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Abstract

In literature little attempt has been made to verify experimentally Eulerian-Eulerian gas-solid model simulations of
bubbling fluidised beds with existing correlations for bubble size or bubble velocity. In the present study, a CFD model
for a free bubbling fluidised bed was implemented in the commercial code CFX of AEA Technology. This CFD model
is based on a two fluid model including the kinetic theory of granular flow. Simulations of the bubble behaviour in
fluidised beds at different superficial gas velocities and at different column diameters are compared to the Darton et
al. (1977) equation for the bubble diameter versus the height in the column and to the Hilligardt and Werther (1986)
equation, corrected for the two dimensional geometry using the bubble rise velocity correlation of Pyle and Harrison
(1967). It is shown that the predicted bubble sizes are in agreement with the Darton et al. (1977) bubble size equation.
Comparison of the predicted bubble velocity with the Hilligardt and Werther (1986) equation shows a deviation for
the velocity of smaller bubbles. To explain this, the predicted bubbles are divided into two bubble classes : bubbles
that have either coalesced, broken-up or have touched the wall, and bubbles without these occurrences. The bubbles
of this second class are in agreement with the Hilligardt and Werther (1986) equation. Fit parameters of Hilligardt and
Werther (1986) are compared to the fit parameters obtained in this work. It is shown that coalescence, break-up, and
direct wall interactions are very important effects, often dominating the dynamic bubble behaviour, but these effects
are not accounted for by the Hilligardt and Werther (1986) equation. © 1998 Elsevier Science Ltd. All rights reserved.

Introduction

Fluidised multiphase reactors are of increasing impor-
tance in nowadays chemical industries, even though their
hydrodynamic behaviour is complex and not yet fully
understood. Especially the scale-up from laboratory to-
wards industrial equipment is a problem. For example,
equations describing the bubble behaviour in gas-solid
fluidised beds are (semi) empirical and often determined
under laboratory conditions. For that reason there is little
unifying theory describing the bubble behaviour in flu-
idised beds.

Computational fluid dynamics (CFD) is becoming more
and more an engineering tool to predict flows in various
types of apparatus on industrial scale. Although the tools
for applying single phase flow CFD are widely available,
application of multiphase CFD is however still compli-
cated from both a physical and a numerical point of view.
Moreover, experimental validation of multiphase CFD
models is still in its infancy because simulations are time
consuming and reliable predictions of average flows in
large scale equipment are therefore not readily obtained.
Almost all the work on the simulation of gas-solid flu-
idised beds is limited to a qualitative (visual) comparison
of simulated bubble shapes or bubble sizes with pictures
of bubbles obtained from single orifice experimenis of
bubble formation and bubble growth (e.g., Kuipers et al.,
1991). Obvious reasons for this are the already men-
tioned time consuming character of the simulations as

well as the lack of reliable measurements for validating
the calculated predictions. Moreover the research efforts
of most groups working in this field are aimed at devel-
opment of still more detailed CFD models for two phase
flow, while little attention is paid to the evaluation of
the simulation results from an engineering point of view.
This is strange, because at the one hand, nowadays the
computational power of modern computers is increasing
considerably, enabling the simulation of many bubbles
in relatively large scale equipment; at the other hand, in
the classical fluidisation literature an abundance of data
is available in the many (semi) empirical correlations that
relate bubble sizes and rise velocities in single and mul-
tiple bubble beds to fluidisation conditions.

Recently for Geldart group A powders, Ferschneider and
Mege (1996) have used a Eulerian CFD model for the
simulation of free bubbling fluidised beds, for one fluidi-
sation condition, showing the bubble sizes and bed ex-
pansion. They concluded that although the model pre-
dicts the bubble sizes throughout the bed correctly for
one specific fluidisation condition, the model is not suit-
able to predict the bed expansion of this type of particles.
The purpose of the work presented in this paper is to
quantitatively compare the Eulerian-Eulerian simulation
of bubble sizes and rise velocities in fluidised beds with
Geldart group B particles, at different fluidisation con-
ditions, with predictions by generally accepted and ap-
plied equations that can be found throughout the litera-
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ture. This will provide insight into the validity of this
type of CFD codes used in the simulations of free bub-
bling fluidised beds. If these codes appear to be appli-
cable, they can be used to generate engineering correla-
tions to be used in the design of bubbling fluidised bed
reactors.

