4/C2H6/CO2/C2H4 mixtures in a fixed bed packed with LTA-5A zeolite operating at 363 K and (a, c) 

pt = 2 bar, and (b, d) pt = 6 bar. In (a, b), the IAST is used to calculate mixture adsorption equilibrium. 

In (c, d), the mixture adsorption equilibrium is calculated using the RAST. For the simulations of 

transient breakthroughs, the unary isotherm data fits are provided in Table S1, Table S2, Table S3, and 

Table S4.  
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10 Nomenclature 

Latin alphabet 

A  surface area per kg of framework, m2 kg-1 

bi  Langmuir parameter, 1Pa  

ci  molar concentration of species i, mol m-3 

ct  total molar concentration in mixture, mol m-3 

ci0  molar concentration of species i in fluid mixture at inlet to adsorber, mol m-3 

C  constant used in Equation (S13), kg mol-1  

Ði  M-S diffusivity of component i for molecule-pore interactions, m2 s-1 

E  energy parameter, J mol-1 

L  length of packed bed adsorber, m  

n number of species in the mixture, dimensionless 

pi  partial pressure of species i, Pa 

pt  total system pressure, Pa 

0
iP   sorption pressure, Pa 

qA  molar loading species A, mol kg-1 

qi,sat  molar loading of species i at saturation, mol kg-1 

qt  total molar loading of mixture, mol kg-1 

r  radial coordinate, m  

rc  radius of crystallite, m  

R  gas constant, 8.314 J mol-1 K-1  

Sads adsorption selectivity, dimensionless 

t  time, s  

T  absolute temperature, K  

u  superficial gas velocity in packed bed, m s-1 
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v  interstitial gas velocity in packed bed, m s-1 

Vp   pore volume, m3 kg-1 

xi   mole fraction of species i in adsorbed phase, dimensionless 

yi   mole fraction of species i in bulk fluid mixture, dimensionless 

z  distance along the adsorber, and along membrane layer, m  

 

Greek letters 

i  activity coefficient of component i in adsorbed phase, dimensionless 

  voidage of packed bed, dimensionless 

ij  Wilson parameters, dimensionless 

i  molar chemical potential, J mol-1 

    spreading pressure, N m-1 

  framework density, kg m-3 

  time, dimensionless 

 

 

Subscripts 

 

i,j  components in mixture 

i  referring to component i 

t  referring to total mixture 

sat  referring to saturation conditions 

 

Superscripts 

0  referring to pure component loading 
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excess  referring to excess parameter 
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