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Abstract

The present study aims to validate two-dimensional Lagrangian–Eulerian simulations of gas–solid fluidized beds by comparing these
with dedicated experimental data obtained with polystyrene Geldart type D particles of 1.545 mm size.

Experimental data on pressure, voidage, and bed height fluctuations, and the power spectral density are compared with three different
implementations of the Lagrangian–Eulerian model. Though qualitative trends found in the experiment are correctly reproduced by the
simulations, it is found that the simulations are particularly sensitive to porosity estimation procedures used in the three different
simulation strategies employed. Furthermore, the phenomenon of particle clustering predicted by the model does not conform to
experimental observations; this is because the physics of the break-up of clusters is not properly captured in the Lagrangian-Eulerian
model. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Due to increasing computer power, discrete particle
models, or Lagrangian models, have become a very useful
and versatile tool to study the hydrodynamic behavior of
particulate flows. In these models, the Newtonian equa-
tions of motion are solved for each individual particle, and
a collision model is applied to handle particle encounters.
Recently, such particle models have been combined with a
Eulerian fluid model to simulate freely bubbling fluidized

Ž w x.beds and circulating fluidized beds e.g. Refs. 4,12,16 .
Up to date, however, these models have not been properly
validated by comparison with experiments.

Another approach in simulating the behavior of flu-
idized beds is through Eulerian–Eulerian modeling. In this
approach the particle phase is averaged and thus the

) Corresponding author. Present address: Laboratory of Chemical Re-
actor Engineering, Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands. Fax: q31-40-244-6653.

Ž .E-mail address: B.G.M.v.Wachem@tue.nl B.G.M. van Wachem .
1 Present address: Laboratory of Chemical Reactor Engineering, Eind-

hoven University of Technology, P.O. Box 513, 5600 MB Eindhoven,
The Netherlands.

w xparticles are not seen as separate objects, as in Jackson 6
Ž . w x Žvolume averaging or Zhang and Prosperetti 17 ensem-

.ble averaging . After the correct particle and gas governing
equations are obtained, closure relations need to be applied
to describe the particle–particle interactions and the gas–
particle interactions. The conservation laws applicable dur-
ing a hard sphere collision are volume averaged to de-
scribe the particle–particle interactions. This was done for
an ideal gas consisting of fully elastic particles by, for

w xinstance, Chapman and Cowling 2 . For more realistic
w xparticles, Lun et al. 8 successfully derived the kinetic
Ž .theory of granular flow KTGF . This theory provides the

particle–particle closure derived from first principles.
The drawback of volume averaging the particle phase,

as in the Eulerian–Eulerian approach, is the loss of small-
scale information. In the Eulerian–Eulerian approach, it is
impossible to predict the paths of individual particles,
while Lagrangian models can be used to study the motion
of each individual particle. In the Lagrangian–Eulerian
approach, in which the paths of individual particles are
calculated, many researchers do employ a coarser grid
resolution for the gas phase equations than the length-scale
that is used in the particle-phase calculations. Hence, the
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gas-phase does not perceive, initiate, group, or break-up
particle clusters when the clusters are smaller than the
length scale of the gas-phase solution. As a result, micro-
scale cluster formation is not driven by gas flow, but only
by particle–particle collisions. Also, due to the different
averaging scales, the gas does not flow around small
clusters of particles, but flows through them as if the
clusters are a fixed porous medium. Only when clustering
is mainly initiated by particle–particle collisions and clus-
ters are much larger than the gas-phase averaging scale,
the use of a coarser gas-phase grid resolution is justified.

The goal of this work is to validate the predictions of
the Lagrangian–Eulerian model with experiments of a
small fluidized bed with Geldart D particles, to gain
insight in the effect of the assumptions made in the
Lagrangian–Eulerian model derivation. The small bed ge-
ometry and the large particles make the computationally
expensive Lagrangian–Eulerian simulations of this system
feasible. Results obtained from simulations of the pressure
fluctuations, voidage fluctuations, bed expansion, and the
visual representation of the location of the particles are
compared to experiments with the same geometry, particle
type, and superficial gas velocities.

2. Particle phase

We consider flows of homogeneous, inelastic, frictional
spheres in a two-dimensional geometry. The path of each
individual particle is calculated, this is called a Lagrangian
calculation. The calculation of the paths of the particles

Ž .consists of two steps: i calculating the motion of the
Ž .particles, and ii the treatment of the collision of a particle

with another particle.