Gas-solid multiphase model

In spite of the increasing computational power, the num-
ber of particles in gas-solid flow in large scale equipment
is still much too large to handle each particle separately.
Simulating each particle separately is called a Lagrangian
method, which can be used to study microscopic proper-
ties of fluidised beds (Tsuji et al., 1993). The CFD model
used in this work, however, is based on a two fluid model
(TFM) extended with the kinetic theory of granular flow
as derived from the kinetic theory of gases (Chapman and
Cowling, 1970). In a TFM both phases are considered to
be continuous and fully interpenetrating. The TFM has
first been proposed by Anderson and Jackson (1967) and
Pritchett et al. (1978). These firstly proposed models
have zero gas and solids viscosities. Physical behaviour
dominated by the drag between the solids phase and the
gas phase, like the formation of bubbles at a single ori-
fice, is successfully predicted by these models. To over-
come the deficiency of these inviscid models, for instance
not being able to describe the forces on tubes, a solids vis-
cosity was added to the model by Jackson (1985). Unfor-
tunately realistic physical values for this solids viscosity
as well as for the solids stresses were not known.
Jenkins and Savage (1983), Lun et al. (1984), and Ding
and Gidaspow (1990) described the solids phase as a non-
interstitial fluid. This approach is based on the kinetic
theory of dense gases, as presented by Chapman and
Cowling (1970). In this approach the usual thermody-
namic temperature is replaced by the granular flow tem-
perature. The solids viscosity and stress are a function
of this granular temperature, which varies with time and
position in the fluidised bed.

Continuity and momentum equations

Different physical TFM models exist in literature, and
have been described and compared to each other by Boe-
mer et al. (1995). The most promising set of equations
in the sense of fast numerical convergence and accurate
physical results is used in this work.

The well-known continuity equation, or mass balance for
phase ¢ (gas or solid) reads :

o}
E(Eipi) + V- (epivi) = 0 (n

2

€ +te, =1

where ¢ is the volume fraction of each phase, v the veloc-
ity, and p the density. Mass exchange between the phases,
e.g. due to reaction or combustion, is not considered.
The momentum balance for the gas phase is given by
the Navier-Stokes equation, modified to include an in-
terphase momentum transfer term :

0 =
E(fgl’gvg) + V- (egpgVgvy) =V Ty + €508 +

—€,VP = B(vy — v,) (3)
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where T is the viscous stress tensor, g is the gravity ac-
celeration, P is the thermodynamic pressure, and 3 is
the interphase momentum transfer coefficient. The solids
phase momentum balance is given by :

15} —
éz(fspsvs) + V- {€5psvsVs) = V - Ty + €ops8 +

—€6VP = VP + f8(vy — v,) 4)
where P} is the solids pressure obtained from the ki-
netic theory of granular flow, as discussed below. Both
the shear viscosity and the bulk viscosity are used in the
viscous stress tensor, which is discussed by Bird et al.
(1960).

Kinetic theory of granular flow
Equivalent to the thermodynamic temperature for gases,
the granular temperature can be introduced as a measure
for the energy of the fluctuating velocity of the particles.
The granular temperature is defined as
1
0, = ~vi? (5)
3
where 0, is the granular temperature, and v’ is the solids
fluctuating velocity. The equation of conservation of the
solids fluctuating energy can be found in Ding and Gi-
daspow (1990) :
3[0
3 [a(espses) +V (€059 vs| =

(—VP;? + ?s) VV+V (ko VO,) — 70 + ®6  (6)

where kg is the diffusion coefficient, g is the dissipation
of fluctuating energy, and ®¢ is the exchange of fluctu-
ating energy between the phases.

