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Many gas ] solid CFD models ha®e been put forth by academic researchers, go®ern-
ment laboratories, and commercial ®endors. These models often differ in terms of both
the form of the go®erning equations and the closure relations, resulting in much confu-
sion in the literature. These ®arious forms in the literature and in commercial codes are
re®iewed and the resulting hydrodynamics through CFD simulations of fluidized beds

( )compared. Experimental data on fluidized beds of Hilligardt and Werther 1986 , Ke-
( ) ( ) ( )hoe and Da®idson 1971 , Darton et al. 1977 , and Kuipers 1990 are used to quanti-

tati®ely assess the ®arious treatments. Predictions based on the commonly used go®ern-
( ) ( )ing equations of Ishii 1975 do not differ from those of Anderson and Jackson 1967

in terms of macroscopic flow beha®ior, but differ on a local scale. Flow predictions are
not sensiti®e to the use of different solid stress models or radial distribution functions, as
different approaches are ®ery similar in dense flow regimes. The application of a differ-
ent drag model, howe®er, significantly impacts the flow of the solids phase. A simplified
algebraic granular energy-balance equation is proposed for determining the granular
temperature, instead of sol®ing the full granular energy balance. This simplification does
not lead to significantly different results, but it does reduce the computational effort of
the simulations by about 20%.

Introduction

Gas]solid systems are found in many operations in the
chemical, petroleum, pharmaceutical, agricultural, biochemi-
cal, food, electronic, and power-generation industries. Com-

Ž .putational fluid dynamics CFD is an emerging technique
for predicting the flow behavior of these systems, as it is nec-
essary for scale-up, design, or optimization. For example,

Ž .Barthod et al. 1999 have successfully improved the perform-
ance of a fluidized bed in the petroleum industries by means
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Ž .of CFD calculations. Sinclair 1997 gives an extensive intro-
duction on applying CFD models for gasrsolid risers. Al-
though single-phase flow CFD tools are now widely and suc-
cessfully applied, multiphase CFD is still not because of the
difficulty in describing the variety of interactions in these sys-
tems. For example, to date there is no agreement on the ap-
propriate closure models. Furthermore, there is still no
agreement on even the governing equations. In addition, pro-
posed constitutive models for the solid-phase stresses and the
interphase momentum transfer are partially empirical.

CFD models of gas]solid systems can be divided into two
groups, Lagrangian models and Eulerian models. Lagrangian
models, or discrete particle models, calculate the path and
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motion of each particle. The interactions between the parti-
Žcles are described by either a potential force soft-particle

. Ždynamics, Tsuji et al., 1993 or by collision dynamics hard-
.particle dynamics, Hoomans et al., 1995 . The drawbacks of

the Lagrangian approach are the large memory requirements
and the long calculation time and, unless the continuous

Ž .phase is described using direct numerical simulations DNS ,
empirical data and correlations are required to describe the
gas]solid interactions. Eulerian models treat the particle
phase as a continuum and average out motion on the scale of
individual particles, thus enabling computations by this
method to treat dense-phase flows and systems of realistic
size. As a result, CFD modeling based on this Eulerian
framework is still the only feasible approach for performing
parametric investigation and scale-up and design studies.

This article focuses on the Eulerian approach and com-
pares the two sets of governing equations, the different clo-
sure models, and their associated parameters that are em-
ployed in the literature to predict the flow behavior of
gas]solid systems. Unfortunately, many researchers propose
governing equations without citing, or with incorrectly citing,
a reference for the basis for their equations. Both Anderson

Ž . Ž .and Jackson 1967 and Ishii 1975 have derived multiphase
flow equations from first principles, but the inherent assump-
tions in these two sets of governing equations constrain the
types of multiphase flows to which they can be applied. One
of the objectives of our current contribution is to show how

Ž .these two treatments differ; it is shown that Ishii’s 1975
treatment is appropriate for a dispersed phase consisting of

Ž .fluid droplets, and that Anderson and Jackson’s 1967 treat-
ment is appropriate for a dispersed phase consisting of solid
particles. In the case of a solid dispersed phase, many re-
searchers and commercial CFD codes employ kinetic theory
concepts to describe the solid-phase stresses resulting from
particle]particle interactions. Various forms of the constitu-
tive models based on these concepts have been applied in the
literature. The qualitative and quantitative differences be-
tween these are shown in this article. The predictions of CFD
simulations of bubbling fluidized beds, slugging fluidized
beds, and bubble injection into fluidized beds incorporating
these various treatments are compared to the ‘‘benchmark’’

Ž .experimental data of Hilligardt and Werther 1986 , Kehoe
Ž . Ž . Ž .and Davidson 1971 , Darton et al. 1977 , and Kuipers 1990 .

Governing Equations
Most authors who refer to the origin of their governing

Ž .equations refer to the work of Anderson and Jackson 1967
Ž . Ž .or Ishii 1975 . Anderson and Jackson 1967 and Jackson

Ž . w Ž .x1997 with correction in Jackson 1998 use a formal math-
ematical definition of local mean variables to translate the
point Navier-Stokes equations for the fluid and the Newton’s
equation of motion for a single particle directly into contin-
uum equations representing momentum balances for the fluid

Ž .and solid phases, as earlier suggested by Jackson 1963 . The
point variables are averaged over regions that are large with
respect to the particle diameter, but small with respect to the
characteristic dimension of the complete system. A weighting

Ž .function, g N xy yN , is introduced in forming the local aver-
ages of system point variables, where N xy yN denotes the
separation of two arbitrary points in space. The integral of g

over the total space is normalized to unity:

`
24p g r r dr s1. 1Ž . Ž .H

0

The ‘‘radius’’ l of function g is defined by

`l 2 2g r r dr s g r r dr , 2Ž . Ž . Ž .H H
0 l

If l is chosen to satisfy a< l < L, where a is the particle
radius and L is the shortest macroscopic length scale, aver-
ages defined should not depend significantly on the particu-
lar functional form of g or its radius.

Ž .The gas-phase volume-fraction e x and the particleg
Ž .number density n x at point x are directly related to the

weighting function g :

e x s g N xy yN dV 3Ž . Ž . Ž .g H y
Vg

n x s g N xy x N , 4Ž . Ž .Ž .Ý p
p

where V is the fluid-phase volume, and x is the position ofg p
the center of particle p. The local mean value of the fluid-
phase point properties, - f ) , is defined byg

e x - f ) x s f y g N xy yN dV . 5Ž . Ž . Ž . Ž . Ž .g Hg y
Vg

The solid-phase averages are not defined like the fluid-
phase averages, since the motion of the solid phase is deter-
mined with respect to the center of the particle, and average
properties need only depend on the properties of the particle
as a whole. Hence, the local mean value of the solid-phase
point properties is defined by

n x - f ) x s f N xy x N . 6Ž . Ž . Ž .Ž .Ýs s p
p

The average space and time derivatives for the fluid and
solid phases follow from the preceding definitions. The aver-
aging rules are then applied to the point continuity and mo-
mentum balances for the fluid. For the solid phase, the aver-
aging rules are applied to the equation of motion of a single
particle p:

 ©s
r V s s y n y ds q f q r V g , 7Ž . Ž . Ž .H Ýs p g y q p s p t Sp q / p

where © is the particle velocity, r is the particle density, Vs s p
is the volume of particle p, s is the gas-phase stress tensor,g
S denotes the surface of particle p, and f represents thep q p
resultant force exerted on the particle p from contacts with
other particles.

The resulting momentum balances for the fluid and solid
phases, dropping the averaging brackets -) on the vari-
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ables, are as follows:


r e © q© ?=© s= e sŽ .g g g g g g g t

y s ? n y g N xy yN ds q r e g 8Ž . Ž .HÝ g y g g
Spp


r e © q© ?=© s g N xy x N s n y dsŽ .HÝg s s s s p g y t Spp

q=?s q r e g . 9Ž .s s s

The first term on the righthand side of the gas-phase equa-
tion of motion represents the effect of stresses in the gas
phase, the second term on the righthand side represents the
traction exerted on the gas phase by the particle surfaces,
and the third term represents the gravity force on the fluid.
The first term on the righthand side of the solid-phase equa-
tion of motion represents the forces exerted on the particles
by the fluid, the second term on the righthand side repre-
sents the force due to solid]solid contacts, which can be de-
scribed using concepts from kinetic theory, and the third term
represents the gravity force on the particles. The averaged
shear tensor of the gas phase can be rewritten with the New-
tonian definition as

mg T
s sy P Iq =© q =© , 10Ž .Ž .g g g geg

where the gas-phase volume-fraction is introduced in the vol-
ume process.