2.1. Motion of particles

The motion of individual particles is completely deter-
mined by Newton’s second law of motion. The forces
acting on each particle are gravity and the traction force of
the gas phase on the particle. Thus, the momentum equa-

w xtion describing the acceleration of the particle is 6

Vs
m a sm gqV=PtyV= Pqb v yv 1Ž . Ž .s s s s s g s

es

where a is the acceleration of one particle, V is thes s

volume of one particle, t is the local gas phase shear
tensor, P is the local normal pressure, e is the local solids

volume fraction, and b represents the interphase momen-
tum exchange coefficient, as is well-known from two-fluid
models. The gas phase shear tensor is defined as

2
ts2mDy mtr D I 2Ž .Ž .

3

where D is the strain rate tensor,

1 TDs = vq = v 3Ž . Ž .Ž .
2

and m the gas-phase viscosity. In most cases, the magni-
tude of the gas-phase shear tensor is not significant and its
contribution can be safely omitted, as it is an order of
magnitude smaller than the pressure drop.

w xXu and Yu 16 omit the pressure drop term in their
particle phase momentum equation. From our simulations,
we have seen that this pressure drop term, however, is not
negligible but of the same order of magnitude as the
interphase momentum transfer coefficient.

w xWen and Yu 15 have performed settling experiments
of solid particles in a liquid over a wide range of solid
volume fractions and have correlated their data and that of
others for solids concentrations of 0.01Fe F0.63. Thes

interphase momentum transfer coefficient b is given by
w xWen and Yu 15 as

< <3 1ye e r v yvŽ .s s g g s y2.65
bs C 1ye 4Ž . Ž .D s4 dp

w xwith the drag coefficient C given by Rowe 11 asD

24 0.6871q0.15 1y e Re if 1y e Re -1000Ž . Ž .Ž .w xs p s pRe 1y eŽ .p sC s 5Ž .D ½
0.44 if 1y e Re G1000Ž .s p

where the particle Reynolds number Re is defined asp

< <d r v yvp g g s
Re s 6Ž .p

mg

The interaction of the particle rotation with the gas-phase
is neglected. This assumption is verified in the Results
section.

2.2. Collision of particles

The collisions between two particles are assumed bi-
nary, and the velocities of the particles emerging from a
collision are calculated by considering the balance of
linear and angular momenta in the collision. The simplified

w xmodel proposed by Louge 7 , originally developed by
w xMaw et al. 9 , is employed to describe the dynamics of

individual collisions. During a collision, energy is stored in
elastic deformations associated with both the normal and
the tangential displacements of the contact point relative to
the center of the sphere. Because the release of this energy
may affect the rebound significantly, coefficients of restitu-
tion associated with both the normal and tangential compo-
nents of the velocity point of contact are taken into ac-
count. This model is employed for both particle–particle
and particle–wall collisions.
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We consider two colliding spheres with diameters d1

and d with masses m and m with centers located at r2 1 2 1

and r . The unit normal along the line joining the centers2
Ž . < <of two spheres is ns r yr rr yr . During the colli-1 2 1 2

sion, sphere 2 exerts an impulse J onto sphere 1. Prior to
the collision the spheres have translational velocities c1

and c and angular velocities v and v . The correspond-2 1 2

ing velocities after the collision are denoted by primes.
The velocities before and after collision are related by

m cX yc sym cX yc sJ 7Ž . Ž . Ž .1 1 1 2 2 2

and

2 I 2 I1 2X Xv yv sy v yv syn=J 8Ž . Ž . Ž .1 1 2 2d d1 2

where Ismd2r10 is the moment of inertia about the
center of a homogeneous sphere. In order to determine the
impulse J, the relative velocity q at the point of contact is
defined:

d d1 2
qs c yc y v q v =n 9Ž . Ž .1 2 1 2ž /2 2

With the above equations, the contact velocities before and
after the collision are given by

7 1 1 5 1 1
Xq yqs q Jy q n JPnŽ .ž / ž /2 m m 2 m m1 2 1 2

10Ž .