The dissipation of fluctuating energy is described by
Jenkins and Savage (1983) :

. 4 (O,
Yo = 3(1 - 62)E§psgoes ((‘i" 7 -V Vs) @)

where gy is the radial distribution function, which is dis-
cussed below, e is the coefficient of restitution of collid-
ing particles, and d, is the particle diameter.

The solids pressure represents the solids phase normal
forces due to particle-particle interactions. Its description
based on the kinetic theory of granular flow was devel-
oped by Jenkins and Savage (1983) and Lun et al. (1984).
In this approach both the kinetic and the collisional influ-
ences are taken into account. The kinetic part describes
the influence of particle translations, whereas the colli-
sional term accounts for the momentum transfer by di-
rect collisions. The solids pressure of Lun et al. (1984)
is used in this work :

Py = €,p,04(1 + 2g0es(1 + €)) (8)

The bulk viscosity is a measure for the resistance of a
fluid against compression. It is obvious that the impor-
tance of the bulk viscosity depends strongly on the ve-
locity gradients. In a fluidised bed, the bulk viscosity and
the shear viscosity are in the same order of magnitude,
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and thus the bulk viscosity should not be neglected, as
is done in simulating Newtonian fluids. The equation of
Lun et al. (1984) is used in this work :

4 /O,
As - gespsdag()(l + 6) T (9)

where A, is the bulk viscosity of the solids phase.
Whereas pressure and bulk viscosity describe normal
forces, the shear viscosity accounts for the tangential
forces. It was shown by Lun et al. (1984) that it is pos-
sible to combine different inter-particle forces and to use
a momentum balance similar to that of a true continuous
fluid. Similar to the solids pressure, a solids phase vis-
cosity can be derived from the kinetic theory. The shear
viscosity is built up out of two terms : one term for the
dilute region and one term for the dense region. In liter-
ature different expressions for the solids shear viscosity
can be found. In this work the approach of Gidaspow et
al. (1982) is used, because this approach is validated by
comparison with measured data :

4 /0
s = —€gpedego(l +e)y/ —= +
5 T

227 5. d,\/O, 4 :
0 p [1 + —goes(1 +e)]
(l +€) €590

5

where 1, is the shear viscosity of the solids phase.

In the extreme dense regions of the bed (¢; = €, maz),
the particle stresses are dominated by inter-particle fric-
tion rather than by collisions and fluctuating motion.
The two-dimensional stress tensor for a granular material
which is about to yield is proposed by Sokolovski (1965)
and Jackson (1983) :

(10)

Prosing
fto =
1 du Jdv 2 ez} 2 Bu, \2
e/ (3=- %) + (%) + (&)

where ¢ is the angle of internal friction, u and v are the
velocity components, and = and y are the Cartesian di-
rections of v and v.

The radial disiribution function used in the equations
above is the equilibrium radial distribution at particle
contact derived from statistical mechanics. It can be seen
as a measure for the probability of inter-particle contact.
The equation of Ding and Gidaspow (i990) is used in this

work :
-1

.-
3 €s 3

=<|1- 2

o= 5 [1 (fs,maz) J (] )

where €, ,,,q, is the maximum solids packing, usually be-
tween 0.6 and 0.7.

Instead of solving the complete balance of the solids fluc-
tuating energy, equation (6), an algebraic expression was
proposed by Syamlal et al. (1993) . This approach as-
sumes that the granular energy is dissipated locally, ne-
glecting the convection and diffusion, and retaining only
the generation and the dissipation terms, resulting to :

0= (—Pﬁ+i) Vv, — (13)
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This approach is only valid under the assumption that the
volume fraction of the solids phase stays high, and the
velocity of the solids phase stays relatively low. In this
regime most granular energy is dissipated locally, and lit-
tle is left to flow away. Equation (13) can then be rewrit-
ten into :

o, —(K1€5 + ps) tr (fs) +

+\/(K16,, + pg)? tr? (ﬁs) + 4K 4¢,-

(21{3 tr (fi) + Kz tT‘z (35)
L J (14)
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where D, is the solids strain rate tensor, and with the ab-
breviations :

Ky =2(1+€e)psgo

K j—dsps(l + 8)6890 - §K3
dyps ™

Ky= e (5
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ds /T
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When using this algebraic equation in stead of solv-
ing the balance for the granular temperature, much faster
convergence is obtained during simulations. It has been
shown by Boemer et al. (1995) that using this approach
hardly affects the granular temperature in the bubbling
regime.