Note that the forces due to fluid traction are treated dif-
ferently in the fluid-phase and solid-phase momentum bal-
ances. In the particle phase, only the resultant force acting
on the center of the particle is relevant; the distribution of
stress within each particle is not needed to determine its mo-
tion. Hence, in the solid-phase momentum balance, the re-
sultant forces due to fluid traction acting everywhere on the
surface of the particles are calculated first, after which these
are averaged to the particle centers. In the fluid-phase mo-
mentum balance, the traction forces at all elements of
fluid]solid interaction are calculated, and then are averaged
to the location of the surface elements. Hence, the fluid-phase
traction term is given as

s ? n y g N xy yN ds s g N xy x N s ? n y dsŽ . Ž .H HÝ Ýg y p g y
S Sp pp p

2y=? a g N xy x N s ? n y n y ds qO = ,Ž . Ž . Ž .HÝ p g y½ 5Spp

11Ž .

which is a result of a Taylor series expansion in g N xy yN
about the center of the particle with radius a. Here terms of
Ž 2.O = and higher have been neglected. Note that the first

term on the righthand side of Eq. 11 is the same as the fluid
traction term in the particle-phase momentum balance. The

Table 1. Governing Equations Applied to Gas–Solid Flow

Continuity equations
eg Ž .q=? e © s0g g t
es Ž .q=? e © s0s s t

( )Momentum equations of Jackson 1997
 © bg Ž .r q© ?=© s=?t y=P y © y© q r gg g g g g s g t eg

 © © bgs Ž .r e q© ?=© y r e q© ?=© s © y©s s s s g s g g g s t  t eg

Ž .qe r y r g q=?t y=Ps s g s s
in alternative form:

 ©g Ž .r e q© ?=© se =?t ye =P y b © y© qe r gg g g g g g g g s g g t
 ©s Ž .r e q© ?=© se =?t ye =P q=?t y=P q b © y©s s s s s g s s s g s t

qe r gs s

( )Momentum equations of Ishii 1975
 ©g Ž .r e q© ?=© sye =P q=?e t qe r g y b © y©g g g g g g g g g g s t
 ©s Ž .r e q© ?=© sye =P q=?e t qe r g q b © y©s s s s s s s s s g s t

Ž .applied to gas-solid flow Enwald et al., 1996 :
 ©g Ž .r e q© ?=© sye =P q=?e t qe r g y b © y©g g g g g g g g g g s t

 ©s Ž .r e q© ?=© sye =P q=?t y=P qe r g q b © y©s s s s s s s s s g s t

Definitions
2

Ž .t s2m D q l y m tr D Ii i i i i iž /3
1 Tw Ž . xD s =© q =©i i i2

Note: The explanation of the symbols can be found in the Notation.

difference in the manner in which the resultant forces due to
fluid tractions act on the surfaces of the particles is a key

Ž . Ž .distinction between the Jackson 1997 and Ishii 1975 for-
Ž .mulations. In the Ishii 1975 formulation, applicable to fluid

droplets, the fluid-droplet traction term is the same in the
gas phase and the dispersed-phase governing equations.

The integrals involving the traction on a particle surface
Ž .have been derived by Nadim and Stone 1991 and are given

Ž .in Jackson 1997 as

b
g N xy x N s ? n y ds s © y© q r e gŽ . Ž .HÝ p g y g s g seS gpp

D ©f g
q r e 12Ž .g s Dt

=? a g N xy x N s ? n y n y ds sy= e P ,Ž . Ž . Ž .HÝ p g y s g
Spp

13Ž .

where b is the interphase momentum transfer coefficient.
The final equations of motion for both phases according to

Ž .Jackson 1997 are shown in Table 1, both in the form as
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originally presented in his article, and in an equivalent alter-
native form, which is merely a linear combination of the orig-
inal equations.

Ž .In Ishii’s 1975 formulation, the fluid and dispersed phases
are averaged over a fixed volume. This volume is relatively
large compared to the size of individual molecules or parti-

Ž .cles. A phase indicator function is introduced, X r , which is
unity when the point r is occupied by the dispersed phase,
and zero if it is not. Averaging over this function leads to the
volume fraction of both phases:

1
e s X r dV , 14Ž . Ž .Hs rV V

where V is the averaging volume. Since both the continuous
and dispersed phases are liquids, they are treated the same
in the averaging process. Hence, the momentum balances for
both phases are the same,

e r -© )k k k
q=? e r -© )-© )Ž .k k k k t

sy= e - P ) q=? e -t ) qe r g q M , 15Ž .Ž . Ž .k k k k k k k

where k is the phase number and M is the interphase mo-k
mentum exchange between the phases, with M q M s0. Ing s

Ž .the Ishii 1975 formulation, the distribution of stress within
both phases is important since the dispersed phase is consid-
ered as fluid droplets. Hence, ‘‘jump’’ conditions are used to
determine M . The interphase momentum transfer is definedk
as

1
M sy P n y n ?tŽ .Ýk k k k kLjj

1
s - P )y P n y- P ) n y nŽ .ŽÝ ki k k ki k kLjj

? -t )yt q n ? -t ) , 16Ž ..Ž .ki k k ki

where L is the interfacial area per unit volume, P is thej k
pressure in the bulk of phase k, - P ) is the average pres-ki
sure of phase k at the interface, t denotes the shear stressk
in the bulk, and -t ) represents the average shear stresski

Ž . Žat the interface. The terms - P )y P n and n ? -tki k k k ki
. Ž .)yt are identified by Ishii 1975 as the form drag andk

the skin drag, respectively, making up the total drag force.
The other terms can be written out as

M sdragq - P )=e q - P )y- P ) =eŽ .k k k ki k k

y =e ? -t ). 17Ž .Ž .k ki

Ž .According to Ishii and Mishima 1984 , the last term on
the righthand side is an interfacial shear term and is impor-

Ž .tant in a separated flow. According to Ishii 1975 , the term
Ž .- P )y- P ) only plays a role when the pressure atki k
the bulk is significantly different from that at the interface, as
in stratified flows. For many applications both terms are neg-

ligible, and

M sdragq - P )=e . 18Ž .k k k

The momentum equations for the gas phase and the dis-
Ž .persed phase following the original work of Ishii 1975 are

shown in Table 1. Many researchers and commercial codes
Ž .modify Ishii’s 1975 equations to describe gas]solid flows

Ž .such as Enwald et al., 1996 . These modified equations are
Ž .also shown in Table 1. When Ishii’s 1975 equations are ap-

plied to gas]solid flows, the solid-phase stress tensor is not
multiplied by the solid volume fraction, since the volume-
fraction functionality is already accounted for in the kinetic
theory description.

Ž . Ž .Comparing the Ishii 1975 and Jackson 1997 momentum
Ž .balances, the differences are twofold. First, Jackson 1997

includes the solid volume fraction multiplied by the gradient
of the total gas-phase stress tensor in the solid-phase mo-

Ž .mentum balance, whereas Ishii 1975 only includes the solid
volume-fraction multiplied by the gradient of the pressure.

Ž .Second, in the Ishii 1975 approach in the gas-phase mo-
mentum balance, the pressure carries the gas volume fraction
outside the gradient operator; the shear stress carries the gas
volume fraction inside the gradient operator. In Jackson
Ž .1997 both stresses are treated equally with respect to the
gas volume fraction and the gradient operators. When the
gas-phase shear stress plays an important role, these differ-
ences may be significant near large gradients of volume frac-
tion, that is, near bubbles or surfaces.

Closure Relations
Kinetic theory

Closure of the solid-phase momentum equation requires a
description for the solid-phase stress. When the particle mo-
tion is dominated by collisional interactions, concepts from

Ž .gas kinetic theory Chapman and Cowling, 1970 can be used
to describe the effective stresses in the solid phase resulting

Ž .from particle streaming kinetic contribution and direct col-
Ž .lisions collisional contribution . Constitutive relations for the

solid-phase stress based on kinetic theory concepts have been
Ž .derived by Lun et al. 1984 , allowing for the inelastic nature

of particle collisions.
Analogous to the thermodynamic temperature for gases,

the granular temperature can be introduced as a measure of
the particle velocity fluctuations.