The coefficient of restitution, e, characterizes the incom-
plete restitution of the normal component of q:

nPqXsyenPq 11Ž .

where 0FeF1. In collisions that involve sliding, the
sliding is assumed to be resisted by Coulomb friction and
the tangential and normal components of the impulse are
related by the coefficient of friction m:

< <n=J sm nPJ 12Ž . Ž .
Ž . Ž .where mG0. Combining Eqs. 10 – 12 provides an ex-

pression for the impulse transfer in the case when the
collision is sliding:

1qe qPn nqm 1qe cotg qyn qPnŽ . Ž . Ž . Ž .
Ž1.J s

1 1
qž /m m1 2

13Ž .

where g is the angle between q and n and the superscript 1
denotes that the collision involves sliding. With small g

the collision is sliding, and as g increases the sliding stops
when

n=qXsyj n=q 14Ž .

or equivalently

2 1qjŽ .
cotg s 15Ž .0 7 1qe mŽ .

where 0FjF1 is the tangential coefficient of restitution.
Collisions with gGg do not involve sliding but sticking,0

Žand in this case the impulse is found by combining Eqs.
Ž . Ž . Ž .10 , 11 and 14 :

2
1qe qPn nq 1qj qyn qPnŽ . Ž . Ž . Ž .

7Ž2.J sy
1 1

qž /m m1 2

16Ž .

In this expression, the superscript 2 denotes the collision
does not involve sliding, but sticking. The three parameters
e, m, and j are taken to be constant and independent of
the velocities.

Collisions with a flat wall are treated by considering the
wall as a particle with infinite mass and with the appropri-
ate wall values of e, m, and j .

2.3. From two dimensions to three dimensions

If the local porosity, e , is calculated by dividing theg
Ž .void space not occupied by particles by the total space,

this will give a different result in two dimensions and in
three dimensions. To correct for this inconsistency,

w xHoomans et al. 4 suggest to transform the two-dimen-
sional porosity with the following equation:

3
2 2

e s1y 1ye 17Ž . Ž .3D 2 D'(p 3

where e is the porosity defined as the area occupied by2D

disks in the two-dimensional space. The basis of this
equation is to assume equal spacing between the two-di-
mensional disks in a hexagonal lattice and three-dimen-

w xsional particles in a FCC lattice. Xu and Yu 16 propose a
different equation,

K

VÝ i
is1

e s1y 18Ž .3D
DV

in which the summation is taken over all the particles in
the volume DV, which is the volume of a computational
cell with the thickness of one particle, thus DVsD xD yd ,p

and V is the volume of particle i. This equation givesi

slightly different predictions for e than the equation3D
w xproposed by Hoomans et al. 4 .
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Because of the ideal spherical particles in the two-di-
mensional simulations, the ideal solids packing can be
easily obtained. In practice, however, this packing is never
obtained. A third method should also be considered, namely

w xthe one proposed by Hoomans et al. 4 , but now we have
introduced an empirical parameter containing the maxi-
mum experimental solids packing in practice, n , thus

3
2 2

e s1yn 1ye 19Ž . Ž .3D 2 D'(p 3

1ye3D , experimental minimum
ns 20Ž .

1ye3D , theoretical minimum

Ž . Ž .Both the Eqs. 17 and 19 are used in this work and the
results of simulations employing both expressions are com-
pared with each other.

A fundamental problem regarding the translation of the
corresponding number of particles in two-dimensions to
the number of particles in three-dimensions is the pressure
drop. When the two-dimensional bed is filled with parti-
cles up to a certain height, the number of two-dimensional
particles is not equal to the number of particles as experi-
enced by the gas-phase, due to the translation of the
voidage from two-dimensions to three-dimensions. Hence,
the pressure drop calculated in the gas-phase is less than

Ž .the weight of the particles, by the pre-factor in Eq. 17 .
Thus, the pressure drop calculated by two-dimensional
Lagrangian simulations will predict too low a pressure
drop compared to experiments with the same initial bed
height. Increasing the number of particles to correct for
this loss of weight will increase the pressure drop, but will
also change the dynamics of the particle phase because the
height-over-diameter ratio of the dense fluidized bed is
changed. Both of the mentioned strategies are employed in
this paper.

3. Gas phase

The motion of the gas-phase is calculated from the
volume averaged gas-phase governing equations as put

w xforward by Jackson 6 . The continuity equation for the gas
phase is

Ee rg g
q=Pe v s0 21Ž .g g

Et
and the momentum balance is

Ee r vg g g
q=P e r v vŽ .g g g g

Et

sye = Pqe =Pt qe r gg g g g g

K V b v yvŽ .s , i g s , i
y d xyx 22Ž . Ž .Ý s , i

esis1

in which the last term represents the interphase momentum
transfer between the gas phase and each individual parti-

cle. d represents a pulse function, which is one if its
argument is zero and zero otherwise. The last term is to
ensure that the interphase momentum transfer is only taken
into account in the gas-phase momentum equation at the
location of the corresponding particle.