Interphase momentum exchange

In this work the interphase drag function of Syamlal et al.
(1993) is used. This drag function is based upon Richard-
son and Zaki (1954), Dalla Valle (1948), and Garside and
Al-Dibouni(1977) :

3 ., €s€4p
8=2Cp deg vy = Ve (15)
with
7\
Cp = (0.03 + 4.8V _Q%/
V, = 0.5
(rz ~ 0.06Re + /(0.06Re)? + 0.12Re(3b — a) & a2)
0= edld
g
- 0.82;-""8 ifeg, > 0.15
- 63'6 ife, < 0.15

_ dapg|vg—v,]
Re = s

where Cp is the drag coefficient, V. is the ratio of termi-
nal velocity of a group of particles to that of an isolated
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particle, Re is the particle Reynolds number, and g, is
the gas viscosity.

This approach is only valid if the distribution of parti-
cles on the size of the grid cells can be assumed homo-
geneous. The size of the grid cells in multiphase simula-
tions is in the order of one square centimetre. Especially
in systems with very low solids concentration, like for in-
stance circulating fluidised beds, the number of particles
in a grid cell is largely fluctuating compared to the total
number of particles, and this approach can give incorrect
results.

Simulations

Simulation code

The differential equations (1), (3) and (4) mentioned in
the previous section all express a conservation principle
and are solved on a unit-volume basis. Thus the con-
servations need to yield over all possible finite volumes
covering the whole problem space. Solving differential
equations this way is called finite volumes. The differen-
tial equations express the conservation over an infinites-
imal control volume and need to be discretised over the
used finite volumes. This mathematical process is de-
scribed by Patankar (1980).

The simulations were carried out with the commer-
cial CFD code CFX4.1c from AEA Technology, Har-
well, UK. This package allows free implementation of
extra equations, boundary conditions, and differencing
schemes. The granular kinetic theory and the granular
equations described in the previous section were imple-
mented into this code. The discretisation used by CFX
is the so called Rhie-Chow (1983) algorithm. This algo-
rithm can be used with a non staggered grid : all the dis-
cretised variables are stored at the same boundary points.
For solving the difference equations obtained from the
differential equations, the higher order TVD scheme min-
mod is used. This TVD scheme incorporates a modifica-
tion to the higher-order upwind scheme. Sokolichin et al.
(1997) have shown that solutions obtained with the TVD
scheme result in less numerical diffusion than lower or-
der schemes. Less numerical diffusion leads to a sharper
interface between the gas and the solid boundary (e.g. at
bubbles or at the freeboard). The solution of the pres-
sure from the momentum equations requires a pressure
correction equation, correcting the pressure and the ve-
locities after each iteration of the discretised momentum
equations. In this work the SIMPLE algorithm developed
by Patankar (1980) is used for this purpose. The calcu-
lated pressure is used to calculate the density of the gas
phase.

Fluidisation conditions

The values used for the parameters needed in the simula-
tions can be seen in Table 1. The simulated fluidised bed
is a two-dimensional square column. Air at ambient tem-
perature and pressure is used for the fluidising gas. The
gas is treated compressible and thus the density is cou-
pled to the pressure, according to the ideal gas law. For
the solids, uniform sized glass beads were used. It has
been shown by De Groot (1967) that the diameter distri-
bution has a large influence on the fluidisation behaviour
of the granular material. De Groot states it is difficult
to fluidise monodisperse solids, especially in larger beds.
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There is however little known yet about the exact cause
and effect and it is unknown how a physical diameter dis-
tribution should be implemented into a TFM, and what
the effect would be. The TFM is not an exact model of a
fluidised granular material, and it is questionable whether
an implemented diameter distribution or not would make
a large difference.