1
X2

Us -© ). 19Ž .s3

Since the solid-phase stress depends on the magnitude of
these particle-velocity fluctuations, a balance of the granular

3Ž .energy Q associated with these particle-velocity fluctua-2

tions is required to supplement the continuity and momen-
tum balance for both phases. This balance is given as

3 
e r Q q=? e r Q© s y=P Iqt :=©Ž . Ž .s s s s s s s sž /2  t

y=? k =Q yg y J , 20Ž .Ž .s s s
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where the first term on the righthand side represents the cre-
ation of fluctuating energy due to shear in the particle phase,
the second term represents the diffusion of fluctuating en-
ergy along gradients in Q, g represents the dissipation dues
to inelastic particle]particle collisions, and J represents thes
dissipation or creation of granular energy resulting from the
working of the fluctuating force exerted by the gas through
the fluctuating velocity of the particles. Rather than solving
the complete granular energy balance given in Eq. 20, some

Žresearchers Syamlal et al., 1993; Boemer et al., 1995; Van
.Wachem et al., 1998, 1999 assume the granular energy is in a

steady state and dissipated locally, and neglect convection and
diffusion. Retaining only the generation and the dissipation
terms, Eq. 20 simplifies to an algebraic expression for the
granular temperature:

0s y=P Iqt :=© yg . 21Ž .s s s sž /
Because the generation and dissipation terms dominate in
dense-phase flows, it is anticipated that this simplification is
a reasonable one in dense regions of flow.

Solid-phase stress tensor
The solids pressure represents the normal solid-phase

forces due to particle]particle interactions. In the literature
there is general agreement on the form of the solids pres-

Ž .sure, given by Lun et al. 1984 as

P s r e Q 1q2 1q e g ew xŽ .s s s 0 s

s r e Qq2 g r e 2Q 1q e . 22Ž . Ž .s s 0 s s

The first part of the solids pressure represents the kinetic
contribution, and the second part represents the collisional
contribution. The kinetic part of the stress tensor physically
represents the momentum transferred through the system by
particles moving across imaginary shear layers in the flow;
the collisional part of the stress tensor denotes the momen-
tum transferred by direct collisions.

The solids bulk viscosity describes the resistance of the
particle suspension against compression. In the literature,
there also is general agreement on the form of the solids bulk

Ž .viscosity, given by Lun et al. 1984 as

4 Q
2l s e r d g 1q e . 23Ž . Ž .(s s s s 03 p

However, the kinetic theory description for the solids shear
viscosity often differs between the various two-fluid models.

Ž .Gidaspow 1994 does not account for the inelastic nature of
particles in the kinetic contribution of the total stress, as Lun

Ž .et al. 1984 do, claiming this correction is negligible. The
Ž .solids shear viscosity of Syamlal et al. 1993 neglects the ki-

netic or streaming contribution, which dominates in dilute-
Ž .phase flow. Hrenya and Sinclair 1997 follow Lun et al.

Ž .1984 , but constrain the mean free path of the particle by a
dimension characteristic of the actual physical system. This is

Ž .opposed to the Lun et al. 1984 theory, which allows the

mean free path to tend toward infinity, and the solids viscosi-
ties tends toward a finite value as the solid volume fraction
tends to zero. Hence, by constraining the mean free path, the

Ž .limit of the Hrenya and Sinclair 1997 shear viscosity expres-
sion correctly tends to zero as the solid volume fraction ap-

Ž .proaches zero. In dense solid systems e )0.05 , there is nos
Ž .difference in the predicted solids viscosity of Lun et al. 1984

Ž . Ž .and Hrenya and Sinclair 1997 . The Syamlal et al. 1993
solids shear viscosity also tends to zero as the solid volume
fraction tends to zero. In this case, however, this solids shear

Table 2. Solids Shear Viscosity

( )Lun et al. 1984
8

Ž .1q h 3hy2 e gs 0'5 t Q 1 8es 5
m s r d qs s s ž /96 hg 5 2yhž /0

768
2 xq he gs 025p

2Ž .Ž .4 Q 1 r d g 1q e 3r2 ey1r2 es s 0 s2 'Ž .s e r d g 1q e q Qp(s s s 0 Ž .5 p 15 3r2y1r2 e
Ž .1 r d e 3r4eq1r4 10 r ds s s s s' 'q Qp q Qp

Ž . Ž .Ž .6 3r2y er2 96 1q e 3r2y1r2 e g0

( )Syamlal et al. 1993
'4 Q e d r p Qs s s2 Ž .m s e r d g 1q e q(s s s s 0 Ž .5 p 6 3y e

2
Ž .Ž .1q 1q e 3ey1 e gs 05

Ž .Ž .4 Q 1 1q e 3r2 ey1r2
2 2'Ž .s e r d g 1q e q Qp r d g e(s s s 0 s s 0 sŽ .5 p 15 3r2y er2

'1 e d r p Qs s s
q

Ž .12 3r2y er2

( )Gidaspow 1994
'5 p

2'2 r d Qs s4 Q 4962 Ž . Ž .m s e r d g 1q e q ? 1q g e 1q e(s s s s 0 0 sŽ .5 p 1q e g 50

4 Q 1
2 2'Ž . Ž .s e r d g 1q e q Qp r d g 1q e e(s s s 0 s s 0 s5 p 15

1 10 r ds s' 'q Qp r d e q Qps s s Ž .6 96 1q e g0

( )Hrenya and Sinclair 1997

' Ž .5 p Q 1 1 8e 1q8r5h 3hy2 e gs s 0
m s r d qs s s l ž /96 hg 5 2yhm f pž /01q

R
768

2q he gs 025p
2Ž . Ž .4 Q 1 r d g 1q e 3r2 ey1r2 es s 0 s2 'Ž .s e r g 1q e q Qp(s s 0 Ž .5 p 15 3r2y er2

lm f p
r d e 1r2 1q q3r4ey1r4s s s ž /ž /1 R'q Qp

l6 m f pŽ .3r2y1r2 e 1qž /R
10 r ds s'q Qp

l96 m f pŽ .Ž .1q e 3r2y1r2 e g 1q0 ž /R

Note: The symbols can be found in the Notation.
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Figure 1. Comparison of solids shear viscosities from
different kinetic theory models: es0.9, emax
s0.65.

viscosity limit is reached because the kinetic contribution to
the solids viscosity is neglected.

Table 2 presents the forms for the solids shear viscosity as
presented in the original articles as well as in an equivalent
form so that all of the models can be easily compared. Figure
1 shows a comparison of the constitutive models for the solids
shear viscosity as a function of the solid volume fraction. All
models yield the same solids shear viscosity at high solids vol-

Ž .ume fractions. Syamlal et al. 1993 deviate from the others
for solid volume fractions less than 0.3. Hrenya and Sinclair
Ž .1997 show a rapid decrease in solids shear viscosity at ex-
tremely small particle concentrations.

Conducti©ity of granular energy
Similar to the solids shear viscosity, the solids thermal con-

ductivity, k , consists of a kinetic contribution and a colli-
Ž .sional contribution. Gidaspow 1994 differs from Lun et al.

Ž .1984 only in the dependency of the solids thermal conduc-
Ž .tivity on the coefficient of restitution. Syamlal et al. 1993

neglect the kinetic contribution to the thermal conductivity.
Ž . Ž .Hrenya and Sinclair 1997 follow Lun et al. 1984 , but con-

strain the mean free path of the particle by a dimension char-
acteristic of the actual system. Hence, the limit of their con-
ductivity expression, as with the shear viscosity, correctly tends
to zero when approaching zero solid volume fraction. Syamlal

Ž .et al. 1993 also correctly predict zero for the conductivity at
zero solid volume fraction by neglecting the kinetic contribu-
tion.

Table 3 presents the forms for the solids thermal conduc-
tivity as presented in the original articles, as well as in an
equivalent form so that all of the closure models can be eas-
ily compared. Figure 2 shows a quantitative comparison of
the constitutive models for the solids thermal conductivity as
a function of the solid volume fraction. All models yield the
same thermal conductivity at high solid volume fraction.