The left and right walls of the fluidized bed are treated
as no-slip velocity boundary conditions for the gas-phase.
Dirichlet boundary conditions are employed at the bottom
with a uniform gas inlet velocity. The boundary condition
at the top the fluidized bed is a so-called pressure bound-
ary. The pressure at this boundary is fixed to a reference
value, 1.013P105 Pa, and Neumann boundary conditions
are applied to the gas-phase velocity, requiring a fully-de-
veloped gas flow.

As was indicated earlier, a problem of this Lagran-
gian–Eulerian approach is the length-scale of the averag-
ing. In the Eulerian–Eulerian approach the length scales of
the averaged gas-phase and particle-phase are equal and
the Asub-gridB behavior of the particles is described with
the kinetic theory of granular flow. In the Lagrangian–
Eulerian approach, the length-scale of the gas-phase is
larger than the length-scale of the particle phase. The
information of gas induced movement of particles, as well
as particle-induced movement of gas, cannot be transferred
between the phases on the eddy or individual particle
scale. Hence, a computational cell in which a small cluster
of particles is present is penetrated by the gas-phase,
similar as a fixed porous medium; the gas phase does not
discriminate between homogeneously distributed particles
or clustered particles within one cell. In reality, the gas-
phase AdodgesB the particle cluster and moves perpendicu-
lar to the initial flow before the cluster. Particle clustering

Ž .due to the local gas flow Amicro-scaleB clustering is thus
not captured in the Lagrangian–Eulerian approach. This
treatment of the particle-gas phase coupling should be well
kept in mind when attempting to use this simulation
method.

4. Solution method

The gas-phase is calculated on a computational grid
with individual grid size of four to eight particle diameters.
The gas-phase governing equations have been solved on a

Ž w x.staggered grid e.g. Ref. 10 employing the SIMPLE
algorithm to determine the pressure of the gas phase. The
discretization of the terms is done with a second order
TVD scheme in space and the second-order Crank–
Nicholson scheme in time. A preconditioned bi-conjugent
gradient method was employed to solve the discretized
gas-phase equations.

The solid volume fraction in the gas-phase momentum
equation is determined from the number of particles in the

Ž .gas-phase computational cell, by employing Eq. 17 . The
interphase momentum transfer is calculated from the last
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term of the gas-phase momentum balance, and this cou-
pling is treated explicitly. To justify this explicit coupling,
the chosen time-step must be smaller than the time-scale of
the gas–particle interaction. We have found D tf1.0P
10y4 s to be satisfactory; the particle motion due to the
gas-phase does not depend upon the size of the timestep.
The gas-phase properties at the particle surface are calcu-
lated by area weighted averaging, as shown in Fig. 1. This
method is not mesh-size independent, as there is a direct
coupling between average particle properties, such as parti-
cle porosity and velocity, and the gas-phase. The mesh-size
of the gas-phase needs to be small enough to predict
realistic gas–particle interactions, and large enough to
determine an accurate average value for the particle poros-
ity, momentum transfer, and velocity. We have found that
the length of one gas-phase grid cell should be in the order
of 4 to 10 particle diameters.

After initialization of both phases, first the shortest
collision time of each particle is determined. This is done
by comparing the location and velocity of each particle
with the other particles in the near vicinity by using a
particle-phase mesh, without checking a pair of particles
twice, as indicated by Fig. 2. The collision time between

w xtwo particles is determined by Allen and Tildesley 1 as

21 1
2 2 2Ž .yr Pc y r Pc yc r y d q d12 12 12 12 12 12 1 2( ž /2 2

t s 23Ž .col 2c12

where r 'r yr and c 'c yc . If the inproduct12 1 2 12 1 2

r Pc )0, the particles are moving away from each12 12

Fig. 1. The principle of area weighted averaging. The gas-phase proper-
ties are given in the corners of the gas-phase cell by the gas-phase

Žsolution and are averaged to the center of the particle denoted by the
.black dot by using the overlying areas as weighting factors. This figure

w xhas been adapted from Hoomans et al. 4 .