The size of the time step influences two effects : the con-
vergence of the iterations regarding the solution of the
differential equations, and the computation time. The
time step used for the highest simulated fluidisation ve-
locity, (i.e., four times Uy,z) is 1.0 - 10~%s and for the
lowest velocity (i.e., two times Uy, f) twice this size is
used. Both were checked to be sufficiently small.

The size of the grid spacing in multiphase flow is of the
order of one square centimetre. This is found to be an op-
timum between computational effort and numerical dif-
fusion. The larger the grid spacing is, the more numerical
diffusion will take place. At high fluidisation velocities,
diffusion of mass is less important than at lower fluidisa-
tion velocities. In this work it is found that lower fluidisa-
tion velocities require a finer mesh. Using a coarse mesh
at lower fluidisation velocities leads to lower porosities in
bubbles, and thus to less realistic results. The mesh cho-
sen in this work for two times Uy, 5 is Az = 7.0-10"% m,
and for four times U, s is Az = 1.0- 1072 m. These val-
ues lead to similar volume fraction inside bubbles at all
simulated fluidisation conditions.

Boundary and initial conditions

All simulations are carried out in a pseudo two-
dimensional square space in which there are no front
and back wall effects. In the simulations particles can-
not travel freely in the third dimension : the momentum
equations are only solved for two dimensions. Numer-
ically this can be seen as two symmetry planes placed
right in the front and at the back of the fluidised bed.
The left and right wall of the fluidised bed are treated as
no slip boundary conditions for the gas phase : the veloc-
ity of the gas phase is set to zero at the wall. For the solids
phase a different condition should be used : particles can
move downwards while touching the wall. It seems not
very important what kind of slip condition is chosen at
the wall, as long as particles are able to fall down at the
wall. In this work a free slip condition is chosen : the
particles find no hinder in their downward or upward ve-
locity when they are near a wall,

The boundary condition at the top of the fluidised bed is
a so-called pressure boundary. The pressure in the mesh
cells at the top of the fluidised bed are fixed at a specific
value. Neumann boundary conditions are applied to the
gas flow velocity. This is also called ‘fully developed
flow’ : the derivatives of the upward velocity in the hor-
izontal direction are assumed zero. It is important that
the freeboard of the fluidised bed is high enough, so that
fully developed flow can be physically expected.

From the momentum balances, the mass flux, containing
the concentration, is solved. If the concentration is zero
or within the computational inaccuracy, this can lead to
unrealistic values for the particle velocity field, resulting
in an unrealistic drag force and that leading to an unre-
alistic gas velocity field. For that reason, a very small
solids concentration {~ 107} for the particle phase is
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Table 1. List of values of model parameters used in the simulations.

Symbol  Description Value Comment or reference

PR solids density 2600 kgm ™3 glass beads

in gas density 1.28 kgm =3 air at ambient conditions
d, particle diameter 500 pm (Geldart B type) no size distribution

¢ coefficient of restitution 0.60 Boemer et al. (1995)

o maximum solids packing 0.61 Syamlal et al. (1993)

7 angle of internal friction 25° Johnson and Jackson (1987)
Uy minimum fluidisation velccity  0.25 ms ™! from Ergun (1952)

At time step LU0 s < At < 2010745 for convergence

A mesh spacing 6.0107%m < Az < 1.0107?m to reduce numeric diffusion
0. granular temperature 1077 m2s™* < ©, < 0.1m?s~?  Balzer and Simonin (1993)
Uy superficial gas velocity 0.5ms ' < Uy < 1.0ms™! arange is used

D, column diameter 02m <Dy <04m arange is used

H, column height 0.6m fixed value

H,.f settled bed height 0.34m fixed value

set in the top cells, leading to particle ‘leakage’ into the
fluidised bed (Balzer and Simonin, 1996). This way the
whole freeboard is filled with a very small number of par-
ticles. The number of particles in the freeboard is chosen
small enough not to have any influence on the physics in
the fluidised bed.