Ž .Syamlal et al. 1993 deviate from the others for solids vol-
Ž .ume fraction less than 0.3. Hrenya and Sinclair 1997 show a

Table 3. Solids Thermal Conductivities

( )Lun et al. 1984
2' Ž .25 p Q 8 96e 1q12r5h 4hy3 e gs s 0

k s r d qs s ž / ž /128 hg 5 41y33h0

512
2q he gs 025p

2 2Ž . Ž .Q 9 r d g 1r2qer2 2 ey1 es s 0 s2 'Ž .s2e r d g 1q e q Qp(s s s 0 Ž .p 8 49r16y33r16e
2Ž .15 e r d e r2q1r4eq1r4s s s'q Qp

Ž .16 49r16y33r16e
25 r ds s'q Qp

Ž .Ž .64 1q e 49r16y33r16e g0

( )Syamlal et al. 1993
'15d r e Qp 12 16s s s 2 Ž . Ž .k s 1q h 4hy3 e g q 41y33h he gs 0 s 0Ž .4 41y33h 5 15p

2 2Ž . Ž .Q 9 r d g 1r2q er2 2 ey1 es s 0 s2 'Ž .s2e r d g 1q e q Qp(s s s 0 Ž .p 8 49r16y33r16e
15 e r ds s s'q Qp

Ž .32 49r16y33r16e

( )Gidaspow 1994
75 'k s r d p Qdil s s384

2
2 6 Q

2Ž . Ž .k s 1q 1q e g e k q2e r d g 1q e (0 s dil s s s 0Ž .1q e g 5 p0
2 2Ž . Ž .Q 9 r d g 1r2q er2 2 ey1 es s 0 s2 'Ž .s2e r d g 1q e q Qp(s s s 0 Ž .p 8 49r16y33r16e

lm f p2e r d e r2q1r4eq1r4qs s s ž /15 R'q Qp
l16 m f pŽ .49r16y33r16e 1qž /R

25 r ds s'q Up
l64 m f pŽ .Ž .1q e 49r16y33r16e 1q g0ž /R

Note: The symbols can be found in the Notation.

Figure 2. Comparison of solids thermal conductivity
from different kinetic theory models: es0.9,
e s0.65.max
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rapid decrease in thermal conductivity at extremely small
particle concentration.

Dissipation and generation of granular energy
Ž .Jenkins and Savage 1983 represent the dissipation of

granular energy due to inelastic particle]particle collisions as

4 Q
2 2g s3 1y e e r g Q y=? © . 24Ž . Ž .(s s s 0 sž /d ps

For small mean-field gradients associated with a slight parti-
cle inelasticity, the term =? © is typically omitted, as in Luns

Ž .et al. 1984 :

e 2r gs s 02 3r2g s12 1y e Q . 25Ž . Ž .s 'd ps

The rate of energy dissipation per unit volume resulting from
the action of the fluctuating force exerted by the gas through
the fluctuating velocity of the particles is given by J ss

X X X X X XŽ . Ž .b © ? © y© ? © . According to Gidaspow 1994 , the term © ? ©s s g s s s
X Xis equal to 3U. The second term, © ? © , is neglected by Gi-g s

Ž . Ž .daspow 1994 . However, Louge et al. 1991 have proposed a
Ž .closure for this second term based on the work of Koch 1990

for the dilute flow regime, which we apply here:

2
bd © y©Ž .s g s

J s b 3Qy . 26Ž .s '4e r p Qs s

X XŽ .Using the closure of Louge et al. 1991 for © ? © , we haveg s
found that this term is of the same order of magnitude as

X X© ? © . It should be noted, however, that the term as proposeds s
Ž .by Louge et al. 1991 is originally meant for the dilute flow

regime and does not tend to zero at closest solids packing.
Ž .Therefore, Sundaresan private communication, 1999 has

proposed dividing this term by the radial distribution func-
tion to correct the closure in this limit of closest solids pack-
ing.

Ž .Recently, Sangani et al. 1996 have derived an equation
X X Ž .for © ? © , and Koch and Sangani 1999 have derived an equa-s s

X Xtion for © ? © , especially for dense solid flows. With theseg s
correlations, the expression for the rate of energy dissipation
resulting from fluctuations is

22b d © y©m e Q Ž .s g ss s UJ s 3 R y S , 27Ž .s diss2 'd 4e r p Qs s s

where R can be interpreted as the effective drag coeffi-diss
cient, which is determined as a result of a fit of numerical

Ž . Usimulations Sangani et al., 1996 , and S is an energy source:

1
U 2S s R b , 28Ž .s'2 p

where R represents the energy source due to a specifieds
mean force acting on the particles and is obtained by a fit of
numerical simulations. When the solids volume fraction ap-
proaches the maximum packing limit, R tends to zero.s

Table 4. Radial Distribution Function

( )Carnahan and Starling 1969
21 3e es s

g s q q0 2 31ye Ž . Ž .2 1ye 2 1yes s s

( )Lun and Sa®age 1986 y2 .5e s,max
es

g s 1y0 ž /es, max

( )Sinclair and Jackson 1989 y1
1r3es

g s 1y0 ž /es, max

( )Gidaspow 1994 y1
1r33 es

g s 1y0 ž /5 es, max

Radial distribution function
The solid-phase stress is dependent on the radial distribu-

Ž .tion function at contact. Lun et al. 1984 employed the Car-
Ž .nahan and Starling 1969 expression for the radial distribu-

Ž .tion function. The Carnahan and Starling 1969 expression,
however, does not tend toward the correct limit at closest
solids packing. Because particles are in constant contact at
the maximum solid volume fraction, the radial distribution
function at contact tends to infinity. Therefore, alternative

Ž .expressions to the Carnahan and Starling 1969 expression
Ž .have been proposed by Gidaspow 1994 , Lun and Savage

Ž . Ž .1986 , and Sinclair and Jackson 1989 , which tend to the
correct limit at closest packing. These various forms of the
radial distribution function are given in Table 4 and are plot-
ted in Figure 3 as a function of the solid volume fraction,
along with the data from molecular simulations of Alder and

Ž .Wainright 1960 and the data from experiments of Gidaspow
Ž . Ž .and Huilin 1998 . The expression of Gidaspow 1994 most

closely coincides with the data over the widest range of solid
Ž .volume fractions. The expression of Gidaspow 1994 , how-

Figure 3. Radial distribution functions: computational
( )data of Alder and Wainright 1960 vs. experi-

( )mental data of Gidaspow and Huilin 1998 .
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Figure 4. Solids shear viscosity from different radial
distribution functions.

Ž .Solids shear viscosity follows Hrenya and Sinclair 1997 ; e
s0.9, R s 0.01525 m, and e s 0.65.max

ever, does not approach the correct limit of one as the solid
volume-fraction approaches zero. Figure 4 presents the effect
of these different expressions for the radial distribution func-
tions on the solids shear viscosity. A difference of up to a
factor of 2 in viscosity can result.

Frictional stress
At high solid volume fraction, sustained contacts between

particles occur. The resulting frictional stresses must be ac-
counted for in the description of the solid-phase stress. Zhang

Ž .and Rauenzahn 1997 conclude that particle collisions are
no longer instantaneous at very high solid volume fractions,
as is assumed in kinetic theory. Several approaches most of
which originated from geological research groups, have been
presented in the literature to model the frictional stress. The
models for frictional stress are very empirical and should be
used with caution. Typically, the frictional stress, s , is writ-f
ten in a Newtonian form:

T
s s P Iqm =©q =© . 29Ž . Ž .f f f

The frictional stress is added to the stress predicted by ki-
netic theory for e )e :s s, min

P s P q P 30Ž .s kinetic f

m sm qm . 31Ž .s kinetic f

Ž .Johnson and Jackson 1987 propose a semiempirical equa-
tion for the normal frictional stress, P :f

n
e yeŽ .s s, min

P s Fr , 32Ž .pf
e yeŽ .s, max s

where Fr, n, and p are empirical material constants, and
e )e , e are the solid-volume fraction when fric-s s, min s, min
tional stresses become important; Fr, n, and p are material-
dependent constants. The frictional shear viscosity is then re-
lated to the frictional normal stress by the linear law pro-

Ž .posed by Coulomb 1776

s s P sin f , 33Ž .x y f

where f is the angle of internal friction of the particle. Rep-
resentative values for the empirical constants employed in
Eqs. 32 and 33 are given in Table 5.