Fig. 2. A three-by-three particle mesh. The shortest times of collision of
the particles in the center cell are determined by comparing the locations
and velocities of the particles in the white center cell with all the particles
in the nine particle cells. For the calculation times in the next particle
cell, comparing the particles in that cell with the particles in the white cell
is no longer necessary.

other and will not collide. If the overall shortest collision
Ž .time of all the particles is larger than the time-step of the

gas-phase calculation, the particle positions are updated by
Ž .the integration of Eq. 1 with the same time-step as the

gas-phase. Hereafter, the gas-phase properties are com-
puted and the forces exerted by the gas phase on each
individual particle are calculated. Now, the shortest colli-
sion times are determined again and the process is repeated
from the beginning.

If the overall shortest collision time is smaller than the
time-step of the gas-phase, the particle positions are up-
dated by this shortest overall collision time. Hereafter, the
collision of the two particles in question is executed. Then
again, the shortest collision times of all particles are
calculated. This is repeated, until the overall shortest colli-
sion time is shorter than the time-step of the gas-phase
calculation minus the time-steps of all previous collisions
during this iteration. When the overall shortest collision
time is larger than the time remaining until the end of the
gas-phase time-step, the gas-phase is updated. This process
is repeated until the required real time of simulation is
obtained.

5. Experiments and simulations

5.1. Experimental set-up

The experimental set-up consisted of a two-dimensional
plexiglass rectangular column, 500 mm high, 90 mm wide,
and 8 mm deep. A schematic representation of the set-up is
given in Fig. 3. The gas flow was controlled with a
variable area flow meter and a valve. The dry air from the
compressor system was humidified to reduce static elec-
tricity build-up in the fluidized bed. The gas was only
humidified partially to prevent condensation of water in

Ž .the bed operating temperature 178C ; polystyrene spheres
with a density of 1150 kg my3 and a diameter of 1.54 mm
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Fig. 3. The experimental set-up employed in this work. The symbols P
indicate where the pressure signals are determined.

Ž .1.41–1.68 mm sieve fraction were used as particle sys-
tem. The bed was filled to a height of 90 mm, correspond-
ing to 39 g of particles, which leads to a packed bed
voidage of 0.475. The minimum fluidization velocity cal-
culated using Ergun’s equation is 0.74 mrs, agreeing quite
well with the experimentally determined value of 0.72
mrs. The experiments were carried out at superficial gas
velocities of Us0.80 mrs, Us0.90 mrs, and Us1.0
mrs.

5.2. Measurements

Absolute pressure fluctuations were measured with
Kistler piezo electric pressure transducers, type 7261 at the
side of the bed at heights of 45, 85, and 225 mm from the
distributor plate. This sensor type measures the pressure
fluctuation relative to the average pressure with an accu-
racy of 2 Pa. The sensors were connected to 0.10 m long
copper tubes of 4 mm ID, the total dead volume of sensor
and tube was 2500 mm3. The tubes were equipped with 40
mm mesh wire gauze at the tips, to prevent particles from
entering. This set-up has been thoroughly tested for distor-

w xtion of pressure fluctuation amplitude and phase 13 . No
significant influence was found at frequencies typical for

Ž .gas–solids fluidized beds 0–150 Hz . Also, the absolute
pressure was measured with a Validyne differential pres-
sure transducer, type DP15, at a height of 5 mm. For each
time-series, 300,032 data points were recorded to file with
16 bits ADC using a SCADAS II data acquisition system
Ž .LMS, Breda, The Netherlands . The sample frequency
was set to 1000 Hz with a filter frequency of 314 Hz. The
time-series were analyzed using Fourier analysis and com-
pared to the simulations. In addition to pressure measure-

Ž .ments, digital video recordings 25 framesrs, 60 s long of
the fluidized bed were made and analyzed. The local

voidage was calculated, from the light intensity determined
by the video recording, using the Lambert–Beer relation,

1 I
e sy ln 24Ž .s ž /a I0

where I is the measured light intensity, I is the minimum0

light intensity, and a is obtained from calibration of the
measured light-intensity and the corresponding known
solids concentration.