At the bottom of the fluidised bed, the gas inflow is speci-
fied. This is called a Dirichlet boundary condition. In the
beginning of the simulation a small perturbation is spec-
ified in one of the cells of the bottom. This is to break
the horizontal symmetry. In an actual fluidised bed this
1s caused by the random packing of the particles. The
distributor is made impenetrable for the solids phase :
the solids downward velocity is set to zero in the bot-
tom cells.

For the initial condition the bottom half of the bed is filled
with particles at a particle concentration of 0.58. The gas
flow in the bed is set to minimum fluidisation velocity at
t = 0. In the freeboard a very small number of particles
15 set. as was explained above.

Classical bubble size and velocity relations

A lot of experimental work has been done in the 70’s and
8(0's regarding the bubble behaviour in gas-solid fluidised
beds. The Darton et al. (1977) bubble model is a gener-
ally accepted semi-empirical model for bubble growth.
The model is based upon the preferred paths of bubbles
where the distance travelled by two neighbouring bubbles
before coalescence is proportional to their lateral separa-
tion. The proposed equation is :

Dy, = 054Uy — U )™ (0 + 4/ A40)°% /g% (16)

where Dy, is the bubble diameter, % is the height of the
bubble above the distributor, and Ay is the ‘catchment
area” which characterises the distributor; 0.34 is the only
experimentally determined constant. This model is not
applicable to slug flow. nor to Geldart C powders.

Werther and Molerus (1973} developed a small capaci-
tance probe to measure the bubble diameter and the bub-
ble velocity. This capacitance probe can be placed in
the fluidised bed, at different heights and radial posi-
tions. The bubble velocity can be determined by placing
two capacitance probes above each other, and correlating
the data obtained. The main problem in this approach is
translating the measured pierced lengths into an average

bubble diameter with a distribution. To accomplish this,
Werther (1974) assumed the bubble shape to be elliptical.
Knowing the total number of bubbles that have passed the
probe, he determined an average bubble diameter and di-
ameter distribution from the measured pierced lengths.
Davidson and Harrison (1963) proposed a bubble rise ve-
locity according to the two phase theory of fluidisation :

up = U — Umf + 9V de

where ¢ is the analytically determined square root of the
Froude number of a single rising bubble in an infinitely
large homogeneous area. Pyle and Harrison (1967) have
determined that ¢ = 0.48 for a two dimensional geome-
try, whereas in three dimensions ¢ = 0.71. Equation 17,
however, did not satisfy the results obtained by Werther
(1974). Hilligardt and Werther (1986) explained the dif-
ferences between Werther’s measurements and the two
phase flow equation by the following observations :

(7

1. under normal operating conditions for bubble for-
mation without slugging, the visible flow rate is
clearly lower than the excess gas velocity (U —
erf);

2. bubbles of a given size rise faster in a fluidised bed
of larger diameter.

They proposed an adapted equation for the bubble rise
velocity :

up = L‘”(U - (-;rrzf) + v V (]db

to correct for the two differences mentioned. Hilligardt
and Werther (1986) have determined empirical correla-
tions for the parameters 1 and v for different types of
solids. They have done experiments with similar particles
as used in this work (p, = 2640kgm 3, d, = 480um),
and have used these simulations to establish the values
for the parameters of Geldart group D particles, because
Molerus (1982) has characterised this soid under group
D. The parameter ¢ describes the deviation of the visible
bubble flow rate, V,, from the two phase theory :

(18)

Vi

- U- er f

(4 (19)



§$304

Figure 1. The visual representation of a simulation
of 0.4 m width column at 4 times Up, .