Ž .Another approach, originally from Schaeffer 1987 , was
Ž .employed by Syamlal et al. 1993 to describe the frictional

stress in very dense gas]solid systems:

n
P s A e ye 34Ž . Ž .f s s, min

P ? sin ff
m s .f

2 2 221  u  ®  ®  u 1  u  ®s s s s s s
e y q q q qs) ž /ž / ž / ž /6  x  y  y  x 4  y  x

35Ž .

Values of As1025, ns10, e s0.59, and f s258 are typ-s,min
ically employed.

Ž .The approaches of Johnson and Jackson 1987 and Syam-
Ž .lal et al. 1993 are compared in Figure 5. It can be seen that

resulting normal frictional stress can differ by orders of mag-
nitude.

Interphase transfer coefficient
Generally, the form drag and skin drag are combined in

one empirical parameter, the interphase drag constant b , in
the modeling of the momentum transfer between the two
phases. The drag coefficient b is typically obtained experi-
mentally from pressure drop measurements in fixed, flu-

Ž .idized, or settling beds. Ergun 1952 performed measure-
ments in fixed liquid]solid beds at packed conditions to de-

Ž .termine the pressure drop. Wen and Yu 1966 have per-
formed settling experiments of solid particles in a liquid over
a wide range of solid volume fractions, and have correlated

Table 5. Empirical Parameters of Eqs. 32 and 33 by Various Researchers
2 3w x w x w xFr Nrm n p e f d mm r kgrm Material References in s sm

Ž .0.05 2 3 0.5 28 8 150 2500 Not specified Ocone et al. 1993
y3 2 Ž .3.65=10 0 40 } 25.08 1800 2980 Glass Johnson and Jackson 1987

y3 2 Ž .4.0=10 0 40 } 25.08 1000 1095 Polystyrene Johnson and Jackson 1987
Ž .0.05 2 5 0.5 28.58 1000 2900 Glass Johnson et al. 1990
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Figure 5. Different expressions for the frictional normal
stress.

their data and those of others for solids concentrations, 0.01
Ž .Fe F0.63. Syamlal et al. 1993 use the empirical correla-s

Ž .tions of Richardson and Zaki 1954 and Garside and Al-Bi-
Ž .bouni 1977 to determine the terminal velocity in fluidized

and settling beds expressed as a function of the solid volume
fraction and the particle Reynolds number. From the termi-
nal velocity, the drag force can be readily computed.

Ž .The drag model of Gidaspow 1994 follows Wen and Yu
Ž .1966 for solid volume fractions lower than 0.2 and Ergun

Ž .1952 for solid volume fractions larger than 0.2. The motiva-
Ž .tion for this hybrid drag description of Gidaspow 1994 is

Ž .unclear because the Wen and Yu 1966 expression includes
experimental drag data for solid volume fractions larger than
0.2. Moreover, a step change in the interphase drag constant
is obtained at the ‘‘crossover’’ solid volume fraction of 0.2,
which can possibly lead to difficulties in numerical conver-
gence. The magnitude of this discontinuity in b increases with
increasing particle Reynolds number. The drag coefficients
are summarized in Table 6 and are compared quantitatively
in Figure 6 for a range of solid volume fractions at a fixed
particle Reynolds number.

Simulations
The impact on the predicted flow patterns of the differ-

ences in the governing equations and constitutive models are
compared for the test cases of a freely bubbling fluidized-bed,
a slugging fluidized bed, and a single bubble injection into a
fluidized bed. The particles in a fluidized bed move accord-
ing to the action of the fluid through the drag force, and
bubbles and complex solid mixing patterns result. Typically,
the average solid volume fraction in the bed is fairly large,
averaging about 40%, whereas in the the freeboard of the

Ž . Žfluidized bed the top there are almost no particles e fs
y6.10 .
The simulations in this work were carried out with the

commercial CFD code CFX 4.2 from AEA Technology, Har-
Ž .well, UK, employing the Rhie-Chow Rhie and Chow, 1983

algorithm for discretization. For solving the difference equa-

Table 6. Drag Coefficients
( )Wen and Yu 1966

Ž .1ye e r N© y© N3 s s g g s y2.65Ž .b s C 1yeD s4 ds
Ž .Rowe 1961

24 0.687ŽŽ . . Ž .1q0.15 1ye Re if 1ye Re -1,000s p s pŽ .Re 1yep s
C sD d r N© y© Ns g g s¼ Ž .0.44 Re s if 1ye Re G1,000p s pmg

( ) ( )Gidaspow 1994 applies the Ergun 1952 equation for higher ®olume fractions:
2e m e r N© y© N7s g s g g s

150 q if e )0.2g2Ž . 4 d1ye d ss s
b s

Ž .1ye e r N© y© N3 s s g g s¼ y2 .65Ž .C 1ye if e F0.2D s s4 ds

( )Syamlal et al. 1993
Ž .e 1ye r3 s s g

b s C N© y© ND g s24 V dr s
Ž .Dalla Valle 1948

2
Vr

C s 0.63q4.8(D ž /Re
Ž .Garside and Al-Dibouni 1977

1 2 2'Ž . Ž .V s ay0.06 Req 0.06 Re q0.12 Re 2by a q ar 2
4.14Ž .as 1yes

1.28Ž .0.8 1ye if e G0.15s s
bs

2.65½ Ž .1ye if e -0.15s s
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Ž .tions, the higher-order total variation diminishing TVD
scheme, Superbee is used. This TVD scheme incorporates a

Žmodification to the higher-order upwind scheme second or-
.der . The time discretization is done with the second-order

backward-difference scheme. The solution of the pressure
from the momentum equations requires a pressure correction
equation, correcting the pressure and the velocities after each

Ž .iteration; for this, the SIMPLE Patankar, 1980 algorithm is
employed. The calculated pressure is used to determine the
density of the fluid phase; the simulations are performed al-
lowing for compressibility of the gas phase. The grid spacing
was determined by refining the grid until average properties
changed by less than 4%. Due to the deterministic chaotic
nature of the system, the dynamic behavior always changes
with the grid. The simulations of the slugging fluidized bed
and the freely bubbling fluidized bed were carried out for 25
s of real time. After about 5 s of real time, the simulation has
reached a state in which averaged properties stay unchanged.
Averaged properties, such as bubble size and bed expansion,
were determined by averaging over the last 15 s of real time
in each simulation. A bubble is defined as a void in the solid
phase with a solid volume fraction less than 15%. The bubble
diameter is defined as the diameter of a circle having the
same surface as the void in the solid phase; this is called the
equivalent bubble diameter.

Boundary conditions
All the simulations are carried out in a two-dimensional

rectangular space in which front and back wall effects are
neglected. The left and right walls of the fluidized bed are
treated as no-slip velocity boundary conditions for the fluid
phase, and the free-slip velocity boundary conditions are em-
ployed for the particle phase. A possible boundary condition
for the granular temperature follows Johnson and Jackson
Ž .1987 :

n ? k=Q sŽ .

'pr e 3Q 3Qs s X 2 2w N© N y 1y e , 36Ž .Ž .slip w1r3 2es
6e 1ys, max ž /es, max

where the lefthand side represents the conduction of granu-
lar energy to the wall, the first term on the righthand side
represents the generation of granular energy due to particle
slip at the wall, and the second term on the righthand side
represents dissipation of granular energy due to inelastic col-
lisions. Another possibility for the boundary condition for the

Ž .granular temperature is proposed by Jenkins 1992 :

n ? k=Q sy© ? My D , 37Ž . Ž .slip

where the exact formulations of M and D depend upon the
amount of friction and sliding occurring at the wall region.
Simulations we have done with an adiabatic boundary condi-

Ž .tion at the wall =Qs0 show very similar results.
ŽThe boundary condition at the top of the freeboard fluid-

.phase outlet is a so-called pressure boundary. The pressure

Figure 6. Different expressions for the interphase drag
coefficient as a function of solid volume-frac-
tion: Re s45.p

at this boundary is fixed to a reference value, 1.013=105 Pa.
Neumann boundary conditions are applied to the gas flow,
requiring a fully developed gas flow. For this, the freeboard
of the fluidized bed needs to be of sufficient height; this is
validated through the simulations. In the freeboard, the solid
volume fraction is very close to zero, and this can lead to
unrealistic values for the particle-velocity field and poor con-
vergence. For this reason, a solid volume fraction of 10y6 is
set at the top of the freeboard. This way the whole freeboard
is filled with a very small number of particles, which gives
more realistic results for the particle phase velocity in the
freeboard, but does not influence the behavior of the flu-
idized bed itself.