5.3. Simulations

As explained earlier, there are several ways of deter-
mining the number of particles which need to be used in a
two-dimensional simulation in order to be able to mimic
the experiments. The solids volume fraction in the two-di-
mensional configuration at the minimum fluidization ve-
locity can be determined by transforming the measured

Ž .solids volume fraction with Eq. 17 to the appropriate
two-dimensional solids volume fraction. When the width–
height aspect ratio of the fluidized bed is equal to the
experiments, this approach leads to 3110 required parti-
cles. When the ideal two-dimensional maximum solids
volume fraction is used, the number of required particles is
4080. Both these strategies are employed in this paper. The
particle specifications used in the simulations are the same
as in the experiments. The empirical parameter in the
equation to translate the porosity from two dimensions to

Ž .three dimensions, Eq. 19 , is determined experimentally to
be ns0.89. For the coefficient of restitution and coeffi-
cient of friction, generally proposed values were em-
ployed. The details of the simulation conditions are speci-
fied in Table 1. Both the simulations and the experiments
were carried out at superficial gas velocities of Us0.8
mrs, Us0.9 mrs, and Us1.0 mrs.

Three different simulation strategies were followed. In
w xstrategy A, the equation of Hoomans et al. 4 is employed

Table 1
Properties of the particles and fluidized bed used in the experiments and
the Lagrangian–Eulerian simulations

Parameter Description Value
3w xr kgrm solid density 1150s
3w xr kgrm gas density 1.28g

y5w xm Pa s gas viscosity 1.7P10g
w xd mm particle diameter 1.545p

w xe – coefficient of restitution 0.9
w xm – coefficient of friction 0.3
w xU mrs minimum fluidization velocity 0.74mf
w xD m column width 0.0898T
w xH m height at minimum fluidization 0.09mf
w xe – solids volume fraction at 0.525s,mf

minimum fluidization
w x Ž .n – empirical parameter in Eq. 19 0.89

y3w xD x m x mesh spacing 9.97P10
y3w xD y m y mesh spacing 9.97P10
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Fig. 4. The total kinetic energy and rotational energy as a function of time
predicted by a simulation of a fluidized bed with a superficial gas
velocity Us0.9 mrs.

to translate the two-dimensional porosity into a three-di-
mensional one. The simulations with this strategy contain

Ž Ž ..3110 particles. In strategy B, the fit equation Eq. 19 to
translate the porosity from two dimensions to three dimen-
sions is employed. Simulations with this strategy also
contain 3110 particles. Strategy C employs the Hoomans et

w xal. 4 equation to translate the two-dimensional porosity to

a three-dimensional one, and the simulations following this
strategy contain 4080 particles, to ensure the correct bed

Ž .height at zero superficial gas velocity absent gas-phase ,
because then the two-dimensional particles are ideally
packed.

Fig. 4 shows the kinetic energy and the rotational
energy as a function of time. The average rotational energy
is an order of magnitude smaller than the average kinetic
energy. Hence, rotational effects, including influence of
particle rotation on the gas-phase, can be safely neglected.

5.4. Comparison

The locations of all the particles in the simulations of
the fluidized bed are qualitatively compared to the digital
video recordings made of the fluidized bed at the same
operating conditions. More quantitatively, the simulation
predictions of the total time-averaged pressure drop over
the fluidized bed, the pressure fluctuations at 45 mm above
the distributor, the average voidage fluctuations in a plane
at 45 mm above the distributor, and the time-dependent
bed expansion are compared with experiments employing
the same operating conditions. Furthermore, the power

Ž .spectral densities PSD of the simulated pressure fluctua-

Ž .Fig. 5. Ten snapshots of a visual representation of the location of the particles at equidistant times given at the bottom of the series in seconds at a
superficial gas velocity of Us0.9 mrs. The top series represents a simulation employing strategy A, the second series is a result of strategy B, and the
third series is a result of employing strategy C. The bottom series are snapshots of the experiment taken by a video camera.
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Fig. 6. Pressure fluctuation samples taken at Us0.9 mrs at 45 mm
above the distributor, resulting from the three simulation strategies com-
pared to the experiment.

tions are compared with the experimentally determined
predicted fluctuations.

6. Results and discussion

Fig. 5 shows a visual comparison of the location of the
particles in three simulations at a superficial gas velocity
at Us0.9 mrs and snapshots from the corresponding
experiment covering a complete period from bubble for-
mation to bubble eruption. Animations of the performed
experiments and simulations can be viewed at the WWW
address http:rrwww.tcp.chem.tue.nlr; scrrwachemr
particle.html.