Values for 1) have been experimentally obtained by Hilli-
gardt and Werther (1986) :

0.26 7 < 0.55
h = 0.5 20
Tl o3 (h) T os<h<s 20)

for Geldart group D particles. This was later simplified
by Kunii and Levenspiel (1991) to a similar, but bubble
height independent formula.
The parameter v accounts for that part of the deviation
from the behaviour from a single bubble, which is not
reflected by the additive term ¢(U — Up,s). Hilligardt
and Werther (1986) have experimentally determined for
Geldart group D solids :
v=0.87 20
CFD simulation results
The fluidised state of the bed can be visualised by plotting
different grey tones, assigned to different solid volume
fraction regions, in the grid cells. This is done in Figure
| by assigning darker grey tones to increasing solid vol-
ume fractions.
In this paper a bubble is defined as an area where the solid
volume fraction is below a certain value. The value in this
work is chosen at 20%. This value is also used by other
authors and does not depend on the mesh coarseness : the
value of 20% lies before the largest solid volume fraction
gradient leading to a bubble edge. To ensure this, the
mesh for the lower fluidisation velocities is finer than for
higher velocities. Confined areas with more than one cell
with a solid volume fraction below 20% are defined as
bubbles. The diameter of this bubble is calculated as if
its shape is circular and the diameters and centres of all
bubbles in the bed are recorded. Bubble velocities are
determined by studying the bubble diameter and centre
in consecutive time steps, thus enabling the calculation
of the complete bubble trajectory.
The main object of this work is to validate the outcome
of the CFD model with existing empirical equations for
bubble size and velocity. This validation can be difficult,
because it is not always exactly clear what authors have
measured in reality : have they taken all the bubbles into
account, or only the larger bubbles; have they included
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Figure 2. Bubble diameters versus bed height ar 2
times Up ¢ in a 0.4 m width column.

effects as coalescence, break-up, and wall effects? Ex-
perimentally it can be very hard to obtain precise physi-
cal data from a fluidised bed, whereas simulations like in
this work produce an abundance of data. When compar-
ing a model to measurements, it is important to retrieve
similar data from the model as is retrieved from the mea-
surements. For the empirical models of Hilligardt and
Werther (1986) and Darton et al. (1977), bubbles touch-
ing the column walls were not considered. The deter-
mination of the bubble velocity by Werther (1974) was
done by not taking effects like coalescence and break-up
during the observation into account. These effects should
not be considered when comparing the predicted bubble
trajectories to the correlation of Hilligardt and Werther
(1986). For comparison with the Darton et al. (1977)
equation, the bubbles in each simulation are divided into
twelve categories of increasing bubble diameter. Figure
2 shows the bubble diameter and the distribution of each
category together with the estimated average bubble di-
ameter by the Darton equation for one condition. It can
be seen that the predicted bubble diameters are slightly
smaller in the higher part in the fluidised bed, but not in
disagreement. This can be due to a deficiency of the used
measuring technique by Darton et al. (1977) in measur-
ing very small bubbles.

The bubble rise velocities versus the bubble diameters are
shown in Figure 3. This figure shows an enormous spread
in bubble rise velocities, due to coalescence, break-up,
and bubbles interacting directly with the wall. Figure 4
shows the same bubbles averaged into eight classes with
increasing bubble diameter. In can be seen that especially
smaller bubbles show deviating behaviour : the average
small bubbles rise faster through the bed than predicted
by Hilligardt and Werther (1986), whom have only used
bubbles of 0.04m and larger to establish their correlation;
a wake of a bubble has a larger effect on a trailing small
bubble than on a trailing larger one. Figure 5 shows part
of bubble trajectories without coalescence, break-up, and
bubbles touching the wall. The symbol ‘+’ is used for
bubbles which are not within = 30% of the Darton et
al. (1977) equation, and the symbol ‘x’ is used for the
remaining bubbles. In this figure also the equation pro-
posed by Hilligardt and Werther (1986) is shown. The
unaffected bubble trajectories averaged in classes and a
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Figure 3. Bubble rise velocity versus bubble diameter
at 4 times Uy, 5 in a 0.4 m width column. All bubbles
predicted from the simulation are shown.
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Figure 5. Bubble rise velocity versus bubble diame-
ter at 4 times Upyz in a 0.4 m width column. Bubbles
affected by coalescence, break-up, and bubbles touch-
ing the wall during the calculation of their velocity are
shown with ‘o', while other bubbles with ‘x’ or ‘+".