The bottom of the fluidized bed is made impenetrable for
the solid phase by setting the solid phase axial velocity to
zero. For the freely bubbling fluidized bed and the slugging
fluidized bed, Dirichlet boundary conditions are employed at
the bottom with a uniform gas inlet velocity. To break the
symmetry in the case of the bubbling and slugging beds, ini-
tially a small jet of gas is specified at the bottom lefthand
side of the geometry. In the case of the bubble injection, a
Dirichlet boundary condition is employed at the bottom of
the fluidized bed. The gas inlet velocity is kept at the mini-
mum fluidization velocity, except for a small orifice in the
center of the bed, at which a very large inlet velocity is speci-
fied. Finally, the solid-phase stress, as well as the granular
temperature at the top of the fluidized bed, are set to zero.

Initial conditions
Initially, the bottom part of the fluidized bed is filled with

particles at rest with a uniform solid volume fraction. The gas
flow in the bed is set to its minimum fluidization velocity. In
the freeboard a solid volume fraction of 10y6 is set, as ex-
plained earlier. The granular temperature is initially set to
10y10 m2? sy2.

Test Case
With increasing gas velocity above the minimum fluidiza-

tion velocity, U , bubbles are formed as a result of the in-m f
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Figure 7. Computational grid of simulated fluidized
beds with the gas inlet boundary condition.
Ž . Ž .a Freely bubbling fluidized bed; b slugging fluidized bed,
Ž .c bubble injection into a fluidized bed.

herent instability of the gas]solid system. The behavior of
the bubbles significantly affects the flow phenomena in the
fluidized bed, that is, solid mixing, entrainment, and heat and
mass transfer. The test cases in this comparative study are
used to investigate the effect of different closure models and
governing equations on the bubble behavior and bed expan-
sion. Simulation results of each test case are compared to

Ž .generally accepted experimental data and semi empirical
models. The system properties and computational parame-
ters for each of the test cases are given in Table 7; the com-

putational meshes are also shown in Figure 7. The test cases
are discussed in greater detail in the following sections.

Freely bubbling fluidized beds
In the freely fluidized-bed case, the gas flow is distributed

uniformly across the inlet of the bed. Small bubbles form at
the bottom of the fluidized bed that rise, coalesce, and erupt
as large bubbles at the fluidized-bed surface. In order to

Ž .evaluate model predictions, we use the Darton et al. 1977
bubble model for bubble growth in freely bubbling fluidized
beds. This model is based upon preferred paths of bubbles
where the distance traveled by two neighboring bubbles be-
fore coalescence is proportional to their lateral separation.

Ž .Darton et al. 1977 have validated their model with mea-
surements of many researchers. Their proposed bubble-
growth equation for Geldart type B particles is

0.80.4 y0.2D s0.54 UyU hq4 A g , 38' Ž .Ž . Ž .b m f 0

where D is the bubble diameter, h is the height of the bub-b
ble above the inlet of the fluidized bed, U is the actual super-
ficial gas inlet velocity, and A is the ‘‘catchment area’’ that0
characterizes the distributor. For a porous-plate gas distribu-

Ž .tor, Darton et al. 1977 propose 4 A s0.03 m.' 0
Ž .Werther and Molerus 1973 have developed a small capac-

itance probe and the statistical theory to measure the bubble
diameter and the bubble rise velocity in fluidized beds using
this probe. This capacitance probe can be placed in the flu-
idized bed at different heights and radial positions in the bed.
The bubble rise velocity is determined by placing two verti-
cally spaced probes and correlating the obtained data. The
capacitance probe measures the bubbles passing it, that is,
the bubble is pierced by the capacitance probe. The duration
of this piercing is dependent upon the size of the bubble, the
rise velocity of the bubble, and the vertical position of the
bubble relative to the probe.

Ž .Hilligardt and Werther 1986 have done many measure-
ments of bubble size and bubble velocity under various con-
ditions using the probe developed by Werther and Molerus
Ž .1973 and have correlated their data in the form of the

Ž .Davidson and Harrison 1963 bubble model. Hilligardt and

Table 7. System Properties and Computational Parameters

Freely Bubbling Slugging Bubble Injection into
Ž .Parameter Description Fluidized Bed Fluidized Bed Fluidized Bed Kuipers, 1990

3w xr kgrm Solid density 2,640 2,640 2,660s
3w xr kgrm Gas density 1.28 1.28 1.28g

y5 y5 y5w xm Pa ? s Gas viscosity 1.7=10 1.7=10 1.7=10g
w xd mm Particle diameter 480 480 500s

e Coefficient of restitution 0.9 0.9 0.9
e Max. solid volume fraction 0.65 0.65 0.65max

w xU mrs Minimum fluidization velocity 0.21 0.21 0.25m f
w xD m Inner column diameter 0.5 0.1 0.57T
w xH m Column height 1.3 1.3 0.75t

w xH m Height at minimum fluidization 0.97 0.97 0.5m f
e Solids volume fraction 0.42 0.42 0.402s, m f

at minimum fluidization
y3 y3 y3w xD x m x-mesh spacing 7.14=10 6.67=10 7.50=10
y3 y3 y2w xD y m y-mesh spacing 7.56=10 7.43=10 1.25=10
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Werther propose a variant of the Davidson and Harrison
Ž .1963 model for predicting the bubble rise velocity as a func-
tion of the bubble diameter,

u sc UyU qwn gd , 39' Ž .Ž .b m f b

where w is the analytically determined square root of the
Froude number of a single rising bubble in an infinitely large

Ž .homogeneous area. Pyle and Harrison 1967 have deter-
mined that w s0.48 for a two-dimensional geometry, whereas
in three dimensions the Davies-Taylor relationship gives w s
0.71. The symbols c and n , added by Hilligardt and Werther
Ž .1986 , are empirical coefficients based on their data, which
are dependent upon the type of particles and the width and
height of the fluidized bed. For the particles and geometry

Ž .employed in this study, Hilligardt and Werther 1986 pro-
pose c f0.3 and n f0.8. Proposals of values for c and n
under various fluidization conditions, determined by simula-

Ž .tions, are given by Van Wachem et al. 1998 .
Ž .Hilligardt and Werther 1986 also measured bed expan-

sion under various conditions. Predictions of the bed expan-
sion from the simulations are compared to these data.

Slugging fluidized beds
In the case of the slugging fluidized beds, coalescing bub-

bles eventually reach a diameter of 70% or more of the col-
umn diameter, resulting from either a large inlet gas velocity
or a narrow bed. The operating conditions employed in the
simulations correspond to the slugging conditions reported

Ž .by Kehoe and Davidson 1971 , who present a detailed study
of slug flow in fluidized beds. The experiments of Kehoe and

Ž .Davidson 1971 were performed in slugging fluidized beds of
2.5-, 5-, and 10-cm diameter columns using Geldart B parti-
cles from 50-mm to 300-mm diameter and with superficial gas
inlet velocities of up to 0.5 mrs. X-Ray photography was used
to determine the rise velocity of slugs and to determine the

Ž .bed expansion. Kehoe and Davidson 1971 use their data to
validate two different equations for the slug rise velocity, both
based on two-phase theory:

w
u sUyU q gD 40' Ž .slug m f T2

w
u sUyU q 2 gD , 41' Ž .slug m f T2

where w is the analytically determined square root of the
Froude number of a single rising bubble. Equation 40 is the
exact two-phase theory solution, and Eq. 41 is a modification
of Eq. 40, based on the following observations:

Ž .1. For fine particles -70 mm the slugs travel symmetri-
cally up in the fluidized bed, so the slug rise velocity is in-
creased by coalescence.