In all three simulation strategies employed, large clus-
ters of particles were found to be present at the top of the
bubble during bubble eruption. This phenomenon is not
observed in the experiments. The simulated particle clus-
ters are too stable, which is attributed to the Lagrangian–
Eulerian approach, as discussed earlier. The top series of
snapshots in Fig. 5 represents the simulation as a result of
employing strategy A. The period of bed oscillation from
bubble formation to bubble eruption of the simulation is
visually in fair agreement with the experiment. The second
series represents a simulation as a result of employing
strategy B. Although the bed oscillation is similar to the
one observed in the experiment, the bubble dynamics are
not. Due to the extra decreased mass effect because of the

Ž .fit parameter in Eq. 19 , the gas-phase experiences too
little resistance from the particle phase. The third series
represents a simulation as a result of employing strategy C.
The bubble eruption of this series gives a too high bed
height compared with the experiment, because the height
of the simulated fluidized bed is larger than employed in

the experiment. The agreement of the time between bubble
formation and bubble eruption of the comparison between
all simulations and the experiments is reasonable. Compar-
ison of the simulations and experiments at superficial gas
velocities of Us0.8 mrs and Us1.0 mrs show similar
results.

The pressure drop in the simulations with 3110 particles
Ž .is lower strategy A 340 Pa, strategy B 300 Pa than the

Ž .pressure drop measured in the experiments 480 Pa . The
predicted pressure drop by the simulation applying strategy

Ž .C is in very good agreement 483 Pa with the experiment.
Fig. 6 shows a comparison of a sample of the pressure

fluctuation time-series determined at 45 mm above the
distributor at Us0.9 mrs. In strategy A, the shape and
amplitude of the pressure fluctuations deviate clearly from
the experiment; the maximum amplitudes are higher and
the peaks are sharper. This suggests that the gas voids in
the simulation are larger. The time-scale of the pressure
fluctuations is in fairly good agreement with the experi-
ment.

The shape and time-scale of the pressure fluctuations
obtained by following strategy B are in reasonable agree-
ment with the pressure fluctuations determined in the
experiment; the amplitude of the fluctuations, however, is
much smaller. This suggests that in the simulation voids
are much smaller than observed in the experiment, con-
firmed by the visual observations of Fig. 5. The time-scale
of the pressure fluctuations obtained from simulations
following strategy C agrees reasonably with the experi-
mentally determined pressure fluctuations, but the ampli-
tude is much too high. This suggests that the voids in this
simulation are much larger than observed in the experi-
ment. Also the shape of the fluctuations is somewhat
different compared to the experimentally determined pres-

Ž .Fig. 7. The power spectral density PSD as a function of frequency of
the pressure fluctuation series at 45 mm above the distributor at Us0.9
mrs, resulting from the three simulation strategies compared to the
experiment.
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Fig. 8. Fluctuations of the solids volume fraction averaged in a horizontal
plane at 45 mm above the distributor at Us0.9 mrs, as a function of
time, resulting from the three simulation strategies compared to the
experiment.

sure fluctuations. Pressure fluctuations obtained at differ-
ent heights show very similar results.

Ž .The power spectral densities PSD of the complete
pressure fluctuating time-series determined at Us0.9 mrs
at 45 mm above the distributor are shown in Fig. 7. This
figure shows that the location of the dominant frequency at
approximately 3 Hz, imposed by the bubble behavior, is
similar in the experiment and in all the simulations. This
figure confirms that this most dominant frequency is less
pronounced in the simulations than in the experiment,
denoted by the more broad maxima in the PSD of the
simulations at the most dominant frequency. The decrease
in the PSD curve in Fig. 7 at frequencies exceeding 5 Hz,

Fig. 9. Fluctuations of the bed height at Us0.9 mrs, as a function of
time, resulting from the three simulation strategies compared to the
experiment.

Table 2
The average bed expansion and the standard deviation determined for the
three simulation strategies and the experiment

Gas velocity 0.8 mrs 0.9 mrs 1.0 mrs

w xStrategy Bed expansion m

A 0.119"0.021 0.124"0.027 0.146"0.332
B 0.094"0.003 0.097"0.008 0.104"0.180
C 0.162"0.041 0.190"0.046 0.212"0.298
experiment 0.114"0.009 0.120"0.019 0.138"0.019

a power law fall-off, is a typical feature of gas–solid
w xfluidized beds 14 ; the agreement between experiment and

simulations is remarkably good on this point.
Fig. 8 shows the voidage fluctuations, as a function of

time, averaged in a horizontal plane at 45 mm above the
distributor, at Us0.9 mrs, of the three simulation strate-
gies in comparison with the experiment. Simulated voidage
fluctuations as a result of strategies A and C show too
large fluctuations and also the shape of the fluctuations is
too sharp in comparison with the experiment. This also
suggests that the voids present in the simulations following
strategies A and C are too large. Simulations performed
with strategy B show shapes and amplitudes that are much
more similar to the measured voidage fluctuations. All
three simulation strategies predict a slightly too small
time-scale of the voidage fluctuations.