fit of this data is shown in Figure 6. The values for the
coefficients 3 and v proposed by Hilligardt and Werther
(1986), and the resulting values of the fits from all sim-
ulated fluidisation conditions are shown in Table 2. For
the determination of the parameters at each fluidisation
condition, over 3000 bubbles are used. The simulation
results are in reasonable agreement with the values pro-
posed by Hilligardt and Werther (1986). One of the main
issues in testing the CFD model is comparing the abun-
dance of data out of each simulation to the empirical
relations developed by measurements. Measuring tech-
niques and the processing of the outcome of these mea-
surements do not always reflect the exact physical be-
haviour of a system. In the Hilligardt and Werther (1986)
bubble model, coalescence, break-up, and direct wall ef-
fects are not included. This work shows however, that
these effects are very important in the bubble behaviour,
especially with smaller bubbles. Figure 3 shows that a
large number of bubbles do coalesce, break-up, or have
wall interactions, and that these bubbles do not necessar-
ily have the rising velocity predicted by the Hilligardt and
Werther (1986) equation.
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Figure 4. Bubble rise velocity versus bubble diameter
at 4 times Up, g in a 0.4 m width column : the bubbles
of Figure 3 have been averaged into eight classes.
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Figure 6. Bubble rise velocity versus bubble diam-
eter at 4 times Uy, in a 0.4 m width column. Pre-
dicted bubbles not affected by coalescence, break-up,
and bubbles touching a wall during the calculation of
the velocity grouped into eight classes.

Conclusions

The predicted values of the bubble diameter at a certain
bed height are in agreement with the Darton et al. (1977)
bubble equation.

The comparison of the parameters v and v with Hilli-
gardt and Werther (1986) show that the values are in the
same order of magnitude, and that the model of Hilli-
gardt and Werther (1986) is in agreement with the (larger)
bubbles predicted by simulations. In this work, however,
some dependency is seen of both parameters upon the
fluidisation condition. Hilligardt and Werther do not state
which fluidisation conditions they have used to obtain the
values for t. Possibly ¢ is less fluidisation condition in-
dependent as reported by Hilligardt and Werther (1986).
The large abundance of data obtained from a simulation
gives much information about the dynamic behaviour in
fluidised beds and can be a very valuable tool, not only in
the validation of existing empirical correlations, but also
in the improvement of existing correlations, the determi-
nation of new correlations, or the calculation of specific
physical properties of a certain configuration.
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Table 2. Comparison of calculated values for v and v from the CFD model simulations at different column diamerers
and fluidisation velocities with the values from the Hilligardt and Werther (1986) model.

This work H &W. ] This work H &W. [ This work H & W.
Column diameter
Uy [m/s] | Parameter [-] 20cm 30 cm 40 cm
0.50 P 1.1 0.26 -0.35 1.0 0.26 - 0.35 0.90 0.26-0.35
v 0.62 0.87 0.61 0.87 0.63 0.87
0.625 P 0.71 0.26 -0.35 0.62 0.26-0.35 0.21 0.26-0.35
v 0.74 0.87 0.70 0.87 0.66 0.87
0.75 7 0.32 0.26 - 0.35 0.40 0.26 - 0.35 0.48 0.26 - 0.35
v 0.79 0.87 0.87 0.87 0.95 0.87
0.875 P 024 0.26 - 0.35 0.24 0.26 - 0.35 0.49 0.26-0.35
v 1.01 0.87 1.26 0.87 0.81 0.87
1.0 7 0.22 0.26 - 0.35 0.34 0.26-0.35 0.50 0.26 - 0.35
v 0.86 0.87 0.91 0.87 0.74 0.87
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