Ž .2. For coarser particles )70 mm the slugs tend to move
up the walls, which also increases their velocity.

Ž .According to Kehoe and Davidson 1971 , Eqs. 40 and 41
give upper and lower bounds on the slug rise velocity. Fur-

Ž .thermore, Kehoe and Davidson 1971 measured the maxi-
Ž .mum bed expansion H during slug flow. They validatedmax

their theoretical analysis, which led to the result that

H y H UyUmax m f m f
s , 42Ž .

H um f bub

where u is the rise velocity of a slug without influence ofbub
the gas phase,

w
u s gD 43' Ž .bub T2

or

w
u s 2 gD , 44' Ž .bub T2

corresponding to Eqs. 40 and 41. Hence, they also propose
upper and lower bounds on the maximum bed expansion.

Bubble injection in fluidized beds
Single jets entering a minimum fluidized bed through a

narrow single orifice provide details of bubble formation and
Ž .growth. Such experiments were carried out by Kuipers 1990 .

Ž .Kuipers 1990 reported the shape of the injected bubble as
well as the quantitative size and growth of the bubble with
time using high-speed photography. The superficial gas-inlet
velocity from the orifice was Us10 mrs, and the orifice was
ds1.5=10y2 m wide.

Results and Discussion
Predictions based on simulations of these three test cases

are used to compare the different governing and closure
models. For this comparative study, only one particular clo-
sure model is varied at a time, to determine the sensitivity of
the model predictions to that particular closure. No coupling
effects were investigated. The default governing equations are

Ž .those given by Jackson 1997 , and the default closure models
Ž .are the solid-phase stress of Hrenya and Sinclair 1997 , the
Ž .radial distribution function of Lun and Savage 1986 , the

Ž .frictional model of Johnson and Jackson 1987 with empiri-
Ž .cal values given by Johnson et al. 1990 , the complete

granular energy balance neglecting J , and the drag coeffi-s
Ž .cient model of Wen and Yu 1966 . For animations of some

of the simulations, please refer to our W ebsite
http:rrwww.tcp.chem.tue.nlr;scrrwachemrcompare.html.

Go©erning equations
Simulations of the slugging bed case were performed with

Ž . Ž .both the Ishii 1975 and the Jackson 1997 governing equa-
tions. Figure 8 shows the predicted maximum bed expansion
with increasing gas velocity during the slug flow and the two

Ž .correlations of Kehoe and Davidson 1971 . Figure 9 shows
the increasing slug rise velocity with increasing gas velocity.
Clearly, the exact formulation of the governing equation does
not have any significant influence on the prediction of these
macroscopic engineering quantities, and both CFD models
do a good job at predicting these quantities. Microscopically,
however, there does seem to be a difference in the predic-
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Figure 8. Predicted maximum expansion of a slugging
fluidized bed with increasing gas velocity with

( )the governing equations of Jackson 1997
( )and Ishii 1975 , and the additional term J ins

the granular energy equation.
The predictions are compared with the two-phase theory as

Ž .proposed and validated by Kehoe and Davidson 1971 .

tions, as indicated in Figure 10. The flow of the gas phase in
areas of large solid volume-fraction gradient is slightly differ-
ent, leading to a different solids distribution. Specifically,

Ž .Figure 10 shows that the Jackson 1997 governing equations
produce a more round-nosed bubble shape than the Ishii
Ž .1975 equations, because the path of the gas phase is differ-
ent.

Figure 9. Predicted slug rise velocity with increasing
gas velocity with the governing equations of

( ) ( )Jackson 1997 and Ishii 1975 , and the addi-
tional term J in the granular energy equation.s
The predictions are compared with the two-phase theory as

Ž .proposed and validated by Kehoe and Davidson 1971 . The
constant w s 0.48.

Figure 10. Rising bubble in a slugging fluidized bed
( )predicted by a employing the governing

( ) ( )equations of Jackson 1997 , and by b em-
ploying the governing equations of Ishii
( )1975 at the same real time; the lines are
contours of equal solid volume fraction.

Solids stress models
The exact solid-phase stress description does not influence

either the freely bubbling or the slugging fluidized-bed pre-
dictions, as is expected from Figure 1; this figure shows that
between 0.4 and 0.6 solids volume fraction, which is domi-
nant in the cases studied, all solids-phase stress predictions
are equal. Moreover, the influence of the radial distribution
upon the stress does not give rise to any variation in the pre-
dictions of the engineering quantities associated with these
simulations; the variation of the solids phase stress as a func-
tion of radial distribution function, shown in Figure 4, is small
between 0.4 and 0.6 solids volume fraction, as long as the

Ž .Carnahan and Starling 1969 equation is not employed. From
the magnitude of the terms on the solid-phase momentum
balance during simulations of fluidized beds, it can be con-
cluded that gravity and drag are the dominating terms and
that solids-phase stress predicted by kinetic theory plays a
minor role.

Drag models
Coordinating with results of the comparison of the drag

Ž .models shown in Figure 6, the Syamlal et al. 1993 drag leads
to a lower predicted pressure drop and lower predicted bed
expansion than the other two drag models. Figure 11 shows
the average simulated bed expansion employing different drag
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Figure 11. Predicted bed expansion as a function of gas
velocity based on different drag models and
with and without frictional stress.
The predictions are compared to the experimental data of

Ž .Hilligardt and Werther 1986 . The spread in the simula-
Ž .tion data with the drag model of Gidaspow 1994 is indi-

cated by the line.

models in the freely bubbling fluidized-bed case, compared
Ž .to measurements of Hilligardt and Werther 1986 . The drag

Ž .model of Syamlal et al. 1993 underpredicts the bed expan-
sion compared to the findings of Hilligardt and Werther
Ž .1986 , and therefore also underpredicts the gas holdup in
the fluidized bed.

Figure 12 shows the simulated bubble size as a function of
the bed height when employing different drag models, com-

Ž .pared with the Darton et al., 1977 equation. Although the

Figure 12. Predicted bubble size as a function of bed
height at Us0.54 mrrrrrs based on different
drag models and compared to the correla-

( )tion of Darton et al. 1977 .
The vertical lines indicate the spread of the simulated
bubble size.

Figure 13. Predicted bubble rise velocity as a function
of the bubble diameter at U s 0.54 mrrrrrs
based on different drag models and com-
pared to the experimental correlation of Hilli-

( )gardt and Werther 1986 .
The vertical lines indicate the spread of the simulated
bubble rise velocity.

spread in the simulations is fairly large, all of the investigated
drag models are in agreement with the equation put forth by

Ž .Darton et al. 1977 . Figure 13 shows the predicted bubble
rise velocity employing different drag models in a freely bub-
bling fluidized bed, compared to the empirical correlation of

Ž .Hilligardt and Werther 1986 . All of the investigated drag
models are in fairly good agreement with the empirical corre-
lation.

Because the bubble sizes predicted by the different drag
models are all close, while the predicted bed expansion dif-
fers between the models, variations in the predicted solid-
volume fraction of the dense phase exist between the models,

Ž .with the Syamlal et al. 1993 drag model predicting the high-
est solid volume fraction in the dense phase.

Figure 14 shows the quantitative bubble-size prediction for
a single jet entering a minimum fluidized bed based on the

Ž . Ž .drag models of Wen and Yu 1966 and Syamlal et al. 1993 ,
which are compared to the experimental data of Kuipers
Ž .1990 . Moreover, in Figure 15 we show the resulting qualita-
tive predictions of the bubble growth and shape, and also

Ž .compare these with photographs by Kuipers 1990 . The Wen
Ž .and Yu 1966 drag model yields better agreement with
Ž .Kuipers’ 1990 findings for both the bubble shape and size

Ž .than the Syamlal et al. 1993 drag model. The Syamlal et al.
Ž .1993 drag model underpredicts the bubble size and pro-
duces a bubble that is more circular in shape than in the

Ž .experiments of Kuipers 1990 and in the simulations with
Ž .the Wen and Yu 1966 drag model.