Fig. 9 shows the bed height as a function of time as a
result of the three simulation strategies and the experiment
at Us0.9 mrs. All simulation strategies show quite
different results compared to the experiment. The average
time-scale of the bed fluctuation is in fairly good agree-
ment, which can also be seen from Fig. 5. The amplitudes
of the bed expansion in simulations by strategy A and C
are too large. This is a result of too vigorous bubbling,
indicating larger gas voids than present in the experiments.
The bed expansion amplitude from simulations following
strategy B is too small. Enlarging the empirical factor n in

Ž .Eq. 19 will improve the results, as this translation equa-
tion will then produce results closer to strategies A and C.

The average bed expansion and its standard deviation
for the three simulation strategies and the experiment are
shown in Table 2. Strategy A compares well to the experi-
ment; it seems that the increase in void size, due to the
interphase-momentum transfer equation, is accounted for
by the number of particles.

7. Conclusions

The goal of this paper is to validate two-dimensional
Lagrangian–Eulerian simulations of a gas–solid fluidized
bed containing polystyrene particles with laboratory-scale
experiments of the same geometry. One difficulty in the
two-dimensional Lagrangian–Eulerian model is the trans-
lation of the two-dimensional porosity of the particles to a
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three-dimensional one, required by the gas-phase and the
interphase momentum transfer. To tackle this problem, we
have followed three strategies, A, B, and C, in performing
simulations, each with different assumptions. In one of the
strategies, we have included an empirical parameter to
fine-tune the pressure drop or the bed expansion with the
experimentally determined one. We have not found a
strategy, however, that can successfully predict all features
of the fluidized bed as observed in the experiments. Per-
forming three-dimensional Lagrangian simulations either
with a two-dimensional or three-dimensional Eulerian
gas-phase will overcome the difficulty in translating the
two-dimensional porosity to a three-dimensional one, but
will increase the computational cost as the number of
particles to obtain the required bed height in three-dimen-
sions is much larger than in two-dimensions.

Because the gas-phase hydrodynamics are resolved on a
larger scale than the particle-phase dynamics, the method
is not grid independent and Amicro-scaleB clustering can-
not be captured. Animations show that Amicro-scaleB clus-
tering does contribute to the total fluidized bed behaviour.
Resolving the gas phase on a scale smaller than the

Ž .particle size, either by direct numerical simulation DNS
w x w x5 or by the more elegant fictitious domain method 3 ,
can resolve this problem.

Overall, the two-dimensional Lagrangian–Eulerian sim-
ulations are in fair agreement with the experiments. With
an added empirical parameter in the translation from the
two-dimensional porosity to the three-dimensional porosity
the pressure drop or the bed expansion can be fine-tuned.
To capture the behaviour of the physics of the fluidized
bed more precisely, applying a three-dimensional La-
grangian–Eulerian method is advised.

Nomenclature
a empirical parameter
a particle acceleration, m sy2

c particle velocity, m sy1

CD drag coefficient
dp particle diameter, m
DT column width, m
Ds strain rate tensor, sy1

e coefficient of restitution
g gravitational constant, m sy2

H height, m
I moment of inertia, kg m2

J impulse transfer during collision, kg m sy1

K number of particles
L light intensity, cd
m particle mass, kg
n normal vector, m
P pressure, Pa
q relative velocity, m sy1

Re Reynolds number
r point in space, m
t time, s

U Ž . y1inlet superficial gas velocity, m s
Umf minimum fluidization velocity, m sy1

v velocity vector, m sy1

DV volume of computational cell, m3

Vs particle volume m3

D x x mesh spacing, m
D y y mesh spacing, m

Greek
b interphase drag constant, kg my3 sy1

g angle between impact and normal
e volume fraction
m friction coefficient
n Ž . Ž .empirical parameter, Eqs. 19 and 20
r density, kg my3

t viscous stress tensor, N my2

j tangential coefficient of restitution

Subscript
0 minimum intensity
1,2 particle index
2D two-dimensional
3D three-dimensional
g gas phase
mf at minimum fluidization
p particle
s solids phase
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