Frictional stress
Frictional stresses can increase the total solid-phase stress

by orders of magnitude, and is an important contributing force
in dense gas]solid modeling. The simulation of the single jet
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Figure 14. Bubble diameter as a function of time for a
bubble formed at a single jet of Us10 mrrrrrs.
A comparison is made between the experiments of Kuipers
Ž .1990 , model simulations using the drag coefficient of Wen

Ž .and Yu 1966 with and without frictional stress, and model
simulations using the interphase drag constant of Syamlal

Ž .et al. 1993 .

entering a fluidized bed reveals that the size of the bubble is
not significantly influenced by the frictional stress, as shown
in Figure 14. However, Figure 11 shows that the predicted
bed expansion in the freely bubbling fluidized bed is signifi-
cantly less without frictional stress. Moreover, the number of
iterations for obtaining a converged solution is almost dou-
bled when frictional stress is omitted. Without frictional
stress, there is less air in the dense phase, the maximum

Figure 15. Experimental and simulated bubble shape
associated with a single jet at Us10 mrrrrrs
and at t s0.10 s and t s0.20 s.

Ž .Comparison is made between the a experiment of Kuipers
Ž . Ž .1990 ; b model simulation using the interphase drag

Ž . Ž .constant of Wen and Yu 1966 ; c model simulation using
Ž .the interphase drag constant of Syamlal et al. 1993 .

Žachieved solids packing is higher maximum achieved solids
.volume fraction increased from 0.630 to 0.649 , and the bed

expansion is less. Moreover, the solid-phase stress in the
dense regions are significantly decreased because the pre-
dicted granular temperature in the dense region of flow is

Ž y5 2 y2 .very low Qf10 m ? s due to the magnitude of the dis-
sipation term. When frictional stress is neglected in the simu-
lations, convergence difficulty arises because the maximum
solid volume fraction specified in the radial distribution func-
tion is approached and the derivative of the radial distribu-
tion function near maximum solid volume fraction is ex-
tremely steep. In order to still obtain convergence, we have
written the radial distribution function as a Taylor series ap-
proximation at very high solid volume fraction. Adding fric-
tional stress in the simulations prevents this problem, be-
cause then the solid volume fraction does not approach the
maximum packing value.

Granular energy balance
The influence of the additional generation and dissipation

term J in the granular energy balance is determined in thes
case of the slugging fluidized bed. Figure 8 shows the predic-
tions of the maximum bed expansion as a function of increas-
ing gas velocity for simulations with and without this addi-
tional term. Figure 9 also shows the predicted rise velocity of
the slugs with and without this additional term J . Althoughs
this additional term J results in as much as 20% highers

Žgranular temperature values granular temperature increased
2 y2 2 y2 .from 0.138 m ? s to 0.165 m ? s , this does not seem to

influence the predicted bed expansion or the slug rise veloc-
Ž .ity. The exact formulation of J Eq. 26 or 27 does not play as

role in the predicted granular temperature.
Simulations of slugging fluidized beds were also performed

using the simplified algebraic granular energy equation, Eq.
21. There were no differences in predicted bed expansion,
bubble size, or bubble rise velocity due to this simplification
vs. using the full granular energy balance. This simplified
equation gives rise to deviations from full granular energy-
balance predictions of as much as 10% in the granular tem-

Ž 2 y2perature granular temperature decreased from 0.138 m ? s
2 y2 .to 0.0127 m ? s . The computational effort for solving the

complete granular energy equation is about 20% higher than
calculating the granular temperature from the algebraic
equation. More simulation results of the freely bubbling flu-
idized bed case with the algebraic equation are given in van

Ž .Wachem et al. 1998 .

Conclusions
In this article we have compared different formulations that

are employed in CFD models for gas]solid flow in the Eule-
rianrEulerian framework. We discussed the basis for the for-
mulation of the two different sets of governing equations
common to the two-fluid literature with respect to the nature
of the dispersed phase. It is shown in detail that the model-
ing of gas]solid flows requires different governing equations
than the modeling of gas]liquid flows. We also have com-
pared various closure models both quantitatively and qualita-
tively. For example, we have shown how the hybrid drag model

Ž .proposed by Gidaspow 1994 produces a discontinuity in the
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drag coefficient, how an order-of-magnitude difference in the
normal stress is predicted by the various frictional stress

Ž .models, and how the Syamlal et al. 1993 model predicts a
lower bed expansion than with the other drag models.

Finally, we have studied the impact of the two governing
equations and the various closure models on simulation pre-
dictions in three fluidized-bed test cases. It is shown that the
resulting predictions based on the two sets of governing
equations are similar on an engineering scale, but are differ-
ent in terms of microscopic features associated with individ-
ual bubbles or localized solids distributions. It is also shown
that the model predictions are not sensitive to the use of dif-
ferent solids stress models or radial distribution functions. In
dense-phase gas]solid flow, the different approaches in the
kinetic theory modeling predict similar values for the solid-
phase properties. From an analysis of the individual terms on
the momentum balance of the solid-phase momentum bal-
ance during the simulations, it can be concluded that gravity
and drag are the most dominating terms; this is why the two
different sets of governing equations predict similar results,
and why the exact solid-phase stress prediction is of minor
importance. At a very high volume fraction, frictional stress
can influence the hydrodynamic prediction due to its large
magnitude. Simplifying the granular energy balance by re-
taining only the generation and dissipation terms is a reason-
able assumption in the case of fluidized-bed modeling and
reduces the computational effort by about 20%. Finally, the
manner in which the drag force is modeled has a significant
impact on the simulation results, influencing the predicted
bed expansion and the solids concentration in the dense-
phase regions of the bed.

Acknowledgments
Ž .The investigations were supported in part by the Netherlands

Ž .Foundation for Chemical Research SON , with financial aid from
Ž .the Netherlands Organization for Scientific Research NWO . This

support is largely acknowledged. B.G.M. van Wachem gratefully ac-
knowledges the financial support of the Netherlands Organization

Ž .for Scientific Research NWO , the Stimulation fund for Internation-
Ž .alization SIR , DelftChemTech, the Delft University Fund, and the

Ž .Reactor Research Foundation RR , for the expenses for visiting
Purdue University.

Notation
Asempirical constant

A scatchment area of distributor, m2
0

C sdrag coefficientD
d sparticle diameter, ms

y1D sstrain rate tensor, ss
Dsdiameter, m

D sinner column diameter, mT
escoefficient of restitution
f sfluid-phase point property

Fr sempirical material constant, N ?my2

Ž .g r sweighting function
g sgravitational constant, m ? sy2

g sradial distribution function0
hsheight of bubble in fluidized bed, m

H sminimum fluidization bed height, mm f
H scolumn height, mt

J sfluctuating velocityrforce correlation, kg ?my3 ? sy1

Lsinterfacial area per unit volume, my1

Msinterphase momentum exchange, N ? sy1

nsempirical constant in frictional stress
nsnumber density
nsnormal vector, m

psempirical constant in frictional stress
P spressure, N ?my2

r spoint in space, m
Rscharacteristic length scale, m

ResReynolds number
Sssurface, m2

tstime, s
Ž . y1Usinlet superficial gas velocity, m ? s

U sminimum fluidization velocity, m ? sy1
m f

©svelocity vector, m ? sy1

V svolume, m3

V sratio of terminal velocity of a group of particles to that of anr
isolated particle

xsposition vector, m
X sphase indicator

D xsx-mesh spacing, m
D ysy-mesh spacing, m

Greek letters
b sinterphase drag constant, kg ?my3 ? sy1

e svolume fraction
Ž .hs1r2 1q e

f sangle of internal friction
w ssquare root of the Froude number

wX sspecularity coefficient
g sdissipation of granular energy, kg ?my3 ? sy1

k ssolids thermal conductivity, kg ?my1 ? sy1

lssolids bulk viscosity, Pa ? s
l smean free path, mm f p

mssolids shear viscosity, Pa ? s
n sempirical coefficient
c sempirical coefficient
r sdensity, kg ?my3

y2s stotal stress tensor, N ?m
y2t sviscous stress tensor, N ?m

Qsgranular temperature, m2 ? sy2

Subscripts
bsbubble

bubssingle bubble
dilsdilute

f sfrictional
g sgas phase
isinterface

kseither phase
mf sminimum fluidization

minsminimum; kick-in value
max smaximum

psparticle
sssolids phase

slipsslip
slug sslug

wswall
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